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Abstract
Purpose of Review Substantial research exists focusing on the
various aspects and domains of early human development.
However, there is a clear blind spot in early postnatal devel-
opment when dealing with neurodevelopmental disorders,

especially those that manifest themselves clinically only in
late infancy or even in childhood.
Recent Findings This early developmental period may repre-
sent an important timeframe to study these disorders but has
historically received far less research attention. We believe

Highlights - We stress the need to study the early period of postnatal
development as an important period for identifying neurodevelopmental
disorders usually detected beyond infancy or even toddlerhood.
- We propose a new way to assess the functional integrity of the
developing nervous system.
- We suggest a ‘Fingerprint Model’ for the delineation of developmental
progress or regression and for an automated detection of
neurodevelopmental disorders in infancy.
- With the proposed model, we aim to contribute to the paradigm shift
from a ‘wait-and-see-approach’ to a ‘find-early-and-intervene-early-
approach’.
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that only a comprehensive interdisciplinary approach will en-
able us to detect and delineate specific parameters for specific
neurodevelopmental disorders at a very early age to im-
prove early detection/diagnosis, enable prospective stud-
ies and eventually facilitate randomised trials of early
intervention.
Summary In this article, we propose a dynamic framework for
characterising neurofunctional biomarkers associated with
specific disorders in the development of infants and children.
We have named this automated detection ‘Fingerprint Model’,
suggesting one possible approach to accurately and early iden-
tify neurodevelopmental disorders.

Keywords Computer vision . Diagnosis . Early human
development . Intelligent vocalisation analysis .

Multidimensional assessment .Neurodevelopmentaldisorders

Abbreviations
ADHD attention deficit hyperactivity disorder
ASD autism spectrum disorder
AVA acoustic vocalisation analysis
BEE-PRI Brain, Ears & Eyes—Pattern Recognition

Initiative
COI condition/conditions of interest
CPG central pattern generator
FXS fragile X syndrome
GMA general movement assessment
GMs general movements

GUARDIAN Graz University Audiovisual Research
Database for the Interdisciplinary Analysis of
Neurodevelopment

HNR harmonics-to-noise ratio
iDN interdisciplinary Developmental

Neuroscience
MFCC Mel-frequency cepstral coefficient
MTw wireless motion tracker/trackers
NAS network-attached storage
POI parameter/parameters of interest
RTT Rett syndrome
RGB red-green-blue colour model
RVA retrospective video analysis
SAEVD-R Stark Assessment of Early Vocal

Development-Revised
ZIKV Zika virus
ZCR zero-crossings rate

Introduction

Early human development has attracted increasing attention
from researchers across scientific disciplines in recent years.
This expansion has been driven, in part, by the acknowledge-
ment of the great diversity of (neuro)developmental disorders,
their large genetic and phenotypic heterogeneity and the clear
need to better understand similarities and differences across
syndromes, disorders and disease processes. A continuing se-
ries of new paradigms on the functional development of the
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young nervous system has resulted in progressive changes in
approaching typical and atypical early development.

Research on early development during the last decade, in
particular, has benefitted greatly from adapting approaches
and theories from not only closely related disciplines, such
as developmental neuroscience, but also from novel technical
and computational fields (e.g. computer vision, machine
learning, signal processing, speech and voice analysis).
These recent trends are moving towards the disappearance
of classic discipline boundaries in investigating early human
development and the specificities of various disorders [1, 2].

In this overview—and perspective—paper, we propose a
research model aimed at providing (i) a framework for age-
specific cross-syndrome comparisons and (ii) eventual predic-
tion of neurodevelopmental outcome. This model may allow
for the recognition of syndrome-specific developmental traits
and provide an opportunity for earlier identification of disor-
ders, often recognised1 at toddlerhood or even later. These
particular conditions shall henceforth be referred to as ‘condi-
tions of interest’ (COI), and include for example autism spec-
trum disorder (ASD), attention deficit hyperactivity disorder
(ADHD), Rett syndrome (RTT) and fragile X syndrome
(FXS). COI will also apply to infants who have suffered po-
tential deleterious environmental exposures such as, in utero
exposure to mosquito-borne diseases like Zika virus (ZIKV),
malaria or exposure to sexually transmitted maternal diseases,
teratogenic compounds and/or maternal substance abuse.

