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Abstract
Background Corticosteroids are commonly used in the man-
agement of primary central nervous system (CNS) tumors and
CNS metastases to treat cancer- and treatment-related cerebral
edema and improve neurologic function. However, they are
also associated with significant morbidity and mortality, given
their wide range of adverse effects.
Purpose of Review To review the mechanism of action, phar-
macology, and toxicity profile of corticosteroids and to criti-
cally appraise the evidence that supports their use in neuro-
oncologic practice based on the latest scientific and clinical
data.
Recent Findings Recent data suggest that corticosteroids may
negatively impact survival in glioma patients. In addition, cor-
ticosteroids should be incorporated as a standard criterion to
assess a patient’s clinical and radiographic response to
treatment.
Summary Corticosteroids should be used judiciously in
neuro-oncologic patients, given the potential deleterious ef-
fects on clinical outcome and patient survival. Anti-

angiogenic agents, which lack these adverse effects, may be
a reasonable alternative to corticosteroids.

Keywords Brain tumor . Brain metastases . Corticosteroids .
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Introduction

Corticosteroids are widely used in the field of neuro-oncology
in conjunction with chemo- and radiation therapy and in the
peri- and post-operative setting. The primary purpose is to
manage cancer- and treatment-associated cerebral edema and
to improve neurologic deficits. Their first documented use to
treat vasogenic edema was in 1952 when four pediatric pa-
tients with craniopharyngiomas received cortisone post-
operatively [1]. Five years later, Kofman et al. reported sig-
nificant transient neurologic improvement in patients with
brain metastases who were treated with prednisolone [2].
Dexamethasone was subsequently shown to effectively de-
crease brain tumor-associated edema in 1961 [3] and has since
become the mainstay of therapy for cerebral edema in brain
tumor patients. In addition to their ability to reduce cerebral
edema, corticosteroids can alleviate nausea and pain and en-
hance appetite and mood, all of which are desirable effects in
cancer patients [4].

This review will provide an overview of the molecular
effects and pharmacology of corticosteroids, their toxicity pro-
file, and the implications of corticosteroid use on the interpre-
tation of imaging findings in neuro-oncologic patients. We
will particularly focus on dexamethasone, given its wide-
spread use in neuro-oncology, and review recent insights into
the potentially detrimental effects of corticosteroids on surviv-
al in glioma patients.
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Mechanism of Action and Pharmacology
of Corticosteroids

Mechanism of Action

Corticosteroids exert their effects through genomic and
non-genomic mechanisms. Genomic effects occur over
hours, days, or years and are mediated via mRNA tran-
scription and translation [5, 6]. Examples of genomic
effects include their anti-inflammatory and immunosup-
pressive effects (e.g., activation of anti-inflammatory cy-
tokines), metabolic effects (e.g., gluconeogenesis), and
suppression of the hypothalamic-pituitary-adrenal
(HPA) axis and osteocalcin [5]. Non-genomic mecha-
nisms have a much more rapid onset of action (seconds
or minutes), do not involve gene transcription or trans-
lation [5, 6], and are mediated through interactions with
a receptor (specific) or in the absence of a receptor
(non-specific). For instance, specific non-genomic ef-
fects include induction of inositol triphosphate (IP3),
Ca2+, protein kinase C, and cAMP while non-specific
non-genomic effects refer to direct interaction of gluco-
corticoids with cell membranes [5].

It is not fully understood how corticosteroids exert their
anti-edema effects although numerous mechanisms have been
proposed. There is evidence suggesting that dexamethasone
decreases inflammation and vasogenic edema by means of
partial restoration of the blood–brain barrier (BBB) and resto-
ration of normal permeability in abnormal capillaries [6].
Corticosteroids are thought to inhibit direct modulators of
BBB permeability such as occludin and members of the
claudin protein family. These proteins form part of the tight
junctions in blood vessel endothelium, and their expression is
downregulated in vasogenic edema [6]. Dexamethasone has
been shown to increase occludin expression by binding to
glucocorticoid-response elements in the occludin promoter
[7], thereby decreasing BBB permeability. Another proposed
mechanism is related to the negative effects of glucocorticoids
on vascular endothelial growth factor (VEGF) [7]. VEGF is
known to impair occludin function [6], alter the extracellular
matrix surrounding the tumor, and induce tumor neovascular-
ization, thereby increasing BBB permeability [8].
Dexamethasone inhibits VEGF production by tumor cells
and reduces VEGF effects on tumor vasculature [7].
Interestingly, the effects of dexamethasone on BBB perme-
ability appear to be a glucocorticoid receptor-dependent pro-
cess and a function of the intracellular density of glucocorti-
coid receptors [6]. For example, metastases (which express a
high level of glucocorticoid receptors) tend to response better
to dexamethasone than meningiomas (which exhibit lower
levels of these receptors) [9].

