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Abstract Deep brain stimulation (DBS) is effective for
Parkinson’s disease (PD), dystonia, and essential tremor
(ET). While motor benefits are well documented, cognitive
and psychiatric side effects from the subthalamic nucleus
(STN) and globus pallidus interna (GPi) DBS for PD are in-
creasingly recognized. Underlying disease, medications,
microlesions, and post-surgical stimulation likely all contrib-
ute to non-motor symptoms (NMS).
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Introduction

Deep brain stimulation (DBS) successfully treats Parkinson’s
disease (PD), essential tremor (ET), and certain dystonias [1].
Common therapeutic targets include the subthalamic nucleus
(STN), globus pallidus interna (GPi), and VIM thalamus [1].
DBS significantly improves motor symptoms of PD, ET, and
dystonia [1–3]. The long-term data of DBS in PD demon-
strates reductions in tremor, rigidity, troublesome dyskinesias,
and overall improvements in quality of life [1–3]. However,
there are cognitive and psychiatric symptoms, some reproduc-
ible on stimulation, that practitioners would be remiss to ig-
nore. These NMS can fluctuate after DBS due to changes in
dopaminergic medications and stimulation parameters. Much
of our knowledge of the NMS of DBS was obtained from
patients with STN DBS [1, 4•, 5]. The goal of this review is
to summarize these important non-motor post-operative
symptoms, discuss strategies to reduce them, and to adequate-
ly optimize neuromodulatory therapy for Parkinson’s disease.

Subthalamic Nucleus DBS

Anatomy of the Subthalamic Nucleus

The STN is an important relay center of basal ganglia motor
pathways. It receives direct excitatory (glutaminergic) inputs
from the cerebral cortex and the centromedian parafascicular
nucleus of the thalamus and sends excitatory outputs to the
GPi, globus pallidus externa GPe, substantia nigra pars
r e t i cu l a t a (SNr ) and compac t a (SNc) , and the
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pedunculopontine nucleus (PPN). It receives inhibitory
(GABAergic) inputs from GPe and modulatory inputs from
the PPN (glutaminergic and cholinergic) and SNc. It is
subdivided into a motor dorsomedial (interacts with primary
motor cortex, GPi, GPe), an associative ventromedial (inter-
acts with frontal eye fields and oculomotor and cognitive cen-
ters via the SNr) and medial limbic (interacts with cingulate
cortex and ventral pallidum) territories. These territories with
their input-output circuitry provide parallel, independent con-
trol of motor, oculomotor, cognitive, and limbic pathways [5].

Affective or Psychiatric Effects in STN DBS

Depression

Depression is the most common psychiatric quality of life
(QOL) determinant in STN DBS for PD [4•]. Depression in
PDmay bemediated by CNSmonoaminergic cell dysfunction
[6]. Dysfunction and loss of norepinephrinergic and seroto-
nergic cells may precede SNc damage in PD [7]. Nearly one
out of two Parkinson’s patients suffers from clinically signif-
icant depression [8].

Functional imaging studies suggest a hypodopaminergic
state in depression [7]. In a cohort of 63 subjects, phenotypic
variance in mesolimbic D2/D3 receptor density was shown by
[11C]-raclopride positron emission tomography (PET) after
cessation of dopamine agonist therapy [9]. In this study, de-
pression was reversible by restarting dopaminergic therapy
[9]. Patients with comorbid apathy and depression were hy-
pothesized to have a lower density of presynaptic dopaminer-
gic terminals predominantly in the mesocorticolimbic system,
likely explaining the link among depression, anxiety, and ap-
athy stemming from a hypodopaminergic syndrome [9].

The data describing depression with STN DBS for PD is
mixed. Improvements [10–15] and exacerbations [4•, 9, 11,
16–19] of depression after STN DBS were reported. Pre-
operative depression is predictive of post-operative depression
and overall decrease in QOL [4•, 17, 20]. A meta-analysis of
several studies revealed that of the 1398 who underwent STN
DBS, 8 % had post-operative depression [18]. Thus, each
patient should undergo individual risk/benefit evaluation prior
to DBS implantation [17, 21].

In a prospective study of 33 STN DBS patients, initial
and long-term stimulation evoked a significant reduction
of depression as assessed by the Beck Depression
Inventory (BDI), a self-reported questionnaire, and the
Bech-Rafaelsen Melancholia Scale (BRMES), an
observer-rating assessment [15]. While no specific DBS
parameters were provided, initial improvements in scores
were noted at 3 weeks, with continued improvement at
9 weeks, during which time DBS parameters were con-
comitantly being adjusted. At 9 weeks, BDI scores

stabilized, directly correlating with the final DBS adjust-
ments [15].