Ontogenetic Adaptation

The concept of ontogenetic adaptation and continuity of neu-
ral functions [1, 3, 4] plays a central role in our interdisciplin-
ary scientific approach to study infant development.
Physiologically speaking, life ex utero as compared to in utero
needs to adapt to dramatically different environments and re-
quirements. For survival, it is essential that newborns imme-
diately adapt to their new environment and be embeddedwith-
in a system that efficiently meets their needs (endogenous or
exogenous system perturbations/adaptations; e.g. respiration,
nutrition). From our perspective, the most significant changes
during this period of development occur in the nervous sys-
tem, which undergoes the most dramatic, almost permanent
adaptation and optimisation during the early postnatal years
[1, 3, 5].

Compared to non-human primates, and factoring out vital-
functions, we are far less equipped for instant adaptation to the
extra uterine life [5–7]. As a consequence, the newborn hu-
man is ‘by no means the competent individual which has been
sometimes proposed’ [1: 837]. A series of studies on early
human postnatal development have indicated that the first

2 months after term are, to a certain extent, a continuity of
foetal behaviour [1, 4, 8–10]. Around the end of the second
month of life, a major transformation sets in (the 3-month-
transformation [4, 5]) and many neural functions change or
(gradually) occur leading to a neurobehavioural adaptation to
the requirements of extra uterine life. This seems to be specific
to the human species and even though we know a great deal
about development, the period of the first few months of life is
not yet fully understood. However, what we do understand is
that this transformation can be characterised by a number of
neurofunctional changes, such as an increase inmuscle power,
postural changes [11, 12], a change in the sucking pattern [13],
development of focused visual attention and binocular vision
[14, 15] and the beginning of social smiling and cooing
vocalisations [16–18].

Neurological Underpinnings of Behavioural Changes
During Infancy

Focusing initially on brain development, the early postnatal
period is an intense phase of structured growth and expansion
[19–21]. Anatomical changes follow a predictable course in
the typically developing brain, when measured using non-
invasive cerebral magnetic resonance imaging (MRI), and
seem to follow a sigmoidal growth pattern in terms of brain
volume [22] as well as white matter structure and content [23,
24]. Functional neuroimaging techniques, such as positron
emission tomography (PET), demonstrate concomitant in-
creases in glucose utilisation at around 2 to 3 months, partic-
ularly in the parietal, temporal and primary visual cortex, basal
ganglia and cerebellar hemispheres. These escalations in me-
tabolism coincide with the emergence of behaviours involving
visuospatial and visuo-sensorimotor integration, disappear-
ance or reorganisation of subcortical neonatal behaviours
and evidence of increasing cortical activities [25].

At typical term birth, inter-neuronal axonal connections are
largely unmyelinated and dendritic sprouting and synaptogen-
esis is still ongoing. Though the white matter architecture
underlying brain connectivity is largely established by term
[26], in the first year of life and especially the first 8 months
[27], there is a rapid expansion in the spatial distribution and
extent of myelination [23, 28] and dendritic sprouting [29].
Linked to this, ongoing proliferation of synapses leads to
peaks of synaptic density at the ages of 6–18 months, after
which the rate of synaptic pruning overtakes proliferation and
a protracted decline begins [30]. Importantly, the rate of
myelination, synaptogenesis and synaptic pruning is regional-
ly specific. Generally, the subcortical, cerebellar and primary
sensory areas peak in terms of synaptic density first, their
connections are myelinated first, and synaptic pruning begins
earlier, when compared with other cortical association areas
and in particular with the frontal cortex.

1 ‘Recognised’ refers to a phenotypical onset, clinical manifestation or an
accurate (mean age of) diagnosis.
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What remains unclear is the extent to how these changes
associate with cognitive and neurofunctional/behavioural de-
velopment. It is tempting to assume that behavioural develop-
ment maps easily onto the maturation profile of the brain itself
(e.g. motor and sensory abilities first, then higher-order cog-
nitive functions). Longitudinal studies evaluating MRI at term
age and follow-up with neuromotor, behavioural and cogni-
tive assessments during later childhood have also shown links
between anatomical features fromMRI and later outcome [31,
32]. Furthermore, individual differences in brain growth tra-
jectories have been associated with individual differences in
cognitive development at the same age [33]. In all three stud-
ies, using three different MRI modalities, features in the sub-
cortical and especially thalamic-associated white matter were
the consistent areas that predicted later, or current, language
ability and developmental quotient (e.g. areas that mature ear-
lier). It should be noted that only referring to synaptogenesis
and myelination is an oversimplification of the complex
neurodevelopmental processes, given the developmental
changes of neurotransmitter modulation, neuronal differentia-
tion, cortico-cortical connectivity, glia development, etc. that
are also taking place.