Dexamethasone also induces changes in membrane lipid
metabolism, specifically arachidonic acid which is critical in

the formation of vasogenic edema [10, 11]. Arachidonic acid
triggers the release of pro-inflammatory molecules (such as
leukotrienes and prostaglandins) and alters the basement
membrane of endothelial cells [6]. Dexamethasone modulates
these metabolic pathways and produces a shift from a pro-
inflammatory to anti-inflammatory environment [12].

Additional data suggest that corticosteroids enhance the
uptake of serum proteins by tumor cells and thereby help
normalize the perivascular-extracellular osmotic pressure gra-
dient [6]. Lastly, dexamethasone may have a direct modulato-
ry effect on the vasomotor state of blood vessels [13, 14],
which potentially explains the rapid onset of clinical improve-
ment after its administration.

Pharmacology

All types of corticosteroids are readily absorbed by the gas-
trointestinal (GI) tract. Upon absorption, they cross the cellu-
lar membrane via passive diffusion and bind to glucorticoid
(NR3C1) receptors in the cytoplasm. This ligand-receptor
complex subsequently binds to glucorticoid-response ele-
ments on DNA and leads to modulation of transcription [15,
16]. The oral bioavailability of glucocorticoids ranges from 60
to 100% [5]. Protein binding varies depending on the type of
glucocorticoid. Dexamethasone binds exclusively to albumin
while hydrocortisone and prednisolone also bind to transcortin
[17]. Glucocorticoids are metabolized through the hepatic cy-
tochrome P450 (CYP450) system in a two-step process,
consisting of addition of an oxygen or hydrogen atom, follow-
ed by conjugation via glucuronidation or sulphation [5]. The
inactive metabolites are subsequently excreted by the kidneys
[5].

Given their metabolism through the CYP450 system,
enzyme inducers (e.g., barbiturates, carbamazepine, phe-
nytoin, rifampin) and inhibitors (e.g., ketoconazole,
clarithromycin) will affect the clearance of glucocorti-
coids. For instance, phenytoin significantly decreases
the half-life and bioavailability of dexamethasone [18,
19] but, conversely, dexamethasone can also reduce
phenytoin levels [20]. Given this complex interaction,
it is recommended that phenytoin levels be closely mon-
itored when changes in dexamethasone dosing are being
made. Carbamazepine and phenobarbital have also been
shown to induce hepatic metabolism of dexamethasone
[21]. Co-administration of CYP 3A4 inhibitors (e.g.,
ketoconazole, clarithromycin) with corticosteroids de-
creases the clearance and increases the half-life of meth-
ylprednisolone and dexamethasone but has minimal ef-
fects on prednisolone [5]. Glucocorticoid pharmacoki-
netics are also influenced by renal and hepatic disease.
Renal disease enhances dexamethasone clearance and
reduces its plasma half-life, due to decreased binding
to albumin. In patients with chronic liver disease, the
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clearance of dexamethasone is decreased and its half-life
increased [22]. Patients on corticosteroids therefore war-
rant close monitoring of concurrent medications
(especially anti-epileptics) and evaluation for co-morbid
conditions to avoid side effects and maximize therapeu-
tic benefit.

