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Abstract The potential for positron emission tomography
(PET) to detect neuroinflammation in vivo has sparked a re-
markable interest in various disciplines of neuroscience. Early
PET radioligands, such as [11C]PK(R)-11195 for the 18-kDa
translocator protein (TSPO) and [11C]L-deprenyl for mono-
amine oxidase B, have been used in studies designed to clarify
the role of neuroinflammation in a variety of psychiatric and
neurological disorders. Recent years have witnessed the de-
velopment of several second-generation PET radioligands for
TSPO and radioligands to measure endogenous targets that
are active in various stages of the inflammatory cascade, such
as cyclooxygenase and arachidonic acid. Here, we discuss
some of the biomarkers for neuroinflammation that are avail-
able for quantification with PET, as well as recent findings
from studies where neuroinflammation has been assessed in
neurodegenerative disorders. In addition, we highlight the
challenges to accurate interpretation of PET studies of
neuroinflammation.
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Introduction

Neuroinflammation

Neuroinflammation—or more specifically, activation of the
neuroimmune cells microglia and astrocytes into proinflam-
matory states—has been implicated as a pathological contrib-
utor in several neurodegenerative diseases. Many of these dis-
eases are defined pathologically by abnormal accumulation of
specific protein species (for instance, paired helical filamental
tau-containing tangles in Alzheimer’s disease), hence the term
“proteinopathy” to describe these disorders. In vitro studies
and animal models have shown that many proteinopathies
stimulate neuroimmune responses, and consequently, much
work has been conducted to elucidate the role of
neuroimmune activation in several disorders.

The brain has long been considered an “immunologically
privileged” organ, as the peripheral immune cells are thought
unable to penetrate the blood-brain barrier. Instead, the glial
cells—microglia and astrocytes—are the primary constituents
of a dedicated neuroimmune system, and its interaction with
the peripheral immune system is poorly understood [1]. The
glial cells provide pro- and anti-inflammatory functionality
and participate in various functions under basal and disease
conditions, including phagocytosis, steroid release, free radi-
cal reduction, and cellular repair. Proinflammatory functions,
including release of cytokines and reactive oxygen species,
may damage healthy neurons, causing synaptic dysfunction,
loss of synapses, and neuronal death. Therefore, an imbalance
between proinflammatory and reparatory functions of
neuroimmune cells can result in CNS injury. While the dam-
aging effects of such imbalance are recognized in classical
neuroimmunological disease such as multiple sclerosis, grow-
ing evidence suggests that chronic low-level activation of glial
cells may contribute to pathological changes found in many
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neurodegenerative diseases. The possibility to quantify the
current inflammatory state in a living human brain has sparked
a remarkable interest through various disciplines of neurosci-
ence, as it provides means to measure disease severity, study
pathophysiological mechanisms, and identify novel targets for
treatment (Fig. 1).

Positron Emission Tomography

Positron emission tomography (PET) is a molecular imaging
modality capable of providing information of brain function-
ality. PET relies upon the employment of radioactively labeled
pharmaceuticals (radioligands) that enter into the living organ-
ism. In PET studies of neuroinflammation, pharmaceuticals
that bind specifically to 18-kDa translocator protein or
monoaminoxidase B are often used, as the concentration of
these proteins is believed to reflect ongoing neuroinflamma-
tion (discussed below). The PET system provides quantitative
images reflecting the spatial and temporal distribution of the
radioligand in vivo.

PET imaging comes with several caveats. First, the spatial
and temporal resolution associated with emission tomography
is limited; thus, small structures are typically not easily quan-
tifiable [2]. Second, the PET system cannot distinguish be-
tween different sources of radioactivity. Enzymes in the liver
and other tissues break down the pharmaceutical, leading to
the generation of radioactive metabolites. If these metabolites
enter the brain, they will contribute to the signal, potentially
confounding accurate quantification. Another, and often com-
plicated problem, is the presence of nonspecific binding sites.
The PET image represents the sum of signals originating from
different binding sites, and binding to the specific target of
interest represents only a fraction of the signal [3, 4]. For
instance, as radiopharmaceuticals must be lipophilic to pas-
sively cross the blood-brain barrier, they often bind nonspe-
cifically to the lipid-rich myelin sheaths of white matter tracts.
Since it is not always possible to estimate the fraction of spe-
cifically bound tracer, a high ratio of specific to nonspecific
binding is favorable. Last, full quantification of PET data re-
quires that the concentration of unchanged radioligand in ar-
terial plasma (also known as the input function) is measured
during the PET examination. Estimation of the input function
necessitates arterial cannulation and specialized staff and in-
strumentation typically only available in dedicated PET re-
search centers. Consequently, many PET studies rely on sim-
plified acquisition and analysis procedures, often by calculat-
ing ratios between different brain regions.