Given these overlapping early brain processes, it is perhaps
not surprising that studying the early brain (before 12 months)
has become a larger focus for understanding COI [34–36].

Developmental Domains of Interest

Development can be seen as a complex autopoietic system,
but to better understand the functionality and deviances
within it, we need to highlight specific features of this
system. Aspects of two major developmental domains (mo-
tor- and speech-language) during the first months of life are
outlined. Within the scope of this paper, general move-
ments (GMs) and early vocalisations are discussed with
respect to both precursors/prerequisites for further develop-
ment and potential early indicators of neurodevelopmental
disorders.

Central Pattern Generated Spontaneous Motor Behaviour:
The General Movements

Embryonic, foetal and neonatal movement patterns all share
characteristics of being endogenously generated. Without be-
ing triggered by a specific sensory input, the foetal and neo-
natal nervous system generates a variety of motor patterns
such as startles, general movements, breathing movements,
stretching, yawning, sucking, side-to-side movements of the
head (rooting) or eye movements [9]. These movement pat-
terns are generated by specific neural networks, the central
pattern generators (CPGs), which are located in the brain stem
[1, 8, 9, 37]. Some CPGs operate continuously (e.g. respira-
tion), whereas others are activated to perform specific tasks

(e.g. sucking, locomotion). In order to lend variability to the
motor output, supraspinal projections activate, inhibit and
most importantly modulate the CPG activity as does sensory
feedback [38•, 39].

The fact that CPG activity was, and partly still is, either
overlooked or misinterpreted as reflexes (or even worse as
‘primitive’ reflexes although there is nothing primitive in the
developing nervous system) stems from classical neurophys-
iology. At the end of the 19th century, foetal and neonatal
movements were recognised as spontaneously generated;
however, reflexology and particularly behaviouristic interpre-
tations tended to ignore these observations [1, 9]. Sir Charles
Sherrington studied the contact between the afferent and ef-
ferent arch in the spinal cord and introduced experimental
lesions to the nervous system in order to eliminate the ‘nui-
sance’ of spontaneous neural activity. In this way, the relation
between stimulus and reflex was extremely consistent as it
was not interfered with fluctuations caused by spontaneously
generated activity. Although Sherrington [40] himself was
fully aware of the artificial nature of his findings and even
mentioned that the simple reflex is a fiction, his followers
seemed to have ignored this cautionary note and made the
reflex pattern the crucial element of neural functions [1, 8, 9].

During the last 20 years of infant studies, attention has
shifted from exclusively testing reflexes to additionally
assessing spontaneous movements. From the rich repertoire
of distinct spontaneous movement patterns to emerge during
infancy, the so-called GMs are the most frequently occurring
and most complex. During preterm and term age, GMs in-
volve the entire body and manifest themselves in a variable
sequence of arm, leg, neck and trunk movements. At a post-
term age of 3–5 months, GMs appear as fidgety movements,
which are small movements of the neck, trunk and limbs in all
directions with variable acceleration [8, 10, 37, 41]. The pres-
ence of normal GMs is indicative of normal neurological de-
velopment, whereas abnormal, monotonous GMs point to
neurological deficits. Specifically, the absence of fidgety
movements (at 3–5 months) is typically associated with the
development of cerebral palsy [37, 41, 42]. In addition to its
application in infants with perinatal brain injury, the general
movement assessment (GMA) has also been applied to—for
example—intrauterine HIV-exposed and/or HIV-infected
newborns and young infants [43], infants of mothers with
ZIKV infection [44], infants with metabolic disorders [45],
infants with genetic disorders [46–49] and infants with ASD
[50•, 51].

GMA is not only non-intrusive and cost effective but also
has repeatedly proven to be an accurate and reliable assess-
ment tool [41]. In a recent review, Bosanquet and colleagues
[42] reported summary estimates of sensitivity and specificity
between 98 and 91%, respectively, for the prediction of cere-
bral palsy. Currently GMA is being used by an increasing
number of health professionals around the world for
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assessment and identification of infants at high-risk for neu-
rological impairments. With this in mind, we are developing a
mobile solution allowing for broader application (the
GMApp; www.gmapp.idn-research.org; [52]). More
recently, complementary efforts have been taken to augment
classic GMA, based on visual Gestalt perception, with
computer-based movement assessment tools to perform quan-
titative analysis of GMs [53–57, 58•].