Dexamethasone is a synthetic glucocorticoid that
was first synthesized in 1958 [23]. It is the agent of
choice to treat cerebral edema, given its high potency
(30 times as potent as cortisol, the body’s endogenous
glucocorticoid [24]), long biologic half-life, and low
mineralcorticoid (i.e., sodium-retaining) activity [25].
The plasma half-life of oral dexamethasone is 2–4 h
but the biologic half-life extends to 34–54 h [26, 27].
Thus, a once or twice daily dosing schedule is appro-
priate and more convenient for patients than dexameth-
asone given four times daily [27]. Clinical data also
support the use of lower doses of corticosteroids to
avoid side effects. In two consecutive randomized con-
trolled studies, no differences in clinical outcome or

quality of life, as measured by Karnofsky performance
score (KPS), were seen in patients receiving a daily
dose of 4, 8, or 16 mg of dexamethasone after 1 week
of treatment [28]. While the frequency of side effects
did not differ between the groups after 1 week, there
was a significantly higher incidence of Cushingoid fa-
cies and ankle edema after 4 weeks in patients receiv-
ing ≥8 mg/day of dexamethasone. The authors also
observed a higher rate of proximal muscle weakness
in the ≥8-mg/day group compared to the 4-mg/day
group (38 vs. 14%) at 4 weeks [28]. In general, clin-
ical guidelines do not recommend the use of any cor-
ticosteroids in asymptomatic patients with brain metas-
tases or high-grade glioma [29, 30•, 31•]. In symptom-
atic patients, starting doses of 4–8 mg/day of dexa-
methasone are recommended although higher doses
may be needed in the presence of impaired conscious-
ness and other signs of increased intracranial pressure
[29, 30•]. Table 1 summarizes recommendations on
dosing and tapering of corticosteroids based on our

Table 1 Recommendations for dosing and tapering of dexamethasone in patients with brain tumors based on the authors’ and others’ [30•, 31•] clinical
experience

Clinical scenario Recommended dose of dexamethasone Recommended taper

Asymptomatic patients Corticosteroids not recommended

Patients with mild to moderate neurologic
symptoms

4–8 mg/day (given as single dose or twice daily)
Duration and rapidity of taper depend on

individual patient characteristics. Goal is to
taper to lowest dose at which the patient
remains asymptomatic. If symptoms recur
during taper, dose should be increased to
previous dose at which patient was
asymptomatic

Authors’ suggestions:
In asymptomatic post-operative patients: reduce

dose by 50% every 1–2 days over 5–7 days
(typically determined by neurosurgeon)

In patients on 4–8 mg/day for ≤2 week: reduce
by 2 mg/day every 3 days until dose of
2 mg/day is reached, then 1 mg/day for
3 days, then stop

In patients on >8 mg/day for >2 weeks: reduce
by 2 mg/day every 5–7 days until dose of
2 mg/day is reached, then 1 mg/day for
5–7 days, then stop. Patients on prolonged
corticosteroid use may require taper to
0.5 mg/day for several days before they
tolerate discontinuation

Patients with severe neurologic symptoms (e.g.,
impaired consciousness, signs of increased
intracranial pressure) or radiographic evidence
of impending herniation

Initial one-time dose of 10 mg, followed by 4 mg
every 6 h (can consider changing dose to twice
daily after patient is clinically stable)

Post-operatively 16 mg/day, given 2–4 times daily; typically
determined by neurosurgeon

During radiation therapy Corticosteroids not recommended unless patient
is symptomatic

During chemotherapy and/or immunotherapy Corticosteroids not recommended unless patient
is symptomatic. Dosing in setting of
immunotherapy administration depends on
clinical trial protocol but typically should not
exceed 4 mg daily

Palliation of symptoms/hospice care Dose should balance maximizing symptom relief
and minimizing side effects

In general, corticosteroids should be given as a daily or twice daily dose, with the second dose administered in the afternoon to reduce the risk of
insomnia. Given the extensive side effects of corticosteroids, a taper should be initiated as soon as the patient is clinically stable. There is wide variety
amongst neuro-oncologists on how quickly corticosteroids are tapered. In general, a more conservative taper should be performed if a patient has been on
high doses of corticosteroids for several weeks and/or if the clinician is concerned about onset of adrenal insufficiency during the taper
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own clinical practice and as supported by clinical prac-
tice guidelines.

