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Abstract
Purpose of Review Tauopathies represent a spectrum of incur-
able and progressive age-associated neurodegenerative dis-
eases that currently are diagnosed definitively only at autopsy.
Few clinical diagnoses, such as classic Richardson’s syn-
drome of progressive supranuclear palsy, are specific for un-
derlying tauopathy and no clinical syndrome is fully sensitive
to reliably identify all forms of clinically manifest tauopathy.
Thus, a major unmet need for the development and implemen-
tation of tau-targeted therapies is precise antemortem diagno-
sis. This article reviews new and emerging diagnostic thera-
pies for tauopathies including novel imaging techniques and
biomarkers and also reviews recent tau therapeutics.
Recent Findings Building evidence from animal and cell
models suggests that prion-like misfolding and propagation
of pathogenic tau proteins between brain cells are central to
the neurodegenerative process. These rapidly growing devel-
opments build rationale and motivation for the development
of therapeutics targeting this mechanism through altering
phosphorylation and other post-translational modifications of
the tau protein, blocking aggregation and spread using small
molecular compounds or immunotherapy and reducing or si-
lencing expression of the MAPT tau gene.

Summary New clinical criteria, CSF, MRI, and PET bio-
markers will aid in identifying tauopathies earlier and more
accurately which will aid in selection for new clinical trials
which focus on a variety of agents including immunotherapy
and gene silencing.
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Introduction

Tau is a highly soluble microtubule-associated protein which
modulates stability of axonal cytoskeleton and is encoded by
the MAPT gene on chromosome 17q21.3 consisting of 16
exons. Due to alternate splicing of E2, E3, and E10, six tau
isoforms exist in human brain tissue that are defined by the
presence or absence of E10 (the second microtubule-binding
domain): three tau isoforms that contain three repeated bind-
ing domains (i.e., 3R tau) and the three tau isoforms contain-
ing E10 with four repeated binding domains (i.e., 4R tau). In
the normal human brain, there exists a relative equal balance
in the ratio of 3R:4R tau isoforms [1]. Tauopathies are a class
of age-associated neurodegenerative diseases that are charac-
terized by the presence of abnormal accumulations of patho-
genic tau in neurons and/or glia. These disorders can be fur-
ther classified by the relative balance of 3R and 4R tau iso-
forms found in pathological inclusions and morphological/
ultrastructural features of inclusions.

Alzheimer’s disease (AD) is defined by the presence of
both amyloid-beta plaques and tau neurofibrillary tangles
(NFTs) [2], which consist of relatively equal proportions of
3R and 4R tau isoforms in paired helical filaments [3••].While
NFTs in AD correlate most closely with clinical symptoms
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[4], the precise relationship between amyloidosis, NFTs, and
cognitive dysfunction are currently unclear. As such, AD can
be considered a mixed tauopathy due to the consistent find-
ings of both tau NFTs and amyloid plaques. A distinct neuro-
pathological entity, primary age-related tauopathy (PART),
has been recently proposed to distinguish the pathological
findings of NFT pathology found in relative or absolute ab-
sence of amyloid plaque pathology [5]. These individuals are
usually older and may have mild or no clear cognitive impair-
ment during life, with corresponding tau pathology found re-
stricted to the medial-temporal lobe. Others claim that PART
is within the spectrum of the AD due to the lack of biochem-
ical differences between AD and PART NFTs and universal
findings of medial temporal lobe NFTs in AD [6]. Further
research is needed to help support or refute the distinction of
PART from AD. Finally, moderate to severe comorbid AD
NFT tau and amyloid-beta plaque pathology is common
(~50%) in Lewy body disorders (LBD) [7] and NFTs confer
a strong effect on prognosis and timing of the expression of
dementia [8]. Thus, tau-directed therapies may likely impact
not only primary tauopathies but also potentially mixed
tauopathies such as AD and LBD patients with AD
copathology. This review will focus on primary tauopathies,
which are considered part of the frontotemporal lobar degen-
eration (FTLD) spectrum (i.e., FTLD-Tau) [9••], as these pa-
tients have a monoproteinopathy which is advantageous for
testing tau-directed therapeutics [10].