For the subset of radioligands for which there exists a brain
region with negligible specific binding to the target of interest
(referred to as a reference region), these ratio calculations
produce outcome measures that are well-correlated with those
obtained from full quantification, omitting the need for arterial
sampling [5, 6]. Because the targets currently used for

studying neuroinflammation are expressed throughout the
brain, no true reference region can be designated. Therefore,
quantification using an arterial input function is considered the
“gold standard” for PET studies of neuroinflammation.

Biomarkers for Neuroinflammation

The 18-kDa Translocator Protein

The 18-kDa translocator protein (TSPO) is a commonly
targeted biomarker with PET [7]. TSPO is a transmembrane
protein found mainly in the outer mitochondrial membrane.
The protein was formerly called the peripheral benzodiazepine
receptor (PBR) because it binds diazepam, and was first dis-
covered as a high affinity receptor for Ro-4864 in kidney,
liver, and lung [8]. The name PBR was chosen to distinguish
it from the central benzodiazepine receptor. Results from sub-
sequent studies showed that this protein binds to cholesterol
and porphyrins and evidence supports a role in transporting
substrates across membranes [9, 10]. Therefore, the name was
changed to TSPO to avoid confusion with the central benzo-
diazepine receptor [11]. However, recent reports of viable
mice genetically depleted of TSPO have cast doubts on its
role in some of these functions [12–16]. TSPO is expressed
in low levels in immune-competent cells, macrophages, and
leukocytes in the periphery, as well as in microglia and astro-
cytes [17]. In response to cellular injury, the glial cells become
activated and this morphological and functional change results
in increased expression of TSPO [18].

Increased TSPO density has been observed in several neu-
rological disorders. Not surprisingly, such increases are evi-
dent in classic neuroimmunological disorders such as multiple
sclerosis and HIVencephalopathy [19]. Increased TSPO den-
sity has however also been demonstrated in brain tissue from
patients with neurodegenerative diseases.

Fig. 1 Number of articles listed in PubMed that have listed as key words
both “PET” and either “translocator protein (TSPO)” or “peripheral
benzodiazepine receptor (PBR)”—the latter terms referring to a
biomarker of inflammation
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Monoamine Oxidase B

The monoamine oxidases (MAO) A and B are isoenzymes,
functioning by oxidatively deaminating neurotransmitter and
xenobiotic amines [20]. The subtype MAO-B hydrolyzes
trace amine, phenylethylamine, and dopamine, and as a
by-product, reactive oxygen species are excreted which in
excessive concentrations have damaging effects [21].
MAO-B expression increases with age, which is thought to
contribute to age-related neurodegeneration [22, 23].

There is evidence that astrocytes play an important role in reg-
ulatingMAO-Bactivityundernormalandpathologicalconditions
[24–27]. Thus, it has been hypothesized that the concentration of
MAO-B can reflect the current state of astrocytosis, which in turn
serves as a biomarker for ongoing neuroinflammation.

Other Targets

Besides TSPO and MAO-B, a few other targets have been
used in PET studies of neuroinflammation. Arachidonic acid
(AA) is polyunsaturated omega-6 fatty acid, highly abundant
in the phospholipid bilayer membranes in the brain, where it
serves as a second messenger involved in the regulation of
several signaling enzymes. The cascade by which regulatory
compounds (prostaglandins) are formed from the breakdown
of AAwas awarded the Nobel Prize in 1982, and today, it is
widely accepted that AA plays an important role in the inflam-
matory response. For the CNS specifically, binding of
microglial derived cytokines to calcium channel coupled re-
ceptors on astrocytes results in activations of phospholipase
enzymes that liberate AA from membrane lipoproteins. Thus,
the mobilization of AA has been suggested to be a useful
biomarker of neuroinflammation.