Adverse Effects and Toxicity of Systemic
Corticosteroids

In general, adverse effects are more likely to occur with
prolonged use and high doses [32]. This is particularly
problematic for neuro-oncologic patients as some may
require corticosteroids for the whole duration of treatment
or even after treatment has been completed [33, 34]. For
instance, 71% of patients with malignant gliomas who
underwent radiation were still on corticosteroids 3 months
after completing radiation [33]. While corticosteroids are
classically associated with the development of Cushingoid
features (moon face, redistribution of body fat, centripetal
obesity, and development of a dorsocervical fat pad), they
have a number of neurologic and non-neurologic side ef-
fects. In a survey using the Dexamethasone Symptom
Questionnaire-Chronic (DSQ-C), the three most frequent-
ly reported and bothersome symptoms were sleep distur-
bances, increased appetite, and mood changes [35].
Difficulties with sleep and increased appetite were report-
ed by >35% of patients. In another study, weight gain was
reported by up to 70% of patients on chronic steroid ther-
apy (mean prednisone equivalent dose of 16 mg/day) [36].

Mood disorders are common with corticosteroids and
include emotional lability, depression, hypomania, mania,
anxiety, and suicidality. Some patients experience psycho-
sis, confusion, and memory difficulties [37, 38]. These
symptoms can be worse in patients with pre-existing psy-
chiatric conditions but may also develop in individuals
without a known history thereof. Given the profound ef-
fects on sleep, we advocate for once or twice daily dosing
of dexamethasone and administration of the second dose
in the afternoon, rather than in the evening or at night
time, to minimize the risk of insomnia.

Steroid-induced myopathy is a frequently observed neuro-
logic complication and mediated by direct catabolic effects on
skeletal muscle, including myocyte apoptosis [39] and re-
duced myocyte differentiation [40]. In one case series, 10%
of brain tumor patients on 2 or more weeks of continuous
daily dexamethasone developed myopathy [41]. Two-thirds
developed symptoms between week 9 and 12 of therapy.
Interestingly, the incidence of myopathy was reduced in pa-
tients receiving phenytoin over other anti-epileptic drugs,
which is likely related to phenytoin-induced hepatic clearance
of dexamethasone [41]. The pattern of weakness in steroid-
induced myopathy is typically proximal and involves the low-
er extremities first.

Musculoskeletal complications include osteoporosis, in-
creased fracture risk, and avascular necrosis of the bone.

Osteoporosis is mediated by effects on osteoblastic and oste-
oclastic function [42] and occurs in as many as 30–50% of
patients within the first 3 to 6 months of starting treatment [43,
44]. The risk of fractures is time- and dose-dependent and
increases with daily doses of more than 5 mg of prednisone
or equivalent doses [43, 45]. Fractures tend to occur in areas
with high density of cancellous bone such as the femoral neck
or vertebral bodies [43].

Corticosteroids increase the risk of cardiovascular disease
in a dose-dependent fashion, including the incidence of myo-
cardial infarction, heart failure, and stroke through accelerated
atherosclerosis [46, 47]. In a series of rheumatoid arthritis
patients treated with prednisolone (7.5 mg/day), the risk of a
first-time stroke was increased by a factor of 3.7 in the first
2 years of treatment [46]. However, a similar study in brain
tumor patients exposed to dexamethasone has not been con-
ducted. Other cardiovascular effects of corticosteroids are an-
kle edema due to increased sodium and water retention and
hypertension [48].

Common GI side effects are gastritis, peptic ulceration,
and GI hemorrhage. In one study, the relative risks of
peptic ulcers and GI hemorrhage in patients on corticoste-
roids were 2.3 and 1.5, respectively [49]. These observa-
tions provide the rationale for concurrent administration
of a proton pump inhibitor or H2 antagonist during corti-
costeroid treatment. Intestinal perforation has been report-
ed after corticosteroid therapy [50].

Glucocorticoids have numerous metabolic and endocrine
adverse effects. Generally, they worsen pre-existing or induce
new-onset diabetes mellitus [51]. The reported odds ratio of
diabetes in those treated with glucocorticoids ranges from 1.5
to 2.5 [51]. Growth failure has been reported, particularly in
children [52]. Glucorticoids suppress the HPA axis, resulting
in inadequate cortisol secretion by the adrenal glands and ad-
renal atrophy with prolonged use. This becomes particularly
problematic with rapid tapering of corticosteroids and can
manifest with symptoms of adrenal insufficiency, such as hy-
potension, general malaise, nausea, and fatigue. There are no
guidelines for how quickly glucocorticoids should be tapered
to avoid adrenal insufficiency. In general, it is recommended
to taper doses over 2–4 weeks but longer schedules should be
considered if patients have been on corticosteroids for several
months and if they have been receiving higher doses (Table 1)
[28, 53].