Three main strands of evidence suggest that the patholog-
ical process of tau accumulation within brain cells and prop-
agation between cells is central to disease pathogenesis. First,
pathological findings of tau pathology is the hallmark of these
disorders and “gold-standard” for diagnosis, and regional to-
pography of tau pathology in the CNS correlates well with
clinical symptoms [4, 11, 12]. Second, patients with familial
forms of tauopathy possess pathogenic mutations in the
MAPT tau gene (FTDP-17); many of which correspond to
accelerated fibrillization of tau and/or loss of microtubule
binding function in vitro [13] demonstrating that altered tau
function can contribute to disease pathogenesis. Finally, many
recent animal- and cell-model studies find transmission of
both recombinant tau and pathogenic tau-derived from brain
homogenates of human tauopathy patients which can propa-
gate from cell-to-cell in anatomically connected networks
[14•, 15, 16]. These studies parallel the landmark human stag-
ing studies by Braak and Braak, which find sequential patterns
of progressive cortical NFT pathology from serial cross-
sectional AD autopsies [17] and provide compelling evidence
that alteration of the tau protein alone is sufficient to recapit-
ulate human disease. Further, studies using injections of brain
extracts from various human tauopathies give rise to distinct
morphologies of tau pathology in murine models that are sim-
ilar to the features of tau pathology from human source tissue
[18, 19]. In addition, inoculation with recombinant tau protein

can cause distinct morphologies of endogenous tau aggrega-
tions in cell models of disease and these specific aggregation
types, when injected into transgenic mice, developed different
regional patterns of tau pathology [20, 21]. These innovative
studies suggest that there may be distinct strains of pathogenic
tau that correspond to the various clinical and pathological
forms of tauopathies. These strain-like properties are similar
to those seen in spongiform encephalopathies; however, a
clear distinction remains in that prions are infectious protein-
aceous particles [22] and there is currently no evidence to
suggest that tauopathies can be spread between humans or
non-human primates [23]. These distinctions aside, the
prion-like mechanism of tauopathy aggregation and spread
is an attractive target for therapeutic development as it is likely
the most proximal cause of neurodegeneration. Transmission
models showminimal neuronal toxicity associated with exog-
enously induced tangles [14•, 15, 16, 18], and transgenic an-
imals may show signs of degeneration prior to tau inclusion
formation [24], suggesting that the toxic species of tau may be
prefibrillar tau (i.e., soluble monomers, oligomers) rather than
tangles themselves [25•]. It is likely that loss of tau microtu-
bule stabilizing function contributes as well through compro-
mised axonal transport and resultant altered cellular metabo-
lism [26]. Other downstream mechanisms including impaired
protein degradation pathways, oxidative stress, and inflamma-
tion likely contribute in the neurodegenerative process, and
targeting these systems alone or in combination with tau-
directed therapies may be advantageous as well.

This review highlights the clinicopathological heterogene-
ity of tauopathies, followed by an overview of the state of the
science in diagnostic biomarkers and emerging therapeutic
strategies to slow or halt tau-mediated neurodegeneration.

Clinicopathological Complexity of Tauopathies

Primary tauopathies (FTLD-Tau) are both clinically and path-
ologically diverse. Figure 1 depicts the main clinicopatholog-
ical associations of FTLD-Tau within the clinical spectrum of
frontotemporal dementia (FTD). One major challenge to ac-
curate diagnosis is that patients may present with either cog-
nitive and/or motor symptoms that may be encountered at
either memory or movement disorder clinic. Cognitive and
motor impairment can cause additive disability and many pa-
tients require coordinated care across neurological disciplines.
The main diagnostic considerations are other age-associated
neurodegenerative diseases including forms of FTLD with
TDP-43 or fused-in-sarcoma proteinopathy (i.e., FTLD-TDP,
FTLD-FUS), AD, or LBD. Since there is no clinically avail-
able test to diagnose FTLD-Tau antemortem, it is important to
exclude potentially treatable causes of “rapid-progressive de-
mentia” in those patients with “red-flag” symptoms of acute
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onset, rapid progression, or atypical features such as seizure
[27]. Below, we characterize the main classes of FTLD-Tau.