Cyclooxygenases (COX) are enzymes that catalyze the
breakdown of AA into prostaglandins. The two isoforms
(COX-1 and COX-2) are constitutively expressed in the mam-
malian brain but not co-localized. Under normal circum-
stances, COX-1 is predominantly found in microglia and
some vascular tissue, whereas COX-2 is expressed postsyn-
aptically, predominantly in neurons in the cortex, amygdala,
and hippocampus [28]. COX is believed to be involved in the
inflammatory cascade, and inhibition of the enzymes is often
used for therapeutic anti-inflammatory treatment.
Upregulation of COX has thus been suggested as a biomarker
for neuroinflammation.

Radioligands for Neuroinflammation

Radioligands for TSPO

The prototypical PET radioligand for TSPO is [11C]
(R)-PK11195. [11C](R)-PK11195 has TSPO antagonist

properties based on thermodynamic studies [29] and binds to
TSPO within a tryptophan-rich pocket [30]. Autoradiography
studies have shown an increase in [3H]PK11195 binding in
Alzheimer’s disease (AD) patients, particularly in areas of re-
ducedcholine acetyltransferase activity [31, 32].Radiolabeling
with 11Chas allowed invivodetectionofTSPOexpression, and
numerous clinical PETstudies have been performed using this
radioligand in neurodegenerative diseases.

While [11C](R)-PK11195 is the most highly represented
TSPO radioligand in the literature, this radioligand has limi-
tations. [11C](R)-PK11195 has high lipophilicity, which pro-
motes nonspecific binding to lipids in the brain [33]. In addi-
tion, [11C](R)-PK11195 may bind to the acute phase reactant
α1-acid glycoprotein [34]. Due to low amounts of TSPO un-
der normal conditions, nonspecific binding can represent a
significant contribution to the PET signal. A pharmacological
blocking study using nonlabeled PK11195 showed that spe-
cific binding of [11C](R)-PK11195 inmonkey brain is only 1.3
times the nonspecific binding [35], and thus, nonspecifically
bound radioligand cannot be assumed to be negligible.

Several second-generation TSPO radioligands have been
developed [36], and most have lower lipophilicity than [11C]
(R)-PK11195 and improved specific to nonspecific binding.
However, a limitation shared by all tested second-generation
radioligands is differential affinity to TSPO dependent on the
polymorphism expressed. This was first discovered with [11C]
PBR28, where a 40-fold difference in in vitro binding affinity
was observed between “binders” and “nonbinders” [35].
Displacement assays later revealed a trimodal distribution of
binding, classified as high, mixed, and low affinity binders
(HABs, MABs, LABs) [37, 38]. Clear association between
LAB and the rs6971 SNP led to the conclusion that this
SNP is causing the differential binding [39]. Since the
rs6971 SNP confers codominant expression, heterozygotes
have reduced [11C]PBR28 binding, while homozygotes have
negligible binding. Determination of binding affinity, through
genotype analysis or in vitro binding assay, must therefore be
performed. The differential affinity can be accounted for sta-
tistically, allowing inclusion of HABs and MABs in clinical
studies [40]. However, requisite exclusion of LABs, which
make up ∼9% of subjects of European and African
American descent, is disadvantageous. To date, all tested
second-generation radioligands are sensitive to this SNP [37].

In addition to the aforementioned radioligand [11C]PBR28,
other second-generation radioligands include [18F]PBR06,
[18F]PBR111, [18F]DPA-714, [18F]FEPPA, [11C]DAA1106,
and [11C]ER176 (see [41] for a review).