Early Vocal Development

In addition to the production of vegetative sounds, infant vo-
cal development during the first weeks of life is mainly
characterised by the generation of distress vocalisations, i.e.
crying or fussing sounds [59]. At the same time, though a
relatively small proportion, the first vowel-like/quasi-vowel
non-distress sounds emerge. Most of these sounds do not ex-
cite the vocal tract’s full resonance yet and phonation does not
involve a distinct systematic mouth opening [17]. These very
first vocalisations have also been discussed to be CPG-
generated behaviour [60]. Basic understanding of the CPG
circuitry for mouth movements and respiration suggests mul-
tiple foci in the brain stem [61]. The increasing level of corti-
cal control over sound production leads to the emergence of a
more complex type of vocalisation which is representative for
the period around 3 months of age, the cooing sound. Often,
cooing sounds develop alongside the onset of social smiling in
situations of face-to-face interactions [59, 62]. Cooing sounds
are (often velar) consonant-like elements, such as voiced fric-
atives, optionally combined with vowel-like segments [17,
18] with distinct melodic contour [63] representing the first
forms of syllables [64]. These sounds vary substantially in
structure, quality and temporal organisation as infants certain-
ly have not yet reached full phonetic competence [17, 62]. The
production of cooing sounds represents an important step in
early vocal development, as for the first time, the emergence
of discernible tongue movements, required for typical phona-
tion, becomes apparent [62].

Around the 4th–5th months of age the infant starts to ex-
plore the full potential of his/her vocal apparatus and to ex-
pand the vocal repertoire by generating sounds with
modulations/variations in melody/pitch, loudness and vocal
register. These sounds include raspberry vocalisations,
squealing, vowel-like elements and more complex marginal
babbling (i.e. first slow and shaky transitions between
consonant-like and vowel-like sounds). [17, 59, 63]

Deviations from typical early vocal development have been
discussed as potential early signs of developmental disorders
with a mean age of diagnosis at or beyond toddlerhood (i.e.
COI introduced previously). For instance, Patten et al. [65]
reported a late onset and low volubility of canonical babbling
in infants later diagnosed with ASD. A limited number of
studies have focussed on the transition from marginal

babbling to canonical or variegated babbling and first word
production in neurodevelopmental disorders, with the major-
ity of these studies focussed on volubility measures. Fewer
studies have analysed early atypicalities in vocalisation qual-
ity measurable by means of acoustic signal level parameters.
Furthermore, the multitude of these investigations has been
limited to specific vocalisation types, in many cases crying
vocalisations, and to a small number of acoustic parameters
such as fundamental frequency or (cry) duration [66–68]. In
promising pilot work, we demonstrated the potential of more
detailed acoustic early vocalisation information retrieval for
the identification of infants later diagnosed with RTT [69, 70,
71•, 72].

Developmental Disabilities with a Late Manifestation
or Clinical Onset: A Blind Spot

To study early human development and anticipate
neurodevelopmental outcomes, key aspects such as the pres-
ence and development of distinctive physical and neurological
features and potential neurobehavioural and psychopatholog-
ical abnormalities are in the focus of interest. Intensive re-
search on genetic disorders, for example, have revealed that
certain physical features are associated with specific disorders.
In some disorders, these features can be apparent before or
immediately after birth (e.g. facial dysmorphia in Down syn-
drome) and they may also be accompanied by early functional
abnormalities that enable an early and accurate diagnosis (e.g.
atypical vocalisations in Cri du Chat syndrome). As previous-
ly mentioned, there are a number of conditions with no appar-
ent physical features at birth (e.g. ASD, FXS, RTT) and it is
only during later development that they reach a saliency
threshold leading to a characteristic appearance which contrib-
utes to accurate diagnosis [48, 51, 70, 73–76]. When dealing
with COI, such as ASD, FXS or RTT for example [73, 77, 78],
a formal diagnosis is often given at or beyond toddlerhood.
However, parents often raise concerns relating to their child’s
delayed or atypical development long before diagnosis [79,
80]. This can lead to substantial difficulties due to long periods
of uncertainty where they often follow the path of a diagnostic
odyssey.

Let us take FXS as an example. It is the most prevalent
form of inherited intellectual disability and one of the most
widespread genetic causes of ASD [81, 82]: The majority of
clinical features may not be detected or not associated with
FXS at an early stage, and thus genetic testing and formal
diagnoses are often delayed until, on average, the preschool
years [83]. This delay in diagnosis has significant implications
for access to early intervention programmes, and results in
additional costs and frustration for families. Further, it is not
uncommon for additional children to be born with FXS during
this time [83]. To remain undetected beyond toddlerhood is
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not unique to FXS; the same is true for a number of COI that
need to be studied in more detail.