Picks Disease (3R Tauopathy)

Pick’s disease (PiD) is the sole 3R predominant tauopathy [9••].
Neuropathological findings often include severe gross atrophy of
the frontotemporal lobes and corresponding tau-positive intracel-
lular inclusions. The morphological features include prominent
round tau-positive “Pick bodies” in neurons with often severe
neuron loss and diffuse neuropil threads and variable amounts
of glial tau pathology in ramified astrocytes and oligodendro-
cytes [11]. Reactivity to C-terminal truncation epitopes [28]
and the amyloid-binding dye, thioflavin-S [29], thought to be
markers of mature tau inclusions of AD [30], is present in a
subset of PiD tau pathology [11].

Clinically, PiD is most commonly associated with
behavioral-variant FTD [31] (bvFTD), a disorder of social
cognition previously referred to as Pick’s disease, but can be
also seen in patients with clinical corticobasal syndrome [32]
(CBS) or variants of primary progressive aphasia [33] (PPA)
[34•]. Due to this clinical heterogeneity and high frequency
of FTLD-TDP (~50–60%) in bvFTD [34•], current

nomenclature reserves the term Pick’s disease for the patho-
logical findings above [9••].

Progressive Supranuclear Palsy (4R Tauopathy)

Progressive supranuclear palsy (PSP) has pathological fea-
tures of tau-positive glial inclusions in the form of “tufted
astrocytes” in gray matter and “coiled-bodies” in oligodendro-
cytes in white matter, along with neuronal tangles [35]. The
most severe pathology is usually seen in subcortical regions
including the midbrain, pons, dentate nucleus of the cerebel-
lum, and subthalamic nucleus, where large tau-reactive “glo-
bose” tangles may be found. Tau pathology in PSP is near
exclusively of the 4R tau isoform type [35] and is reactive to
acetylation at K280 [30] but lacks reactivity to mature tau
markers including C-terminal truncation epitopes [28] and
thioflavin-S [29]. A 900-kb inversion in MAPT has led to
two haplotypes of polymorphisms in high linkage disequilib-
rium, H1 and H2 [36]. The H1 haplotype is a risk factor for
PSP, and a recent genome-wide association study (GWAS) of
autopsy-confirmed PSP identified several other polymor-
phisms that may increase risk of PSP tauopathy [37].

While the Steele Richardson Olszewski syndrome is the
most recognized PSP clinical syndrome (i.e., PSPS) [38],
PSP can present initially as pure parkinsonism (PSP-P),
CBS, bvFTD, a non-fluent-agrammatic form of PPA
(naPPA), pure akinesia with freezing of gait, and other more
rare presentations such as cerebellar disorder [39, 40]. PSP-P
in particular may be mistaken for idiopathic Parkinson’s dis-
ease early on in the course as there can be no clear clinical
distinguishing features and at least 20–40% have been report-
ed in certain series to be levodopa responsive [41–43]. The
variety of clinical presentations in part reflect different distri-
bution of the tau pathology within the brain [12, 44]. Finally, it
is not uncommon for these clinical syndromes to overlap dur-
ing the course of illness, where patients with naPPA language
disorder eventually develop cardinal features of PSPS (oculo-
motor dysfunction and axial rigidity) or PSPS patients devel-
oping slow hesitant speech consistent with naPPA.

The NINDS/SPSP clinical criteria [38] requires a progres-
sive a syndrome of supranuclear gaze palsy and slowed verti-
cal saccades with falls within the first year to make a diagnosis
of probable PSPS. These criteria are highly specific for PSP
tauopathy but often lack sensitivity and over-represent the
Richardson phenotype [45]. As such, updated clinical criteria
for PSPS were developed in 2016 to expand the detection of
PSP pathology in the context of these other clinical presenta-
tions and improve sensitivity [46]. These resultant criteria
provide three levels of certainty based on the strength of as-
sociation of four main classes of clinical features predictive of
PSP tauopathy from large autopsy series [47], which allow for
identifying patients with high specificity for clinical trials or