Radioligands for MAO-B

Much work has been done to develop PET radioligands for
MAOs [42]. To develop radioligands with affinity for only one
isoform has proven challenging, and there currently exists only
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one reliable radioligand forMAO-B. L-deprenyl (selegiline) is a
MAO-B inhibitor and its radiolabeled form[11C]L-deprenylwas
first applied in clinical applications in humans in 1987 [43].
Irreversible [11C]L-deprenyl binding, however, induces prob-
lemswhen quantitating uptake [44], whichmotivated the devel-
opment of a deuterium analogue, [11C]L-deprenyl-D2, with
more favorable pharmacokinetics. Although other radioligands
are being developed [45, 46], [11C]L-deprenyl-D2 is today the
preferred radioligand forMAO-B [47].

Radioligands for Arachidonic Acid and COX

In contrast to radioligands for TSPO or MAO-B, in vivo PET
studies targeting AA use radiolabeled AA itself as a marker of
the compound turnover, rather than studying its binding sites
[48, 49]. AA is involved in several brain functions [50], and
thus, altered binding of [11C]AA is not easily interpretable.

The only applied PET radioligand for COX is [11C]
ketoprofen and its methyl ester, which binds selectively to
COX-1 [51]. Several preclinical studies in rats have demon-
strated the utility of [11C]ketoprofen to quantify COX-1 levels
[52, 53], but for humans, it has only been trialed in healthy
volunteers [54] and in a small cohort of AD patients [55].
Unfortunately, this latter study revealed no differences be-
tween patients and controls, concluding that [11C]ketoprofen
methyl ester is not a suitable diagnostic marker for AD.

With regardtoCOX-2,noneof theevaluated tracershasbeen
found to be useful for the study of neuroinflammation [56–58].

Neuroinflammation in Neurodegenerative Disorders

Alzheimer’s Disease

Several studies have implicated neuroimmune responses as a
pathological contributor to AD pathophysiology [59–63].
In vitro and animal model studies have shown that β-amyloid
andhyperphosphorylated tauaggregation induceproinflamma-
tory conditions [64–68]. Activated microglia and reactive as-
trocytes are present in AD brain and have been shown to over-
express TSPOwhen proximal toβ-amyloid plaques [19].

Most PET studies using [11C](R)-PK11195 have shown
increased binding in patients with a clinical diagnosis of AD
[69–71]. Studies have reported that cortical [11C](R)-PK11195
binding correlates with clinical severity [69–71]. While no
association between [11C](R)-PK11195 binding and amyloid
binding has been observed in cross-sectional studies [71, 72],
a recent longitudinal study showed that an increase in [11C]
(R)-PK11195 binding correlated with an increase in amyloid
burden over time [73•].

Some studies have reported no difference in [11C]
(R)-PK11195 binding between AD patients and controls
[74–76]. In one such study, the “controls” included seven

patientswith unilateral gliomas, and the unaffectedhemisphere
was used as comparison data [74]. Another study showed no
difference between controls and patients in the prodromal stage
of AD—i.e., mild cognitive impairment (MCI)—regardless of
whether the MCI patients progressed to dementia or remained
clinically stable [76]. This study also found no correlation be-
tween [11C](R)-PK11195 binding and cognitive scores.

These conflicting results could be due to several factors.
First, none of the above studies used absolute quantification of
[11C](R)-PK11195 binding. Instead, clinical [11C]
(R)-PK11195 studies often identify a “pseudo-reference” re-
gion by extracting clusters of the subject’s PET voxels whose
pharmacokinetics resembles that of nondisplaceable binding
in normal gray matter. Although the technique appears useful
in some cases, the reference region inevitably includes TSPO,
and the resulting underestimation bias may reduce sensitivity
to detect group differences. Second, the derivation of the ref-
erence cluster relies on predefined kinetic classes obtained
from previous PET studies, sometimes even from other PET
centers. Differences in instrumentation and injection protocol
can influence the cluster pharmacokinetics, and it is therefore
unclear how valid a representation of nonspecific binding is
provided. Finally, the cost of PET often limits the number of
subjects for imaging, and false negative results from under-
powered studies are probable.

Some studies using second-generation TSPO radioligands
have been conducted. First, [11C]PBR28 binding was found to
be greater in amyloid-posit ive AD patients than
amyloid-positive MCI patients or controls, particularly in
temporo-parietal regions [77]. [11C]PBR28 binding correlated
with volume loss and several cognitive indices, but not with
amyloid load. These findings were later confirmed in a larger
follow-up study that also indicated that the cerebellum could
be useful as a pseudo-reference region [78•].