Two cases demonstrated reversible depression after STN
DBS [17, 22]. In the first, a 65-year-old woman acutely
expressed suicidal ideations (SI) after bilateral DBS at initial
contact 0 located in the central substantia nigra with the fol-
lowing parameters: 2.4 V/60μs/130 Hz. PET imaging showed
activation of the limbic circuitry. Stimulation of more superior
STN contacts sufficiently provided relief of motor symptoms
without mood effects [22]. In the second report, a previously
non-depressed man became acutely depressed and attempted
suicide within a 24-h period after the frequency was decreased
from 185 to 60 Hz. His depression rapidly improved after
restoration of previous settings [17].

There was no difference in post-operative depression prev-
alence in STN versus GPi groups [4•, 20]. Both pre-operative
and post-operative depression assessments are necessary with
adjustments in stimulation parameters. Early case reports of
suicide after DBS were concerning [16, 17]. Recent meta-
analyses demonstrated the incidence of suicide post-DBS is
quite rare and appears to be related to rapid reductions in
dopaminergic medications rather than to direct stimulation
effects [23•]. In a randomized controlled study assessing SI
and behavior in DBS [23•], 108 combined STN and GPi pa-
tients were compared with 116 medically treated patients over
6 months using the Unified Parkinson’s Disease Rating Scale
(UPDRS), Parkinson’s Disease Questionnaire-39 (PDQ-39),
and the Short Form Health Survey (SF-36). The study was
then extended beyond 6 months, comparing STN and GPi
for a total of 2 years. No patients expressed SI at baseline.
There was no significant difference between the DBS group
and the medically treated group. Likewise, there was no sig-
nificant difference between STN and GPi; 1.5 % of STN com-
pared with 0.7 % of GPi DBS patients conveyed SI at
6 months, with complete resolution in both groups at 2 years
[23•]. Nevertheless, close psychiatric follow-up post-DBS and
regular monitoring of mood and SI are necessary.

Apathy

The prevalence of apathy in PD is estimated as high as
50 % [24]. Current pathophysiological hypotheses suggest
a neurochemical basis [25]. Pre-operative severity of dys-
kinesia from dopaminergic therapy was an independent
predictor of apathy after STN DBS [26]. Long-term treat-
ment with dopaminergic agents leads to alterations in do-
pamine receptor potentiation along the nigrostriatal path-
way, possibly causing apathy. Another study demonstrat-
ed using PET imaging 3 months before and 3 months after
surgery that among 44 patients with PD, reduced pre-
operative metabolism within the right ventral striatum
was significantly associated with post-operative apathy
[27]. Pre-operative degeneration of the right-sided
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mesolimbic dopamine pathway, which plays a dominant
role in reward-related behavior, could be clinically un-
veiled during withdrawal of dopamine replacement thera-
py (DRT) after DBS and further disrupted during STN
limbic stimulation [32]. The disease severity of PD does
not necessarily correlate with apathy severity [28]. In a
study of 15 STN DBS patients compared with medically
managed PD controls using the Apathy Evaluation and
Starkstein (AES) scales at 3 months prior, 3 months post,
and 6 months after DBS [29], 33.3 % of patients had
apathy 3 months prior to intervention [29]. In an expand-
ed study of 33 STN DBS patients, a significant and linear
increase in apathy over 6 months was identified in the
DBS group [30]. Other studies demonstrated significant
post-surgical exacerbations of apathy after STN DBS [9,
26, 31, 32], implicating peri-limbic ventral-internal STN
implantation in development or worsening of apathy, em-
phasizing the role of lead location. Thus, it is possible that
lead location, stimulation effects, and withdrawal of DRT
are all factors in the development of post-operative
apathy.

Dopamine Agonist Withdrawal Syndrome

Recent clinical description of the Dopamine Agonist
Withdrawal Syndrome (DAWS) increased awareness of po-
tential mood changes with reduction of dopaminergic medi-
cations, particularly agonists [33, 34]. DAWS is more preva-
lent in patients with impulse control disorders (ICDs) and is
more likely in patients who were taking dopamine agonists at
high doses for long periods of time [34].