Fig. 1 The importance of autopsy confirmation in improvement of
d iagnos i s and t rea tment o f tauopa th ies . Figure depic t s
clinicopathological associations of the three main FTLD-Tau
neuropathologies found at autopsy with clinical syndromes. Solid lines
represent the strongest associations (i.e., PiD with bvFTD, CBD with
CBS, and PSP with PSPS) and dashed lines represent less frequent
associations. Color shading of clinical phenotype boxes depict the
relative frequencies of neuropathologies found at autopsy in each
syndrome (red FTLD-Tau, blue FTLD-TDP, yellow AD) and
photomicrographs in each neuropathology box depict characteristic
inclusion morphologies (PiD Pick bodies, CBD astrocytic plaque, PSP
tufted astrocyte). Schematic illustrates how detailed multimodal
evaluations of patients with longitudinal clinical, biofluid, and
neuroimaging assessments followed to autopsy can improve existing
clinical criteria for detection of FTLD-Tau and differentiation from
other neurodegenerative diseases and provide tissue validation for
biomarkers obtained during life. Autopsy tissues also provide critical
source of human-derived pathogenic tau species for use in animal/cell
models of disease and therapeutic response to accelerate the
development of disease modifying therapies. naPPA non-fluent
agrammatic variant of primary progressive aphasia, svPPA semantic
variant of primary progressive aphasia
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increased sensitivity for use in epidemiological studies or ef-
forts for early detection [46].

Corticobasal Degeneration (4R Tauopathy)

The main neuropathological findings of corticobasal degener-
ation (CBD) include diffuse tau-positive threads that are glial
in origin and resemble plaques (i.e., astrocytic plaques) along
with often severe white matter coiled bodies and threads, tau-
positive ballooned neurons, and neuronal tangles [35]. Severe
pathology is often in peri-rolandic cortical regions and sub-
cortical structures in the basal ganglia and brainstem [30].
CBD tauopathy does not react to thioflavin-S [29] or C-
terminal truncation antibodies [28] but is acetylated at lysine
280 [30]. Interestingly, CBD shares several genetic risk fac-
tors, including the H1 MAPT haplotype, with PSP [48] sug-
gesting shared mechanisms of disease.

CBD is most commonly associated with an asymmetric
frontoparietal syndrome often with lateralized extrapyramidal
symptoms (i.e., CBS); however, clinical CBS is only shown to
have underlying CBD tauopathy in about 50% of cases, while
other neurodegenerative diseases associated with this syn-
drome include AD, PSP, and FTLD-TDP [49–51]. As such,
the term CBD is now used to refer to this specific 4R
tauopathy, while CBS distinguishes the clinical syndrome as-
sociated with this varied pathology. Clinical criteria for CBS
have been developed to improve the diagnostic accuracy for
CBD tauopathy [32], but initial replication suggests poor
specify and sensitivity [52]. Ongoing replication and refine-
ment of criteria together with emerging biomarkers of
tauopathy will improve diagnostic accuracy for CBD and oth-
er tauopathies (Fig. 1).

Other Tauopathies

Less common tauopathies include other 4R tau predominant
findings of argyrophilic grain-like inclusions largely
constrained to limbic regions (i.e., argyrophilic grain disease,
AGD) [53], globular glial tau inclusions (GGT) [54], and
aging-related tau astrogliopathy (ARTAG) [55]. GGT has
been described in rare cases of clinical FTD, sometimes with
concurrent motor neuron disease, while AGD and ARTAG
may be found in cognitively normal aged individuals and
the clinical significance is currently unclear. AGD with neo-
cortical involvement can be associated with neuropsychiatric
or FTD symptoms.

Biomarkers for Tauopathies

There is currently no established clinical test that can reliably
identify FTLD-Tau antemortem and autopsy-confirmed stud-
ies are rare. Due to the complex clinicopathological

associations of FTLD-Tau pathology, study of living patients
with PSPS provides an opportunity for biomarker develop-
ment due to the high predictive value for underlying tauopathy
which can be further validated in other forms of tauopathy
confirmed at autopsy (Fig. 1).