A late diagnosis reduces the possibility to study early de-
velopment and thus hampers research on very young individ-
uals with ‘late’ recognised conditions. Whilst a large number
of studies have relied on retrospective parental questionnaires,
there has been increasing doubt about the validity of these
investigations [79, 84•]. For certain assessments, retrospective
video analysis (RVA) is considered to be a more objective
method to circumvent the risk of memory bias [84•, 85, 86].
Besides, there has been a lot of effort into prospective studies
analysing high-risk populations, e.g. studying infants with an
older sibling with ASD or ADHD and prospective studies of
infants with single or multiple exposure to intrauterine hazards
[87, 88•, 89•, 90–92]. Prospective studies of infants at high
risk for ASD, for example, use serial longitudinal direct as-
sessments of behaviour to investigate timing and patterns of
symptom onset. These studies have demonstrated that
neurofunctional abnormalities may occur even earlier than
parents report, in the later half of the first year of life, and
may follow a declining pattern, in which infants transition
from typical to atypical developmental trajectories over the
course of several months.

It goes without saying that a transition from purely CPG-
generated activities (e.g. GMs, early vocalisations) into more
intentionally controlled behaviours (e.g. movements towards

the midline and reaching; modulation in pleasure
vocalisations increasingly associated with looking towards
the caregiver) gradually evolves with the coexistence of both
early spontaneous behaviours and intentionally driven behav-
iours [4, 10].

A Novel Approach: The Fingerprint Model

Constantly adapting and optimising neurological functions
need to be seen and understood in their development and
complexity, i.e. we need to aim for the big picture whilst
avoiding the hazards of oversimplification. We need to ac-
count for age-specificity when examining children, keeping
in mind that this can account for different ‘vulnerabilities’
and the consequential effects for early intervention efficacy
[1]. Building upon a concept devised by Prechtl to assess the
integrity of the nervous system, it is crucial to (i) take into
account the age-specific properties of the nervous system;
(ii) to avoid the artificial fragmentation of performances or
signs; (iii) to indicate defects but also delays and (iv) take into
account the behavioural state of the foetus/infant/child [93].

The ultimate aim of our proposed approach—combined
with other biological methods and markers—is to earlier de-
tect suboptimal and pathological development, and, as men-
tioned at the beginning, achieve a ‘find-early-and-intervene-

Fig. 1 Proposed ‘iDN Fingerprint Model’ for the earlier detection of
COI. Our goal is to unravel the early fingerprint of various COI as age-
specific POI constellations in an extensive knowledge tensor. Thereby,
fingerprint information is modelled in terms of atypicality in objective
parameters from POI-related approaches (e.g. GMA in motor
development, or AVA of cooing sounds in speech-language
development) and underlying levels of representation (e.g. state-of-the-
art signal attributes used in audio/video analysis, such as optical flow
[94–96], zero-crossings rate, harmonics-to-noise ratio, jitter [97]).

Finally, we propose the implementation of a probabilistic model to
automatically detect COI from multidimensional data for future clinical
application, e.g. by means of logistic regression [98]. AVA acoustic
vocalisation analysis, COI condition of interest, GM general movement,
GMA general movement assessment, GUARDIAN Graz University
Audiovisual Research Database for the Interdisciplinary Analysis of
Neurodevelopment, mo month, POI parameter of interest, TD typical
development, Colour code: green optimal/normal, orange suboptimal,
but within the range of normality, red atypical)
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early’ reality to improve developmental outcomes and avoid
diagnostic odyssey.

To achieve this, we propose a heuristic and probabilistic
‘Fingerprint Model’ (Fig. 1). Such a model requires large age-
specific datasets from various developmental domains of typ-
ically developing infants and infants with COI. One may how-
ever consider this model in the light of neuroconstructivism as
an autopoietic model that is already functional whilst it is
‘growing’ [99]. It specifically adopts a maximum likelihood
approach whereby age-specific parameters of interest (POI,
such as fidgety general movements, one aspect of the motor
domain at around 3 months of age; Fig. 2) are used to reliably
differentiate between specific COI. Although optimal perfor-
mance of the model relies upon large and accurate datasets
spanning specific age ranges and neurofunctional domains, it
can still be effective in providing accurate developmental out-
come predictions using incomplete POI datasets.
Furthermore, this model has the potential for progressive de-
velopment in the use of additional POI or newly identified
biomarkers which may help to improve accuracy levels of
detection. Thus, this model has the potential to develop and
expand alongside with new developments across various

fields in early human development. The proposed model will
encompass analyses at multiple age ranges and include atyp-
ical trajectories to detect developmental delays in addition to
developmental deviations from typical development [100].