Autoradiography studies reported increased [3H]
DAA-1106 binding in brain tissue from transgenic AD mice
[79] and AD patients [80, 81], although no correlation with
clinical severity was observed [81]. Further, increased [11C]
DAA-1106 binding has been seen in the striatum and several
cortical structures in MCI and AD patients [82]. Interestingly,
only the MCI patient with the lowest level of [11C]
DAA-1106 at baseline did not covert to dementia. While the
[11C]DAA-1106 studies were performed without correction
for TSPO genotype, the low prevalence of rs6971 SNP in
Japanese suggests that these results may not have been con-
founded by physiological affinity differences.

In contrast to [11C]DAA-1106, [18F]FEDAA1106 did not
detect differences between AD patients and controls [83].
These results could be due in part to (a) selection of relatively
mildly affected patients and (b) an absence of correction for
TSPO genotype. In contrast to the [11C]DAA-1106 study,
subjects who had [18F]FEDAA PETwere recruited from cen-
ters in Sweden and so more likely to carry the rs6971 SNP.
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Three longitudinal studies using TSPO radioligands have
been performed in AD to determine how neuroinflammation
changes during disease progression. However, each study
used a different radioligand. Studies using [11C]
(R)-PK11195 and [11C]PBR28 showed that TSPO binding
increases with progression of AD [73•, 84]. Kreisl et al. [84]
also found that patients who showed clinical progression at
follow-up had greater increase in [11C]PBR28 binding than
patients who remained clinically stable. A study using [18F]
DPA-714 found that baseline TSPO binding was greater in
both MCI and AD patients than in controls [85]. Somewhat
contrary to studies using [11C]PBR28, the study of Hamelin
et al. [85] found greater baseline binding of [18F]DPA-714 in
the most mildly affected patients and in those who had slower
progression of disease. Larger studies involving serial imag-
ing with harmonized TSPO imaging methodology will likely
be necessary to clarify the relationship between TSPO and
progression of Alzheimer’s disease.

PET studies using [11C]L-deprenyl have repeatedly shown
elevated binding in AD and MCI patients [86–89], indicating
an early presence of astrocytosis in AD pathogenesis. [11C]
L-deprenyl has also been used to assess the levels of MAO-B
inhibitor binding by potential neuroprotective agents such as
EVT301 [88] and sembragiline [90], in a bid to slow disease
progression.

Withtheexceptionoftheaforementionedstudywhichconclud-
edthat [11C]ketoprofenmethylester isnotuseful [55],nostudyhas
to our knowledge been conducted assessing COX inAD.

The only study where [11C]AA was used in humans [91]
showed higher uptake in the eight AD patients than in nine
age-matched controls. Although this indeed provides some sup-
port for upregulation ofAA inAD, it is not evident how to inter-
pret this finding based on the various roles of AA in the brain.

Synucleinopathies

Synucleinopathies are a collective group of neurodegenerative
disorders that share a common proteinopathy. Abnormal ac-
cumulation of α-synuclein is associated with loss of synapses
and neuronal death, with the location of the proteinopathy
determining the clinical phenotype. In Parkinson’s disease
(PD), α-synuclein aggregates target dopamine neurons in the
midbrain, forming Lewy bodies [92]. In dementia with Lewy
bodies (DLB), these aggregates are additionally found in neu-
rons in the cerebral cortex where they are associated with
cognitive impairment, hallucinations, and neuropsychiatric
symptoms [93]. In multiple system atrophy (MSA), aggre-
gates are found primarily in oligodendrocytes in varying pro-
portions in the midbrain, brainstem, cerebellum, and basal
ganglia [94, 95]. MSA patients therefore develop either a
Parkinsonian or olivo-ponto-cerebellar disorder. In these dis-
orders, α-synuclein aggregates may be found in additional

structures such as olfactory bulb [96], ganglia of the autonom-
ic nervous system [97], and gastrointestinal tract [98].