Lastly, glucocorticoids increase the risk of bacterial, viral,
and fungal infections in a dose-dependent fashion. This risk is
augmented in the presence of other immunosuppressive con-
ditions, such as concurrent use of immunosuppressive drugs
(particularly cytotoxic drugs such as cyclophosphamide) and
diabetes mellitus [54]. A higher risk of infection is also con-
ferred by corticosteroid-induced skin thinning and impaired
wound healing [55]. One of the most feared conditions is
Pneumocystis jirovecii pneumonia (PJP). The presence of
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cancer itself increases the risk of PJP, and this has traditionally
been observed in hematologic malignancies. However, PJP
has also been reported in 1.7% of patients with primary or
metastatic CNS tumors [56, 57], after a median of 2.75months
on dexamethasone [57]. Temozolomide (TMZ), which is one
component of the standard treatment for glioblastoma (GBM),
causes lymphopenia and has been associated with PJP [58,
59]. It is thus recommended that all GBM patients receiving
concurrent radiation and TMZ be treated prophylactically for
PJP until their lymphocyte counts recover. Themost common-
ly used agent is sulfamethoxazole/trimethoprim which re-
duces the incidence of PJP by 85% [60]. If this is contraindi-
cated, alternative agents such as atovaquone, dapsone, and
aerosolized pentamidine can be used.

Effects of Dexamethasone on Survival in Glioma Patients

Reports in the literature have suggested that corticosteroid
dependency in glioma patients during radiation therapy (RT)
is a poor prognostic indicator of survival [61–63], perhaps
because their use is linked to poorer performance status and
a greater degree of residual tumor after surgery, both of which
are independent negative prognostic factors. As outlined
above, corticosteroids also increase morbidity and mortality
through direct toxic effects. However, laboratory data and
recent clinical studies have demonstrated that they negatively
impact survival independent of confounding factors. Early
observations were provided by Shields et al. in 2015 [64•]
who found that patients treated with dexamethasone during
chemoradiation had a worse overall survival (OS) than those
who did not receive dexamethasone (12.7 vs. 22.5 months) on
both univariate and multivariate analysis. Progression-free
survival (PFS) was similarly shortened in the dexamethasone
group (6.0 vs. 8.8 months). These findings were subsequently
corroborated by a pooled retrospective analysis of more than
2000GBMpatients [65••]. This study demonstrated that dexa-
methasone administration during treatment was associated
with significantly reduced OS and was an independent nega-
tive prognostic indicator, after adjusting for other prognostic
factors, including age, performance status, and extent of sur-
gery. The data were retrospectively analyzed from three large
patient cohorts: 622 patients at the Memorial Sloan Kettering
Cancer Center (MSKCC), 573 patients from the European
Organisation for Research and Treatment for Cancer
(EORTC)/National Cancer Institute of Canada (NCIC) trial,
and 832 patients from the German Glioma Network (GGN).
In the MSKCC cohort, patients treated with dexamethasone at
the beginning of RT had an OS of 12.9 months, compared to
20.6 months in those not treated with dexamethasone.
Similarly, subjects from the EORTC/ NCIC trial on baseline
corticosteroids had a significantly reduced OS (12 vs.
17 months) and PFS (5.3 vs. 6.4 months) compared to those
who were not on corticosteroids. The negative effects of

dexamethasone were more pronounced in those treated with
RT alone than concurrent chemoradiation followed by adju-
vant TMZ [65••]. Data from the GGN cohort also demonstrat-
ed inferior OS and PFS in steroid-exposed patients (OS 12.1
vs. 15.7 months; PFS 6.1 vs. 7 months), which was more
significant in those receiving concurrent chemoradiation.