Structural Neuroimaging

Neuroimaging techniques using structural magnetic resonance
imaging (MRI) of gray matter and diffusion tensor imaging
(DTI) of white matter within the context of autopsy-confirmed
clinical FTD find some regional differences between subtypes
of FTLD-Tau and FTLD-TDP [56]. In one study, diagnostic
accuracy to differentiate FTLD-Tau from FTLD-TDP using
DTI measurements of cortical white matter degeneration
showed high diagnostic accuracy validated by post-mortem
measure of white matter degeneration in these patients [57].
In a series of clinical CBS, anatomic dissociation of gray and
white matter pathology was seen between patients with AD
and CBD pathology [58], suggesting that MRI/DTI measure-
ments may also be useful to distinguish FTLD-Tau from atyp-
ical forms of AD. PSP has been well-described to be associ-
ated with midbrain atrophy that can be appreciated on stan-
dard structural MRI as the “hummingbird sign” [59], “morn-
ing glory sign” [60], or “Mickey Mouse sign” [61]. In one
study of 48 pathologically confirmed cases of PSP or
synucleinopathy, 16/22 (72.7%) of PSP cases were able to
be correctly identified by radiologist reviewing conventional
MRI, and the presence of a hummingbird sign or morning
glory sign was 100% specific but was 68.4% sensitive [62].
A variety of ratios of brainstem structures have been reported
to aid in distinguishing PSP from other forms of parkinsonism
and from controls; these measures have been associated with a
range of sensitivity and specificity [63–68].

Molecular Imaging

Several radioligands specific for tau pathology have been re-
cently developed [69–71] to detect and track progression of
tau pathology in living patients. [18F]AV1451 has most exten-
sively studied and there is a strong signal associated with AD
tauopathy that recapitulates Braak tangle staging [72]; how-
ever, autoradiographic studies suggest that there may be mild
or negligible binding to FTLD-Tau [73, 74]. As aforemen-
tioned, tau pathology in AD and FTLD-Tau have different
biochemical and conformational properties which could con-
tribute. Some studies have shown the ability to discriminate
PSPS patients from controls and from patients with AD [26,
75, 76]; however, evidence for potential off-target binding in
melanin-containing cells has been described in regions sus-
ceptible to PSP tauopathy [74] (i.e., substantia nigra, basal
ganglia) which could influence interpretation. Emerging au-
topsy studies provide good correlation with topography of
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FTLD-Tau pathology post-mortem and antemortem
[18F]AV1451 signal [26, 77], suggesting potential utility in
FTLD-Tau but further study with tissue validation for this
and other tracers is needed.

Biofluid

Cerebrospinal fluid (CSF) analysis may be another avenue for
biomarker development in tauopathies. The largest body of
data for CSF biomarkers exists for AD-related measures of
total and phosphorylated forms of tau (t-tau, p-tau) and
amyloid-beta (Aβ1–42) protein. The AD CSF signature of el-
evated CSF tau and decreased Aβ1–42 can differentiate AD
from controls [78] and may help distinguish atypical forms of
AD pathology associated with clinical FTD from those with
underlying FTLD-Tau pathology [79]. Further, CSF p-tau
levels directly correlate with the burden of post-mortem tau
pathology in FTLD [80], and low CSF p-tau levels or the ratio
of p-tau to t-tau may accurately distinguish FTLD-TDP from
FTLD-Tau [81–83]. Measurements of other forms of tau, in-
cluding specific isoforms or modifications [84–86], and novel
analytes are an area of study needed to help provide FTLD-
Tau specific markers for use in diagnostics and trial endpoints.

Therapeutic Strategies Targeting Pathological Tau

At this time, treatment of tauopathies is largely supportive
[87–92] and disease modification remains a primary and un-
met goal. Symptomatic therapies often consist of off-label
uses of medicines focused on specific clinical features (e.g.,
psychiatric medications for behavioral changes in clinical
FTD) but data is lacking [93]. Due to the poor specificity of
most clinical diagnoses associated with FTLD-Tau (Fig. 1),
current clinical trials focus on PSPS or AD. Previous disease-
modulating trials using riluzole and coenzyme q10 in PSP
failed to show long-term benefit [94–96]. Drug development
efforts targeting tau currently focus on several broad strategies
including inhibiting tau post-translational modifications and
aggregation, immunotherapy, stabilizing microtubules, or re-
ducing overall levels of tau protein synthesis (Table 1).