In our practice, there are some patients in the early post-
operative period who have a very good motor outcome but
have subsyndromal mood changes or decreased motivation or
apathy. They do not report an overall positive response as
expected by neurologists and neurosurgeons. When there is
a Bmismatch^ between the clinician-assessed outcome of DBS
and the patient’s subjective satisfaction, psychiatric assess-
ment can potentially demonstrate psychological factors (e.g.,
overly high expectations or the expectation that other life
problems will no longer exist after DBS) and/or biological
factors for mood changes. Such mood or motivation changes
may be akin to low-grade DAWS-like phenomenon and do
not necessarily require an increase in dopamine agonists or
dopaminergic medications. We had some success remitting
these mood symptoms with various antidepressants.

Anxiety

Anxiety is reported in approximately 75 % of PD patients
and is attributed to mesolimbic dopaminergic degenera-
tion [9]. In the short-term, STN DBS has a positive effect
on anxiety when evaluated by the State and Trait Anxiety

Inventory (STAI), Beck Anxiety Inventory (BAI),
Hamilton Anxiety Rating Scale (HAM-A), and the
Hospital Anxiety and Depression Scale (HADS) [35].
The most notable exception is a recent randomized study
of unilateral STN or GPi implantation, which found wors-
ening in the HAM-A at 2, 4, 6, and 12 months postoper-
atively as compared to baseline [36•]. Unilateral STN
DBS achieved a significant worsening in HAM-A scores
at 4 months, yet the overall improvement at 1 year. The
GPi DBS patients had worsening anxiety at every interval,
possibly due to DRT weaning. The medication reduction
strategy included increasing intervals between dosages,
discontinuing entacapone or amantadine, and decreasing
total dosages (levodopa and/or agonists). Medication re-
duction strategies were deliberately employed slowly, and
all changes monitored by clinicians monthly. There was a
significant positive correlation between changes in dopa-
minergics and anxiety and depression scores at 1 year for
both targets. The magnitude of the behavioral change was
greatest in the anxiety domain, with a positive correlation
between changes in levodopa equivalent doses and HAM-
A in both DBS groups. Interestingly, more dopaminergic
medication was utilized in the GPi group. This relatively
higher dose of dopaminergic medications post-GPi DBS
could actually prove to be a long-term advantage over
STN. The bilateral STN and GPi arm of the study did
not produce significant HAM-A score changes at any
point throughout the study, likely from small sample sizes
[36•]. In our practice, we are less inclined to wean med-
ications after GPi DBS for both neuropsychiatric and mo-
toric reasons.

Other studies suggest an initial improvement with sub-
sequent worsening of anxiety. When comparing 31 bilat-
eral STN DBS patients with 31 medically optimized pa-
tients 1 month pre-operatively and at several monthly in-
tervals post-implantation [37], a significant improvement
was noted at 1 week and 1 month after DBS but anxiety
worsened at 3 months and thereafter. This initial attenua-
tion was attributed to improvements in motor function, but
the subsequent worsening may be due to changes in stim-
ulation settings, specifically increasing voltages and pulse
widths, affecting current strength and including limbic cir-
cuitry. Other studies found no significant effect on anxiety
in patients with bilateral STN [38, 39].

Mania

The pathophysiology of PD mania is unclear but may be due
to increased activities of dopamine D2 receptor, inositol
monophosphatase, glycogen synthase kinase-3, and protein
kinase-C [40–42]. In a review of 1398 patients with STN
DBS, 4 % had post-surgical mania or hypomania [18]. Case
reports [43–46] demonstrated resolution of mania by
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changing stimulation settings. In another report, four out of 20
patients experienced mania under high-frequency stimulation
over a 4-year follow-up period, but no final outcomes were
noted [47]. Another noted resolution bymoving the electrodes
to a more rostral location [43] or by switching to a more dorsal
contact [44] without changing the entire electrode. In the latter
report [44], caudal STN electrode placement may trigger ma-
nia in those with underlying major depression, due to involve-
ment of the medial forebrain bundle, an integral structure in
the mesolimbic dopamine system. A PET study [48] demon-
strated that hypomania and mania were significantly associat-
ed with asymmetric right anterior cingulate and medial pre-
frontal cortex activation during STN DBS placement.