The observations that corticosteroids abrogated the ef-
fects of radiation were then reproduced in a murine GBM
model. In this model, dexamethasone given daily for
3 days before radiation (10 Gray) significantly decreased
survival, particularly when a fractionated radiation sched-
uled was used [65••]. At a molecular level, the authors
found that 19 genes involved in the cell cycle and mitosis
were significantly downregulated in dexamethasone-
treated mice. Using a murine in vivo assay, they demon-
strated that dexamethasone decreased tumor cell prolifer-
ation [65••]. This is a significant finding since cells are
most radiosensitive when they have high turnover rates
[66] and when they are in G2/M phase, as opposed to
G1 phase [67]. Dexamethasone may thus shift cells into
a more radioresistant state by increasing the relative time
spent in G1 phase and decreasing the time in G2/M phase.
In addition, dexamethasone has been shown to induce the
cell cycle inhibitor p21 [68], which is associated with
radioresistance in human gliomas [69], and protect GBM
cells from TMZ-induced apoptosis [70]. Taken together,
these data provide potential mechanistic insights into how
dexamethasone modulates response to cancer-directed
therapies on a molecular level.

In summary, the above data provide evidence that dexa-
methasone may worsen clinical outcome in glioma patients
independent of other known prognostic factors. In our
opinion, dexamethasone should therefore only be used in
symptomatic patients, including those with neurologic and
radiographic signs of increased intracranial pressure. We
do not recommend routine administration of dexametha-
sone during radiation or in the setting of adjuvant chemo-
therapy in asymptomatic patients. If used, it should be ta-
pered to the lowest tolerated dose over a course of weeks,
depending on the previous duration of treatment and dos-
ing schedule.

Alternative Treatment Strategies
for Tumor-Associated Cerebral Edema

Given the significant toxicity profile of corticosteroids
and their negative impact on survival in glioma patients,
efforts have been underway to explore alternative thera-
pies to treat cerebral edema in neuro-oncologic patients.
One particular focus has been on anti-angiogenic agents,
including bevacizumab and cediranib. These agents target
vascular endothelial growth factor (VEGF), a pro-
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angiogenic peptide that is upregulated in many brain tu-
mors [71–73]. Clinical studies have demonstrated that
bevacizumab (a monoclonal antibody against VEGF, ad-
ministered intravenously) and cediranib (an oral tyrosine
kinase inhibitor of VEGF receptors) reduce cerebral ede-
ma on MRI [74–76]. The anti-edema effects of
bevacizumab were evident on MRI as early as 18 days
after the start of treatment [75] and associated with a
significant reduction in corticosteroid dose and neurologic
improvement. In a study of patients with recurrent glio-
blastoma treated with cediranib, a significant reduction of
cerebral edema as measured by lesion volume on T2/
FLAIR sequences, apparent diffusion coefficient maps,
and extracellular extravascular space fraction was appar-
ent after a few weeks or less of treatment [74, 76]. As
with bevacizumab, these imaging findings also translated
into a reduction in corticosteroid requirement for all pa-
tients, with some not requiring corticosteroids at all [74].

In response to their findings that dexamethasone during
radiation compromised survival in GBM patients [65••],
the authors examined whether a murine bevacizumab ana-
logue (anti-VEGF antibody B20-4.1.1) was equally effec-
tive in controlling neurologic symptoms as dexamethasone
and whether it negatively affected survival. Interestingly,
B20-4.1.1 independently prolonged survival in mice treat-
ed with RT and did not interfere with the efficacy of RT. On
a microscopic level, B20-4.1.1 was associated with a re-
duction in total vessel area, average vessel size, and vessel
leakage, compared to vehicle-treated mice. However, these
effects were transient as vessels assumed their original
morphology when B20-4.1.1 was stopped [65••]. The risk
of rebound edema after cessation of therapy has been doc-
umented for anti-angiogenic agents [74] and, therefore,
duration of therapy remains an open question. Overall,
anti-angiogenic agents are considered relatively safe.
Bevacizumab, in particular, is commonly used in neuro-
oncologic practice to reduce vasogenic edema.