Tau Phosphorylation, Acetylation, and Aggregation

Under normal physiological conditions tau is phosphorylated
at multiple residues [131], but in tauopathies, tau is
hyperphosphorylated and phosphorylation at specific residues
may contribute to loss of microtubule binding and promotion
of aggregation [132]. Glycogen synthase kinase (GSK)-3β
and CKD5 have kinase activity for tau and have been studied
as potential targets for inhibition [133, 134]. Valproic acid is
known to be GSK-3β inhibitor [135, 136], but a trial in PSP
showed poor tolerability and failed to meet the primary

endpoint [98]. Similarly, lithium is also a GSK-3β inhibitor
that decreased tau accumulations in mouse models [137, 138],
but a trial in humans was halted because of poor tolerability
(NCT00703677) and another in AD trial failed to reduce CSF
p-tau in patients after a 10-week course [97]. CDK5 activity
can be inhibited by the use of siRNA or thiazolidinediones
[102, 129]; however, it is not clear if aberrant CDK5 activity
can be selectively reduced without affecting normal activity
[139]. Tideglusib is a thiazolidinedione class small molecule
with GSK-3β inhibition activity that failed to show a signifi-
cant change in clinical rating scales in a phase II trial in PSP;
however, MRI measurements performed during the trial
showed decreased occipital lobe atrophy in patients who re-
ceived the drug [99, 100]. Tideglusib also failed a phase II trial
in AD as well [101].

The tau protein also undergoes several post-translational
modifications including acetylation, nitration, O-glc-NAC,
and caspase-mediated cleavage which all are potential thera-
peutic targets [140, 141]. Acetylation at specific residues of
tau at lysine 174 has shown to inhibit its degradation [142] and
at lysine 280 accelerate fibrillization [143]. The non-steroidal
anti-inflammatory compound, salsalate, has inhibitory activity
on acetyl-transferase and ameliorated tau pathology in a mu-
rine model [144]. A phase I clinical trial for salsalate is in
progress for PSPS.

Methylene blue is a compound shown to have anti-
aggregant properties for not only tau [145] but also TDP-43
[146], making it an attractive candidate for clinical bvFTD,
which has mixed underlying pathology (Fig. 1). The mecha-
nism of action is currently unclear but some evidence suggests
that it can oxidize cysteine residues of tau to maintain a mo-
nomeric state [147]. Methylene blue-derived compounds have
been tested in a phase III trials for both AD and bvFTD but
clinical endpoints were not reached.

Microtubule-Stabilizing Agents

Microtubule stabilizing agents have been used in oncology to
prevent aberrant cell division in solid tumors and have the
potential to abrogate loss of microtubule-binding function in
tauopathies. Initial studies in paclitaxel were affective in a tau
murine model [148•] but may be limited by side effects from
exposure to the peripheral nervous system at dosages that
reach the CNS in humans; however, several later studies find
related compounds with high blood brain barrier (BBB) per-
meability can ameliorate tau pathology and restore axonal
transport in transgenic mouse models [103, 149–151], includ-
ing the taxane derivative, TPI-287 [105], which is currently in
a phase I trial for CBS/PSPS. The protective neuropeptide
fragment, davunetide, has microtubule-stabilizing properties,
among other potential mechanisms of action, and was recently
studied in a large multicenter randomized placebo controlled
stage IIb/III trial in over 300 patients with PSP but
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unfortunately did improve symptoms [104]. Another trial is
underway in CBS/PSPS (NCT01056965).

Tau Immunotherapy

Tau immunotherapy has become an interest for therapeutic de-
velopment due in part to the rapid advances in transmission
studies of tauopathy. These data suggest that pathogenic species
of tau can be accessible in the extracellular space and thereby
more accessible for antibody-mediated degeneration [152•].

Active immunization with full length tau caused an inflam-
matory reaction in mice [153], but immunization using differ-
ent types of tau fragments and a number of different adjuvants
in mouse models has shown improved safety and efficacy in
reducing tau pathology in transgenic animals [106•, 107–110,
112]. A recent phase I clinical trial using active immunization
was recently completed showing favorable safety profile
[113]. Passive immunization studies, which circumvent acti-
vation of the innate immune system, have also been an area of

intense research and find evidence for mild to moderate re-
duction of tau pathology and improvement in clinical pheno-
types in some, but not all studies (for a recent comprehensive
review please See [154•]. These studies include administration
of monoclonal antibodies targeting a range of potential target
epitopes including phospho-serine 396,404 [114•, 115], other
phospho-epitopes [116, 117], oligomeric tau [118, 119], path-
ogenic conformations of tau [26, 115, 120, 121], or antibodies
developed from an extracellular seeding assay [122, 123] to
murine models of tauopathies.