Increased [11C](R)-PK11195 binding was observed in PD
patients without cognitive impairment in the pons, basal gan-
glia, and frontal and temporal cortices [99]. Of the 18 patients
included, 8 were followed for 2 years and, at follow-up, had
no change in [11C](R)-PK11195 binding despite their disabil-
ity rating with the Unified Parkinson’s Disease Rating Scale
worsening from 19 to 25.

In a study comparing [11C](R)-PK11195 binding in patients
with PD and Parkinson’s disease dementia (PDD), both PD and
PDDpatients showedbinding thatwas elevated in frontal, tempo-
ral, and occipital cortices, and inversely correlated with Mini
Mental State Exam score among the PDD patients [100]. [18F]
FDGimaginginthesamecohortshowedareasofhypometabolism
that overlappedwith [11C](R)-PK11195 binding.

When comparing patients with PD and DLB, [11C]
(R)-PK11195 binding was increased (compared to controls)
in basal ganglia and substantia nigra for both patient groups
[101]. DLB patients had additional increases in the cortex and
cerebellum. All patients were within 1 year of symptom onset,
suggesting that increases in TSPO density can be seen in the
early stages of disease.

Increased [11C](R)-PK11195 binding has also been report-
ed in MSA patients in the cortical, subcortical, and brainstem
regions [102]. In a clinical trial, two out of three patients
treated with minocycline for 24 weeks showed lower [11C]
(R)-PK11195 binding at follow-up, while elevated binding
was observed in most placebo-treated patients [103].

[11C]PBR28hasbeenusedinclinicaldrugtrials todetermine
target engagement of novel anti-inflammatory therapeutics in
patients with PD. In a phase 2 study [104•], 24 PD patients
received either placebo or treatment with AZD4231, an irre-
versible myeloperoxidase inhibitor. In the treated patients,
[11C]PBR28 binding was 13–16% lower at 4 and 8weeks than
at baseline, whereas it remained unchanged in patients given
placebo, suggesting that myeloperoxidase inhibition reduces
TSPO expression. Whether [11C]PBR28 binding is diffusely
increased in the brain in PD is not yet known, although a study
using [18F]FEPPA reported no difference [105].

To our knowledge, no PET studies using radioligands for
MAO-B or COX-1 have been undertaken to study
α-synucleinopathies.

Frontotemporal Lobar Degeneration and Related
Tauopathies

The term frontotemporal lobar degeneration (FTLD) refers to
a collection of diseases that cause synaptic dysfunction and
neuronal loss in the frontal and temporal lobes and are patho-
logically distinct from AD and the α-synucleinopathies.
Clinical designat ions include behavioral var iant
frontotemporal dementia, progressive nonfluent aphasia, and
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semantic dementia [106, 107]. Sporadic and familial forms of
FTLD often, but not always, result from aggregation of abnor-
mal tau filaments [108–113]. Primary progressive palsy and
corticobasal gangiolonic degeneration, collectively labeled
“Parkinson’s plus” disorders due to their shared nigrostriatal
cell loss, are pathologically defined by tau aggregation and
therefore often considered in the FTLD spectrum [114].

Increased [11C](R)-PK11195 binding was reported in five
patients with a clinical diagnosis of FTLD [115], but the quan-
tification was performed without either blood sampling or use
of a valid reference region. In another study, four patients with
CBD showed increased [11C](R)-PK11195 binding in the stri-
atum, brainstem, and several cortical regions [116]. In a sim-
ilarly powered study, four patients with progressive
supranuclear palsy (PSP) showed increased [11C]
(R)-PK11195 in the striatum, thalamus, brainstem, cerebel-
lum, and frontal lobe [117]. In these two studies, the primary
visual cortex and occipital white matter were used as refer-
ences for nonspecific binding, as the authors claimed that
these regions are unaffected in CBD and PSP, albeit not free
from TSPO. This methodology is prone to biased outcome
measures. Nevertheless, the location of increased binding o-
verlapped with distribution of tau pathology commonly seen
in CBD [118]. To our knowledge, no PET study using
second-generation radioligands for TSPO, or any radioligands
for MAO-B or COX-1, has been conducted in patients with
frontotemporal lobar degeneration or related taupathies.