It remains openwhether wewill be able to define syndrome
specific constellations in early infancy or rather identify gen-
eral signs of atypical development. It is unlikely there will be
one signature behaviour in early infancy but rather symptom
constellations that pinpoint a certain disorder or subset of dis-
order (i.e. a fingerprint, an age-specific POI constellation).
This approach need not be restricted to neurofunctional as-
sessments but rather be combined with classical biomarker
research (most likely a multimarker panel of biomarkers gen-
erated from different levels of biological analysis; [101•, 102,
103]). This approach provides a likelihood model that pre-
cedes clinical and genetic testing to verify a given suspicion
(derived from the model). Our proposed Fingerprint Model
should be seen as suggestion or one possibility of an input-
output system that allows the detection of certain COI. For the
time being, it is as a combined retrospective and prospective
approach, with the future aim to prospectively apply certain
measures routinely.

Fig. 2 Illustration of a multi-device infant recording setup (schematic on
the left; sensor view on the right): two HDvideo recordings from different
angles (top right), two Kinect recordings from different angles (middle

right), motion tracking (bottom left) and contact pressure distribution
measurement (bottom right) when lying in supine position
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Multidimensional Assessment of CPG-Related
Neurofunctions: Preliminary Studies

In order to better understand the 3-month-transformation, in
particular, and to define a set of POI for the Fingerprint Model,
we are currently conducting a prospective longitudinal study
with low-risk infants. Each infant is assessed seven times
within their first 4 months of life, with the first assessment
taking place at 28 ± 2 days post-term age and subsequent
evaluations every 2 weeks, with the last one at 112 ± 2 days.
Inclusion criteria of the study are as follows: uneventful preg-
nancy, uneventful delivery at term age, singleton birth, appro-
priate birth weight and uneventful neonatal period.

Each assessment session consists of the following three
modules: (i) multi-device recordings of endogenously generat-
ed neurofunctions; (ii) eye-tracking assessment of visual atten-
tion and (iii) video recording of non-nutritive sucking patterns.
Here, we highlight the assessment of age-specific spontaneous
behaviour in the motor and speech-language domains.

In the assessment module—previously introduced as (i)—
the infant is placed in supine position in a standard cot and
recorded for 5 min, using the following equipment: (a) camera
system: two standard HD camcorders and two Microsoft
Kinects; (b) audio recording system: one stereo audio record-
ing device with an additional external studio microphone; (c)
motion sensors: sixMTwmotion sensors attached to the upper
arms, upper legs and feet and (d) pressure sensor: one
pressure-sensitive mat consisting of a 32 × 32 array of pres-
sure sensels. Figure 2 illustrates the proposed setup. For syn-
chronisation, a clapperboard is placed on the pressure-
sensitive mat, with one motion sensor attached to the
clapperboard’s clapstick. This generates an easily detectable
signal on all employed devices. We perform the synchronisa-
tion signal directly before and after the assessment; these two
synchronisation signals allow to define a common offset and
to compensate a linear clock drift during the measurement.

For these multidimensional recordings, we apply automatic
assessments using machine learning. The proposed approach
is based on the automated detection of variability of CPG-
related functions at signal level. The collected datasets serve
as a starting point for our exploratory work on machine
learning-based approaches for assessment of spontaneous
neurofunctions. Preliminary data obtained (single case
differentiation outlined in Figs. 3 and 4) demonstrate the fea-
sibility of our approach. Two specific options, assessment of
GMs and assessment of cooing vocalisations, are outlined in
the following subsections.

Automatic GM Assessment

Researching automatic assessment of GMs has received con-
siderable attention in recent years, including computer vision-
and motion sensor-based approaches [53–57, 58•].

Within computer vision-based approaches, the use of
Kinect sensors is a particularly popular avenue, as they pro-
vide in-depth data at a reasonable price. Besides RGB and
depth streams (RGB-D), the Kinect devices can also deliver
a kinematic stick model of persons, potentially useful for the
automatic assessment of infants’ spontaneous motor behav-
iour. For instance, the motion features that distinguish children
at risk for cerebral palsy, as computed by Meinecke and col-
leagues [104], could be directly applied without the need to
use an expensive and complex motion-tracking system.
Moreover, the temporal kinematic information could serve
as input to advanced machine learning methods, e.g. recurrent
neural networks and dynamic Bayesian networks, in order to
assess the infants’ motion patterns. However, the kinematic
body tracker cannot be applied to individuals shorter than 1 m,
since the implemented algorithm was trained on synthetic
depth images of avatars ranging from preschool children to
adults [105]. Therefore, there is a need to develop kinematic
detection and tracking algorithms applicable to infants. Olsen
et al. [106] proposed to fit an infant stick model by searching
the extreme points in the point cloud corresponding to the
depth data.