There are several factors which could contribute to efficacy
of tau immunotherapy. Only a fraction of circulating antibody
can penetrate the BBB and safety and efficacy of repeated
dosing of both passive and active immunization are unclear.
Techniques to increase permeability such as focused ultra-
sound [26] or viral vector delivery [26] in murine models
provide proof-of-concept for mechanisms to potentially im-
prove CNS delivery of antibodies. The optimal epitope selec-
tion for antibody development is unclear as there are

Table 1 Novel therapeutic approaches in tauopathies

Therapeutic
class

Drug name References Trials

Kinase inhibitors (GSK-3b and CDK5)

Lithium (Hampel et al., [97]) NCT00703677

Valproic acid (Leclair-Visonneau et al., [98]) NCT00385710

Tideglusib (Hoglinger et al., [99]; Tolosa et al., [100]; Lovestone et al., [101]) NCT01350362

Thiazolidinedione (Cho et al., [102]) –

Acetylation
inhibitors

Salsalate (Min et al., 2015) NCT02422485

Microtubule stabilizers

Epothilone-D (Zhang et al., [103]) –

Davunetide (Boxer et al., [104]) NCT01056965

TPI-287 (Fitzgerald et al., [105]) NCT02133846

Dicytiostatin (Makani et al., 2016) –

Anti-aggregant

Methylene Blue (O’Leary et al., 2010; Melis et al., 2015; Wischik et al., 2015) NCT01626378
NCT01689246

Immunotherapy

Active immunization with
phosphorylated tau
fragments

(Asuni et al., [106•]; Boimel et al., [107]; Bi et al., [108]; Rozenstein-Tsalkovich
et al., [109]; Theunis et al., [110]; Kontsekova et al., [111]; Selenica et al., [112];
Novak et al., [113])

NCT02579252
(AADVacc-1)

ACI-35

Passive immunization with
monoclonal antibodies

(Boutajangout et al., [114•]; Chai et al., [115], Collin et al., [116]; Walls et al., [117];
Lasagna-Reeves et al., [118]; Castillo-Carranza et al., [119]; Chai et al., [115];
d’Abramo et al., 2013; Ittner et al., [120]; Sankaranarayanan et al., [121];
Yanamandra et al., [122]; Yanamandra et al., [123])

NCT02294851,
NC-
T02281786,

NCT02460094,
NCT02494024

NCT02820896

Gene therapy

ASO (Roberson et al., [124•]; Ittner et al., [125]; Roberson et al., [126]; Leroy et al., [127;
Peacey et al., [128])

–

siRNA (Piedrahita et al., [129]; Xu et al., [130]) –
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uncertainties in the pathogenic species of tau that is neurotox-
ic. A disease-specific epitope intuitively would be desirable to
avoid degradation of normal soluble tau [26]; however, some
data exists for the therapeutic potential for reducing total tau
levels in tauopathies. Tau antibodies have the ability to target
extracellular or intracellular tau, largely depending on the iso-
electric charge of the antibody. In theory, intracellular tau
targeting may result in greater efficacy, but could potentially
lead to more toxicity than using an acidic, negatively charged
antibody capable of only targeting extracellular tau [155].
Presumably, targeting of tau in these separate compartments
would stimulate clearance by both external microglia and in-
ternal lysosomal/endosomal pathway. Lastly, the optimal af-
finity of antibodies to promote tau clearance is uncertain. It is
possible that high-affinity antibodies could help bind smaller
tau aggregates but high affinity binding could also inhibit
degradation or even promote aggregation [156].