Impulse Control Disorders (ICDs)

ICDs are pervasive phenomena associated with dopaminergic
agonist therapy, levodopa, and DBS [33, 34]. A large multi-
center study identified ICDs in 13.6 % of 3090 Parkinson’s
patients in a combined cohort of those either treated with or
without DRT, with a markedly higher percentage of ICDs in
those taking DRT (17.1 versus 6.9 %, respectively) [34]. ICDs
are diverse (pathological gambling, binge eating, hypersexu-
ality, and compulsive shopping) [49]. Insight into pathophys-
iology was obtained through PET studies in a cohort of path-
ological gamblers which revealed elevated glucose metabo-
lism in both the orbitofrontal and medial frontal cortices [50,
51]. Local field potentials in 28 STN DBS patients revealed
greater activation in the ventral subthalamic area in patients
with ICDs [52].

Pre-existing ICDs persisted, worsened, or developed de
novo after STN DBS implantation in 20 of 21 patients [49].
Punding, hypersexuality, pathological gambling, binge eating,
and compulsive shoppingwere most commonly reported [49].
In another study, loss-chasing behavior, or continuous gam-
bling to recover losses, was significantly elevated in DBS
BOn^ versus BOff^ states [53].

In a 3-year study of 56 patients [54] (13 of whom had pre-
existing ICDs), 11 had complete remission at the 3-year mark
after STN DBS; the remaining two suffered from compulsive
eating. The most common pre-procedural ICD in this cohort
was punding followed by hypersexuality and compulsive eat-
ing. While some patients experienced new-onset, transient
(maximum duration of 15 months) ICDs during the study
(compulsive eating being the most common), an overall ben-
efit of STN DBS on ICDs was shown [54].

Compulsive behavior in post-implantation DBS and
non-DBS PD patients was not different; however, impul-
sivity in STN DBS patients was significantly higher [55].
In contrast, four PD patients with prior hypersexuality
became symptom free 17–41 months after bilateral STN
DBS placement [56]. The only exception being recurrence
in one patient after an 18-month period likely from his

dopaminergic medication regimen. It was successfully
treated by decreasing his dose [56].

Dopamine Dysregulation Syndrome (DDS)

DDS is characterized as a disturbance in impulse regulation
and behavioral control resulting from long-term use or abuse
of DRT [57, 58]. The nigro-mesolimbic dopaminergic path-
way, particularly the dopamine D3 receptor in the nucleus
accumbens (NA), is likely involved. Patients consume exces-
sive quantities of dopaminergic medications, far exceeding the
appropriate intended regimen for motor symptom control. The
prevalence of DDS among Parkinson’s patients is estimated to
be 3–4 %[58]. Risk factors include dopamine agonist therapy,
male sex, young age at onset of motor symptom, and
premorbid personality traits (obsessive-compulsive
behaviors) [57]. Both attenuation [59, 60] and exacerbation
[61] of DDS after STN DBS were reported. In a prospective
study spanning approximately 1 year in patients pre- and post-
STN DBS, all patients previously diagnosed with DDS dem-
onstrated significant improvement [60]. These results were
later substantiated [59]. However, analysis of 28 patients with
either STN or GPi DBS [61] demonstrated no significant
change in post-operative DDS.

Globus Pallidus Interna DBS

An output nucleus of the basal ganglia, the GPi plays a
constituent role in normal motor behavior and projects
axons from GABA-containing neurons to the dorsal thala-
mus and PPN [62, 63]. The somatotopic organization of
the GPi progresses leg-arm-face along both the anterior-
posterior and dorsal-ventral planes.

The psychiatric effects of GPi DBS for PD were consider-
ably less examined to date than those associated with STN
DBS. Many of the general points and treatment principles
discussed in the previous section on STN DBS also apply to
GPi DBS for PD.

Mania

Miyawaki et al. described a single patient with recurrent epi-
sodes of mania 15 days after initiating GPi stimulation [64].
He took levodopa for 11 years and was treated with 2500 mg
prior to surgery. Mania was observed after initiation of stim-
ulation, and resumption occurred when DBS (either bilateral
or unilateral) was on. Changing settings had no sustainable
effect. Lowering the dose to 1250 mg per day resolved his
mania at 12-month follow-up with DBS on. The authors con-
cluded that the patient’s mania was a result of stimulation and
not the surgery alone [64].
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Impulse Control Disorders

In a retrospective chart review [61], a significant post-
operative development (17 of 28 patients) of ICDs was noted.
Only two patients had resolution after bilateral implantation—
one with STN and the other with GPi. Eleven patients devel-
oped newly diagnosed ICDs after unilateral DBS placement,
seven of whom had GPi DBS. Six patients developed de novo
ICDs after bilateral DBS placement, two with bilateral GPi
leads. The comparison between STN and GPi targets did not
reveal a significant difference [61]. Another patient who pre-
viously underwent right pallidotomy developed prominent
hypersexuality after left GPi implantation [65].