We aim to follow two alternative directions. The first is to
use a similar approach as the original Kinect algorithm [105],
i.e. to perform pixel-wise classification of the depth image.
For this task, we will need to produce a dataset of synthetic
depth images of animated infant body models. Whilst Shotton
et al. [105] had a large database of simulated data available,
which was rendered with a variety of 3D avatars, our chal-
lenge will be to animate the infant models sufficiently in order
to cover the whole range of movement. The original Kinect
data will serve as test data, which will be manually labelled.
The alternative approach will be to use this manually labelled
data as training data. For automatic movement assessment, we
lack strict real-time requirements that allow us to use more
powerful models than the random forest classifier employed
by Shotton and colleagues [105], such as convolutional neural
networks [107].

In addition to using depth measurements, the state-of-the-
art tool for motion analysis in RGB data is based on the optical
flow [94, 95], a vector field which measures the movement of
image points between two consecutive video frames. The op-
tical flow is often used as input for more advanced motion
analysis techniques, e.g. motion-based image segmentation
[108], and has also been applied to movement analysis in
infants [54].

The alternative to vision-based approaches is the use of
motion sensors, comprising accelerometers, gyroscopes and
electromagnetic motion trackers. These systems have been
applied to GMA in previous studies [53–55, 57, 58•].
Similar to vision-based approaches, motion sensors can also
be used to derive a kinematic motion model. A promising
avenue might be to combine a vision-based approach with
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motions sensors, with the possibility of incorporating a pres-
sure device, as suggested previously.

For example, Fig. 3 illustrates the large-displacement optical
flows [94, 95], extracted from videos of an infant at 69 days post-
term showing no fidgety movements, and later at 84 days post-
term performing typical fidgety movements. The current optical
flow is illustrated using black arrows. The optical flow extracted
100ms before this frame is illustrated as grey arrows; this depicts
recent changes in 2D velocity, i.e. acceleration. The optical flow
in the non-fidgety movement sequence changes rather smoothly
over the whole image, whereas in the fidgety movement se-
quence the optical flow changes its orientation rapidly within
different areas of the image. This coincides with the description
of fidgety movements as unpredictable and spontaneous move-
ments in all directions [37, 109].

At the bottom of Fig. 3, the acceleration measured at the
right upper arm of the infant within a time window of 5 s
around the frames in the top of Fig. 3 is illustrated. In both
figures, the acceleration vector is represented in spherical

coordinates, i.e. radius (r), azimuth (phi) and polar angle (the-
ta). The radius r corresponds to the magnitude of the acceler-
ation, whereas phi and theta correspond to the direction of the
acceleration. Compared to the non-fidgety movement se-
quence, the fidgety movement sequence shows (i) higher
short-term variance in r, (ii) larger number of small-to-
medium-sized pulses in r and (iii) higher short-term variance
in theta and phi, causing many spontaneous changes in the
movement direction. Also these characteristics reliably match
with Gestalt-based fidgety movements descriptions [37, 109].

Furthermore, instead of following an indirect approach to
movement assessment, i.e. estimating a kinematic model first,
we can also follow an end-to-end machine learning approach.
In end-to-end learning, the recorded data, either from vision
systems, motion sensors, or both, is used directly in a machine
learningmethod finding a suitable representation of the data to
train the final predictor (classifier or regression model). One
current widely used paradigm in machine learning is labelled
‘deep learning’, which is based on (deep) neural networks,

Fig. 3 Top image frames extracted from video recordings of a male
infant, together with the large-displacement optical flow [94, 95]. Left
infant at 69 days post-term, showing not yet fidgety movements. Right
corrected age of 84 days post-term age, performing typical fidgety
movements.