Other agents with documented steroid-sparing effects include
corticorelin acetate (CrA) and cyclooxygenase (COX) inhibi-
tors. CrA is a synthetic peptide formulation of endogenous hu-
man corticotrophin-releasing factor. In a phase III, double-blind
randomized controlled trial, patients were treated either with
CrA or placebo. All patients received concurrent dexamethasone
[77]. Although the primary endpoint was not met (defined as
≥50% reduction in dexamethasone dose, at least stable neuro-
logic examination and KPS score at week 2 of treatment, and
persistent response at week 5), the maximum percent reduction
in the dexamethasone dose over a 3-month period was signifi-
cantly higher in the CrA than that in the placebo group. This also
correlated improvement in corticosteroid-induced myopathy
and a lower likelihood of developing Cushing syndrome in the
CrA groups. A COX-2 inhibitor in a rat brain tumor model was
associated with a similar survival benefit as dexamethasone,

possibly related to anti-edema effects [78]. However, clinical
studies have not been performed due to concerns for potential
cardiac toxicity [23], and the clinical feasibility of this agent is
unknown.

In summary, in patients who require long-term corticoste-
roids for edema control, have undesired corticosteroid-
associated side effects, or are refractory to corticosteroids,
bevacizumab should be considered as an alternative treatment
strategy, given the best available clinical evidence. The use of
other agents, such as CrA and COX inhibitors, remains a matter
of debate and requires more validation in the clinical setting.
Given the potential clinical benefit of reducing corticosteroid
use, the Response Assessment in Neuro-Oncology (RANO)
Working Group is developing response criteria based on corti-
costeroid use an as endpoint in clinical trials.

Effects of Corticosteroids on MR Imaging

MRI is the gold standard imaging modality in neuro-oncology
to monitor and assess treatment response and disease progres-
sion. Neuro-oncologists most frequently rely on post-contrast
T1-weighted (T1W) and T2-weighted (T2W)/fluid-attenuated
inversion recovery (FLAIR) sequences. Post-contrast T1W
sequences typically capture the contrast-enhancing tumor core
(commonly seen in high-grade gliomas or brain metastases)
while T2/FLAIR sequences usually represent a combination
of peritumoral edema and non-enhancing infiltrating tumor
(commonly seen in low-grade gliomas or representative of
the infiltrating edges of high-grade gliomas).

Corticosteroids can profoundly change the appearance of
brain tumors onMRI and thus complicate the interpretation of
imaging results. For instance, corticosteroids at a daily dose of
16mg decreased the size of the contrast-enhancing tumor core
and surrounding T2-hyperintense peritumoral edema in 90%
of patients, which was most pronounced within 2 weeks of
treatment [79]. In addition, anatomic and functional imaging
changes have been observed at even earlier time points after
exposure to corticosteroids. MRI data from GBM patients
who underwent imaging 48–72 h after dexamethasone admin-
istration revealed significant changes in permeability parame-
ters in the contrast-enhancing tumor core [80]. Changes in T1
relaxation time and mean diffusivity (measures of tissue water
content and mobility of water, respectively) in the peritumoral
region were also observed.

For these reasons, most clinical protocols require patients
to be on a stable dose of corticosteroids for at least 5 days
before the baseline MRI. In addition, corticosteroid doses
have been incorporated as part of both the Macdonald criteria
(a response assessment tool for high-grade gliomas) and the
newer Response Assessment in Neuro-Oncology (RANO)
criteria (which also specifies response criteria for other tumor
entities such as low-grade gliomas and metastases). For
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patients to meet criteria for a complete response (CR) with the
Macdonald criteria, there must be complete resolution of con-
trast enhancement and the patient has to be off corticosteroids
[81]. To fulfill criteria for a partial response (PR), there has to
be at least 50% resolution of contrast-enhancing tumor on two
consecutive imaging studies at least 4 weeks apart and a stable
or decreased dose of steroids and a stable neurologic exam
[81]. Similarly, in the RANO criteria, to achieve a CR, in
addition to a complete and sustained (≥4 weeks) resolution
of enhancing disease, absence of any new tumor lesions, and
stable or improved extent of T2/FLAIR hyperintensity on
MRI, patients have to be at most on physiologic doses of
corticosteroids [82]. A patient with brain metastases must
not be on any corticosteroids to fulfill CR criteria. Table 2
summarizes the RANO criteria for common types of brain
tumors. A comprehensive review of the RANO criteria was
recently published [83••].