Two current human studies using an active immunization
approach include one phase II trial by Axon Pharmaceuticals
SE using tau fragment tau294–305 linked to keyhole limpet
hemocyanin (KLH) with an alum adjuvant in patients with
mild to moderate AD [111] (NCT02579252) and a phase I
trial by AC Immune and Janssen using the phospho-serine
396,404 epitope with a liposomal adjuvant [110]. Passive im-
munization with a humanized monoclonal antibody targeting
a disease specific phospho-epitope [116] was evaluated in a
phase I study in 2015 but this was discontinued
(NCT02281786). Passive immunization strategies currently
in trials include a humanized monoclonal antibody specific
for N-terminal extracellular fragments of tau in a phase II trial
in PSPS patients (NCT02460094), a phase I trial in PSPS
using a humanized antibody targeting extracellular tau aggre-
gates [152•] (NCT02494024) and a phase I study of a tau-
specific antibody thought to induce limited microglial activa-
tion in healthy controls (NCT02820896) (Table 1).

Gene Therapy

Reducing levels of tau may be of therapeutic benefit by reduc-
ing toxic gain-of-function. Tau knockout mice have been re-
ported to have a largely preserved function by several groups
[157, 158], but others have reported a variety of symptoms
including motor deficits and weakness [159], impaired con-
textual and cued fear in conditioning tasks [160], parkinson-
ism, and cognitive impairment [159, 161, 184]. Thus, the
overall safety of long-term tau suppression is currently unclear
but several preclinical studies suggest that this strategy can
reduce tau-mediated neurodegeneration. Reducing tau levels
can potentially be accomplished by inhibiting translation
through the use of small interfering RNA fragments
(siRNA) or antisense oligonucleotides (ASOs). Indeed, under
normal conditions, microRNA species regulate tau translation
through binding to the 3′ untranslated region of tau mRNA

[162]. SiRNAs are being studied in vitro and in vivo in tau
transgenic mice [130]. ASOs can be created that induce the
destruction of the bound mRNA by recruiting RNAseH1 or
that bind mRNA without causing it to be digested. Of these
non-degrading ASOs, the total protein product can be de-
creased by preventing the 5′ cap from forming [163] or by
inducing alternative splicing if directed towards the appropri-
ate splice site [164]. Reducing the total tau protein has been
beneficial in transgenic mice overexpressing amyloid-beta
[124•–127]. In tauopathies, inducing alternative splicing with
ASOs may be useful to decrease the amount of 4R tau in favor
of 3R tau or vice versa as appropriate for specific diseases, and
in vitro experiments have been carried out to this effect [128].
Drug delivery of these compounds continues to be a challenge
[165]. Intrathecal injection and intraventricular injection have
been used previously in other neurodegenerative diseases
[166–169]. Tagging ASOs or siRNAs to lipid-based [170]
and non-lipid [171, 172]-based vectors can aid in trafficking
across the BBB. Viral vectors may be used as well for siRNA
delivery, which have the advantage of being able to directly
target the nucleus, and such an approach has been used in
animal models of Huntington’s disease and amyotrophic lat-
eral sclerosis [173–175]. Intraparenchymal injections have
been utilized in rat and non-human primate models of
Huntington’s disease to delivery these viral vectors [176,
177]. Other strategies to transiently increase BBB permeabil-
ity have been investigated as well including a variety of dif-
ferent compounds and most recently focused ultrasound
[178–182].

Conclusion

Tauopathies are diverse clinicopathological entities that often
require coordinated effort between cognitive and movement
disorder specialists for accurate diagnosis and effective sup-
portive care. One major obstacle for therapeutic development
in tauopathies is the lack of an accurate biomarker to identify
tauopathy and track disease progression. Indeed, current clin-
ical trial outcomes largely rely on subjective cognitive or mo-
tor functional scales due to the lack of a validated prognostic
marker. The high specificity of clinical PSPS and AD for
tauopathy makes these patient populations eligible for many
emerging biomarker and clinical trials targeting tau, while
most other patients cannot currently participate due to the
inability to accurately differentiate FTLD-Tau from FTLD-
TDP associated with clinical bvFTD, PPA, and CBS. A rapid
growth in recent basic science research on the mechanisms of
tauopathy provides several avenues for potential therapeutic
development of disease-modifying therapies. Coordinated ef-
forts among patients, clinicians, and basic scientists in pro-
spective natural history studies (Fig. 1), such as those current-
ly ongoing in the USA (NCT02365922, NCT02372773,
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NCT02966145) and Europe [183], along with tissue valida-
tion are needed to improve diagnostics and accelerate the de-
velopment of therapeutics in tauopathies.
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