Bottom acceleration measured at the right upper arm of the infant within a
time window of 5 s around the frames showing the optical flow. The
acceleration vector is represented in spherical coordinates, i.e. radius (r),
azimuth (phi) and polar angle (theta). For better readability, the means of
r, phi and theta have been removed
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stacked restricted Boltzman machines (deep belief networks),
stacked auto-encoders, convolutional networks and recurrent
neural networks, to name but a few. State-of-the-art feature-
based models include support vector machines, decision trees,
random forests and probabilistic graphical models [110–115].
When applied to GMA, this will require the manual labelling
of the recorded data, for instance the presence, absence or
quality of fidgety movements, or the body parts where the
movement occurs. Identifying the best combination of sensors
to be used and particular learning algorithms appropriate for
GMAwill be a challenging task in future research.

Intelligent Early Vocalisation Analysis

In the context of engineering sciences, ‘intelligent’ analysis of
data implies a combination of signal processing and machine
learning techniques. Applying intelligent audio analysis method-
ology for early human vocalisation assessment allows the objec-
tive identification of early acoustic vocalisation characteristics

and potential atypicalities a human listener is incapable of
detecting.

Our audio data are segmented manually for infant
vocalisations using the multimedia coding system Noldus
Observer XT (www.noldus.com). In addition, we are currently
developing a system for the automatic detection of infant
vocalisations [116]. The segmentation process relies on the
definition of infant vocalisations within distinct vocal breathing
groups [117]. Pre-linguistic vocalisation types are transcribed
according to an annotation scheme adapted from the Stark
Assessment of Early Vocal Development-Revised (SAEVD-R;
[18]). According to current methods in audio/speech processing
[97, 118], a set of acoustic parameters is extracted from each
segmented vocalisation by means of the open-source toolkit
openSMILE [119, 120]; (www.audeering.com).

Following the ComParE-set of the 2013 to 2017
INTERSPEECH Computational Paralinguistics Challenges, we
generate 6373 parameters representing statistical functionals
(e.g. arithmetic mean, standard deviation, higher order moments,

Fig. 4 Waveforms, spectrograms and visualised Mel-frequency cepstral
coefficients (MFCCs) 1–12 for (top left) a vowel-like, low-resonant
vocalisation (no cooing), and (top right) a typical cooing vocalisation of
a female infant at 56 days post-term. The 3D scatter plot (bottom) shows
the distribution of three exemplarily selected acoustic parameters (mean

zero-crossings rate [ZCR], mean logarithmic harmonics-to-noise ratio
[HNR], mean local jitter) over 20 frames of 0.01 s extracted from the
voiced periods (marked with rectangular boxes in upper plots) of either
vocalisation (no cooing: 0.35–0.55 s, grey dots; cooing: 0.29–0.49 s,
black dots)
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quartiles) computed for the trajectories of a broad range of acous-
tic time-, spectral- and/or energy-based short-term low-level de-
scriptors (e.g. spectral band energy, Mel-frequency cepstral co-
efficients [MFCCs], zero-crossings rate [ZCR], harmonics-to-
noise ratio [HNR], jitter) and their derivatives [121, 122]. The
acoustic information thereby deduced from the audio recordings
constitutes the input to an objective model of early vocal devel-
opment for successive classification/pattern recognition
approaches.

The multidimensional acoustic characterisation of different
pre-linguistic vocalisation types (e.g. cooing) facilitates the
automatic identification of potential speech-language delays
or atypicalities in early vocal development (see Fig. 4).

Conclusion

Amongst scientists there is a degree of optimism that recent
and upcoming (ante portas) technical advancements may
shortly reveal new insights into early human development
and may provide some clarification with regard to atypical
development. Amongst clinicians and parents of children with
disabilities however, there is both hope and also scepticism
about the foundation of this optimistic view.

The goal of the methodology outlined is to enable the early
detection of COI and the opportunity for early intervention. A
paradigm shift from a ‘wait-and-see-approach’ to an approach
that instead focusses on early identification with the aim to
intervene on target (skill) deficits as they emerge is warranted.

We believe that only a comprehensive interdisciplinary ap-
proach, combining genetic risk factors with both classical and
neurofunctional biomarkers, will enable us to detect and de-
lineate specific parameters for identifying specific
neurodevelopmental disorders at a very early age. Cross-
syndrome comparisons, including neurotypical subjects, may
reveal that some signs are present early in development but
have not been detected with current methods. Future will tell
whether certain feature constellations pinpoint certain disor-
ders or prove that some disorders naturally unfold beyond this
early time window. Besides its limitations and potential short-
comings (e.g. the lack of homogeneous datasets), the pro-
posed ‘iDN Fingerprint Model’ may accurately differentiate
abnormal development and specific conditions, as well as re-
liably predict developmental outcomes.
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