Huntington’s Disease

Huntington’s disease (HD) is an autosomal dominantly
inherited disorder, caused by a mutation in the IT15 gene.
The mutation causes abnormal accumulation of the huntingtin
protein, leading to gradual neuronal damage [119]. Activated
microglia have been found in vitro to be upregulated in the
striatal, hypothalamic, thalamic, and cortical brain regions in
all grades of pathology [120]. All PET studies to date have
been conducted using [11C](R)-PK11195, and the data ac-
quired without arterial input functions. Instead, cluster-based
approaches to identify a pseudo-reference tissue have been
employed, resulting in semiquantitative outcomes.

Two different studies carried out by the same group showed
increased levels of [11C](R)-PK11195 binding in both
premanifest gene carriers and symptomatic patients [121,
122]. When the combined data from these studies were
reanalyzed, the authors concluded that hypothalamic dysfunc-
tion may be related to the nonmotor-related symptoms of HD
[123]. Using an independent cohort, the group later showed
very little change in [11C](R)-PK11195 binding between pre-
symptomatic gene carriers and symptomatic patients, suggest-
ing that microglia activation is primarily an early contributor
to the pathophysiology of HD and does not increase further
during disease progression [124]. To our knowledge, no PET

study in HD has been conducted using second-generation
radioligands or arterial sampling to accurately quantify
TSPO levels in vivo. Although the existing PET studies in-
deed corroborate the in vitro findings, the same group has
conducted all studies.

Amytrophic Lateral Sclerosis

Amytrophic lateral sclerosis (ALS) ischaracterizedby thegrad-
ual degeneration of motor neurons, commonly over up to
5 years.No effective treatment strategies exist; thus, the disease
typicallyprogressesuntildeathoccursdue torespiratoryfailure.
Although the role of neuroinflammation in ALS is unknown,
there is evidence for associated microglial activation [125].

The first published PETstudy in ALS showed greater [11C]
(R)-PK11195 binding in patients than controls in motor cor-
tex, pons, dorsolateral prefrontal cortex, and thalamus [126].
Although quantification was conducted without blood sam-
ples, the binding correlated with upper motor neuron symp-
toms and supports a previous autoradiography study [127].

Second-generation TSPO radioligands have also been used
in ALS. Increased [18F]DPA-714 binding was found in corti-
cal regions of ten ALS patients, six of which had a bulbar
presentation [21]. In another study, ten ALS patients showed
increased [11C]PBR28 binding in their precentral gyrus [128].
When the cohort was stratified (limb onset vs. bulbar), the
seven patients with limb-onset weakness were found to ac-
count for the increased binding. Also, [11C]PBR28 binding
in the precentral gyrus correlated with upper motor neuron
burden score and negatively correlated with functional status.

The [18F]DPA-714 study used a cluster-based approach to
derive a reference region (similar to many [11C](R)-PK11195
studies). The [11C]PBR28 study normalized the uptake in
precentral gyrus over a 60–90-min scan duration to the total
brain uptake. Therefore, a global upregulation of activated
microglia will reduce the effect size observed between the
groups. Similarly, global downregulation of TSPO among
ALS patients could result in erroneously elevated outcome
measures among this group. Although reduction of TSPO
can be deemed unlikely in ALS, the tendency to omit acqui-
sition of arterial blood data obstructs clear interpretation of the
results. To our knowledge, no studies targeting MAO-B,
COX-1, or AA in ALS have been performed.

Conclusion

Evidence suggests that neuroimmune activation, defined as
activation of microglia and astrocytes, occurs in a number of
neurodegenerative diseases. Such responses do not necessari-
ly reflect a primary role of these glial responses in pathogen-
esis or even a negative role as a downstream effect. However,
increased densities of TSPO andMAO-B and, to some extent,
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turnover of AA appear to be valid markers of these responses,
and measuring these biomarkers with PET is possible with
several available radioligands. Continued use of PET to quan-
tify neuroinflammation, particularly in longitudinal studies,
promises to clarify the role of neuroimmune activation in the
pathophysiology of several neurodegenerative diseases and
the utility of improved anti-inflammatory treatments.
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