Dopamine Dysregulation Syndrome

There was no therapeutic difference between STN and GPi
DDS [61]. Five patients with pre-operative DDS who
underwent unilateral GPi DBS continued to have symptoms
6 months after surgery. After receiving bilateral GPi implan-
tation, all five continued to have DDS [61].

Cognitive Effects of STN and GPI DBS

People with Parkinson’s disease typically exhibit some degree
of cognitive dysfunction, with mild cognitive impairment
(MCI) reported in 25 % in one large cohort and dementia
being reported anywhere from 20 to 70 % in various series
[66, 67]. The interaction of MCI and DBS on progression of
cognitive deficits is less understood, as cognitive changes fol-
lowing DBS intervention are heterogeneous and related to
disease progression [68, 69], medication side effects, and
microlesional effects [70].

Including all therapeutic DBS targets for disorders ranging
from PD to ET and the dystonias, a recent meta-analysis fo-
cusing on post-operative outcome in patients with mean age of
53.7 years reported that cognition improved in 31 %, deterio-
rated in 12 %, and remained unchanged in 13 % [71]. Specific
cognitive effects included dementia, executive dysfunction,
and mild memory impairment.

Executive Functions

In six prospective studies of bilateral STN DBS [72–77], sig-
nificant impairments were noted as early as 1 month after
implantation [72, 76], from 3 to 6 months [74, 75, 77] and
extending through 1 year [73, 74]. Deterioration in decision-
making in non-demented individuals undergoing bilateral
STN DBS also was reported during the acute post-operative
phase [78], with impaired executive functions at baseline be-
ing a predictor of dementia [79]. However, others have found
no significant changes in executive functions [80].

In a prospective study of 20 DBS patients undergoing
serial neuropsychological exams over 8 years, deteriora-
tion was evident in mental flexibility, strategizing, and
planning as measured by the Modified Wisconsin Card
Sorting Test [73]. A direct correlation between executive
dysfunction and postural impairment also was found, the
implications of which connect axial motor disability and
cognition [73]. However, it is possible that the average
PD duration of 21 years skewed the findings as gait and
postural stability are likely to be already impaired in this
cohort [73]. On the other hand, impulsivity as measured
by the Stroop was found to worsen as early as 1 year
postoperatively, consistent with data showing that youn-
ger people are more susceptible to impulse control prob-
lems [68]. Still, a comparison of bilateral STN patients
against non-surgical controls found that 36 % surgical
patients demonstrated cognitive decline 1 year after sur-
gery. Predictive factors of cognitive decline included pre-
operative executive dysfunction (trails B, Stroop Color
Word), advanced age, and poor L-dopa response.
However, the DBS group notably was younger, was less
educated, and had longer disease duration than the non-
surgical group, suggesting that the STN patients were
sicker than the controls, thus rendering suboptimal group
comparisons [81].

Verbal Fluency

Effects of STN DBS on verbal fluency are mostly delete-
rious [72, 73, 80, 82–90], attributed to stimulation effects,
disease progression, and microlesional effects [80, 86].
Functional MRI studies employing verbal fluency tests
through task-switching paradigms demonstrated robust ac-
tivity in the left ventral occipitotemporal cortex, left fron-
tal and parietal cortices, and left caudate and bilateral thal-
ami [91], suggesting that a defect along various pathways
can lead to fluency deficits. Both semantic and phonemic
fluency were affected [84, 85, 88, 89]. Others demonstrat-
ed that unilateral STN DBS of the speech-dominant hemi-
sphere resulted in significantly less verbal fluency decline
compared to the bilaterally stimulated cohort, a finding
attributed to a possibly healthier cohort [92]. The time
noted for decline in fluency was variable (immediately
after implantation due to possible microlesional effects
[73, 93], 6 months [87], 1 year [87, 88, 90], 2–3 years
[72, 84, 90], and 8 years after surgery [73]). Another study
spanning 1 year, comparing those with DBS versus best
medical management, found that decrement in phonemic
fluency was the only cognitive deficit seen in 15 % of
DBS patients [79]. Still, a 2-year study comparing STN
with best medical treatment found that 26 % DBS patients
declined in letter fluency compared with only 11 % of
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controls, and 30 % of both groups declined in category
fluency [84].