Conclusion

Corticosteroids are effective in treating and improving
cancer- and treatment-associated cerebral edema and
neurologic symptoms in patients with CNS tumors.
However, their use should be limited to symptomatic
patients and those with signs of increased intracranial
pressure, given their potentially serious side effects.
When administered, clinicians should aim for the lowest
effective dose to improve symptoms and attempt to ta-
per patients off corticosteroids after symptom control
has been achieved. This is particularly relevant in light
of recent data suggesting a potential detrimental effect
of corticosteroids on survival in glioma patients. As
more studies are being conducted to investigate the im-
pact of corticosteroids on tumor-directed therapies and
long-term clinical outcome, alternative treatment

Table 2 Overview of RANO criteria for high-grade gliomas, low-grade gliomas, and brain metastases

High-grade gliomas Low-grade gliomas Brain metastases

CR • No enhancing disease for
≥4 weeks

• No new lesions
• Stable or improved T2/FLAIR
• No more than physiologic doses

of steroids
• Clinically stable or improved

• No T2/FLAIR disease for ≥4 weeks
• No new or increased enhancement
• No new T2/FLAIR, other than that attributable to

treatment effects
• No more than physiologic doses of steroids
• Clinically stable or improved

•Disappearance of all CNS target and non-target
lesions for ≥4 weeks

• No new lesions
• No use of steroids
• Clinically stable or improved

PR • ≥50% decrease in sum of
perpendicular diameters of
enhancing disease for ≥4 weeks

• No new lesions
• Stable or improved T2/FLAIR
• Stable or decreased steroid dose
• Clinically stable or improved

• ≥50% decrease in sum of perpendicular diameters of
T2/FLAIR disease for ≥4 weeks

• No new or increased enhancement
• No new T2/FLAIR, other than that attributable to

treatment effects
• No more steroids than dose at time of baseline scan
• Clinically stable or improved

• ≥30% decrease in sum longest diameter of
CNS target lesions for ≥4 weeks

• Stable or improved non-target lesions
• No new lesions
• Stable or decreased steroid dose
• Clinically stable or improved

MR N/A • 25–49% decrease in sum of perpendicular diameters of
T2/FLAIR disease for ≥4 weeks

• Other criteria per PR criteria

N/A

SD • Does not meet criteria for CR,
PR, or PD

• No new lesions
• Stable or improved T2/FLAIR
• Stable or decreased steroid dose
• Clinically stable or improved

• Does not meet criteria for CR, PR, MR, or PD
• No new or increased enhancement
• No new T2/FLAIR, other than that attributable to

treatment effects
• No more steroids than dose at time of baseline scan
• Clinically stable or improved

• Does not meet criteria for PR or PD
• Stable or improved non-target lesions

PD • ≥25% increase in sum of
perpendicular diameters of
enhancing disease for ≥4 weeks

• New lesions
• Substantially worse T2/LFAIR
• Substantial clinical decline

• New lesions or increased enhancement
• ≥25% increase in T2/FLAIR hyperintensity on stable or

increased doses of steroids and not attributable to
radiation effect or co-morbid events

• Definite clinical deterioration
• Death or loss of follow-up

• ≥20% increase in sum longest diameter of CNS
target lesions relative to smallest sum longest
diameter while on study

• At least one lesion increased by ≥5 mm
•Unequivocal progression of existing non-target

lesions
• New lesion(s)
• Unequivocal progression of existing

tumor-related T2/FLAIR lesions
• If immunotherapy given, new lesions alone

may not constitute PD

In addition to imaging criteria based on extent of contrast enhancement and T2/FLAIR hyperintensity and clinical assessment, changes in dosing of
corticosteroids (referred to as “steroids” in the table) must be considered in the response assessment, given the known modulating effects of corticoste-
roids of imaging findings on post-contrast T1W and T2/FLAIR sequences. Adapted from [83••] with permission

CR complete response, PR partial response, MR minor response, SD stable disease, PD progressive disease
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approaches such as anti-angiogenic agents should be
cons idered in pa t ien ts who requi re long- te rm
corticosteroids.
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