Memory

STN DBS was shown to disproportionately affect rote list
learning [94] which is dependent upon frontal-subcortical
circuitry [95], measured by the Rey Kim Memory Battery
and Hopkins Verbal Learning Test. Decline in word-list
recall was established at 6, 12 [87], and 16 months [95]
postoperatively, with deficits persisting up to 10 years
[68]. In a comparison of 19 bilateral STN DBS patients
with 18 medically managed PD controls, 50 % of DBS
patients suffered non-verbal memory impairment at 2 years
post-operative follow-up. This was 20 % higher than med-
ically managed PD participants as tested through the Brief
Visual Memory Test—Revised [84].

Consistent with this, in a group of STN DBS patients with
either normal cognition or MCI prior to surgery, approximate-
ly 20 % of non-MCI patients converted to amnestic MCI
9 months postoperatively, with list learning being the stron-
gest predictor for this change [96•]. This decline was unrelated
to age, PD duration, or UPDRS scores. Similar findings are
reported by others up to 5 years post-surgically [79], suggest-
ing that MCI and reduced list learning elevate risk for post-
operative dementia. However, in a group of 19 non-demented
patients with early onset PD who underwent STN DBS
22 years after disease onset, 5 % of patients developed demen-
tia 1 year postoperatively, 26% by the third post-surgical year,
and 43% patients by the 7th year following surgery [97]. This
conversion to dementia 30 years after diagnosis was reported
to be consistent with the prevalence of dementia in PD and, in
such, was attributed to typical disease progression. While the
rate of dementia reported by Merola reportedly was higher
than that reported by Fasano et al. [73] in a similar STN
DBS cohort, this was attributed to shorter disease duration
and older age of disease onset in the latter. It also was posited
that DBS renders better cognitive prognosis when completed
earlier in disease course [97, 98].

With consideration for other DBS targets, a prospective
study comparing best medical therapy (BMT) with either bi-
lateral STN or GPi DBS [99•] found that STN patients showed
greater bradyphrenia whereas GPi patients demonstrated
greater list learning deficits 6 months postoperatively, al-
though the difference was small. On an individual level,
20 % DBS patients deteriorated in one cognitive domain and
11 % declined in multiple domains, compared with 3 % de-
cline in the BMT group. Deterioration was unrelated to surgi-
cal target. Two years following surgery, those with
multidomain deficits declined significantly more than individ-
uals with single domain dysfunction. It is unclear how these
groups fared compared to the BMT group.

In a prospective randomized study comparing unilateral
STN and GPi stimulation in moderate-to-advanced PD pa-
tients, there were no significant differences in cognition and
mood between groups [100]. The COMPARE trial explored
differences in both locations among 45 (22 STN, 23 GPi)
patients and found a trend towards decreased verbal fluency
in the STN group compared to the GPi group, likely due to an
insertional or microlesional effect.

Conclusion

DBS is a rapidly evolving field, encompassing potential ther-
apies for a growing number of neurologic disorders. Tandem
with innovations in DBS therapies are unanticipated non-
motor symptoms, now vastly prevalent in the literature and
raising the importance of neuropsychiatric screening prior to
intervention. Various psychiatric symptoms may arise or
worsen after DBS. Cognitive effects such as development
and progression of MCI to dementia additionally are worth
discussing with any prospective DBS candidate, as these fac-
tors greatly contribute to QOL. However, cognitive dysfunc-
tion is not necessarily a contraindication to surgery, the risks
and benefits of which are patient specific. In our practice, DBS
was performed to improve the quality of life of those with
refractory tremor or severe dyskinesias, despite considerable
cognitive impairment. As there are no studies on DBS in those
with dementia, we recommend that it can be considered to
improve QOL in these cases as well. Additionally, while pre-
viously suggested that DBS be reserved for advanced PD,
recent data suggest that cognitive outcomemay be better when
surgery is completed earlier in the disease course. Also, with
regard to psychiatric complications, unless the patient has a
premorbid psychiatric condition, a DBS lead will not cause
psychiatric phenomena unless it is placed outside the motor
territory of the basal ganglia. A comprehensive team of move-
ment disorders specialists, neurosurgeons, neuropsycholo-
gists, psychiatrists, and nurses is necessary for adequate care
of patients. As novel DBS targets are being explored for re-
fractory disease, more non-motor effects may surface, and
adequate knowledge and understanding of these will surely
facilitate a more comprehensive patient-centered approach to
therapy.
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