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Abstract Parkinson’s disease is now widely recognized to be
a multisystem disorder affecting the brain and peripheral
autonomic nerves. Extensive pathology is present in both the
sympathetic and parasympathetic nervous system and the
intrinsic gastrointestinal plexuses in patients. Autonomic pa-
thology and symptoms such as constipation can predate the
clinical diagnosis by years or decades. Imaging studies have
contributed greatly to our understanding of Parkinson’s dis-
ease but focused primarily on imaging cerebral pathology.
However, given the importance of understanding the nature,
chronology, and functional consequences of peripheral pathol-
ogy, there has been renewed interest in imaging peripheral
organs in Parkinson’s disease. Suitable imaging tools can be
divided into two types: radiotracer studies that directly esti-
mate loss of sympathetic or parasympathetic nerve terminals,
and imaging modalities to quantitate dysphagia, gastric emp-
tying, esophageal and intestinal transit times, and anorectal
dyssynergia. In this review, we summarize current knowledge
about peripheral imaging in Parkinson’s disease.
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Introduction

Functional imaging studies have contributed greatly to our
understanding of Parkinson’s disease (PD) in recent decades,
but mainly focused on imaging cerebral pathology [1, 2].
However, PD is now in many ways considered a systemic
disorder with profound involvement of the peripheral and
enteric nervous systems [3]. Pathological α-synuclein aggre-
gates are present in the sympathetic and parasympathetic ner-
vous system and throughout the gastrointestinal canal in all
PD patients [4••, 5]. These pathological features can be detect-
ed in the pre-clinical disease phase [6, 7], and autonomic
symptoms of the gastrointestinal and genitourinary tracts
may also predate clinical diagnosis [8–10]. The progressive
aggregation of α-synuclein seems to be initiated in terminals
of hyperbranching, non-myelinated neurons and spread via
retrograde axonal transport, explaining why autonomic nerves
are so prone to formation of Lewy pathology [11•, 12].

Functional imaging may play an important part in elucidat-
ing the importance and chronological sequence of peripheral
pathology in PD. The imaging modalities can be divided into
two types: (1) radiotracer studies with the ability to directly
image the loss of cellular or molecular structures, such as
sympathetic or parasympathetic nerve terminals, and (2) im-
aging methods that measure the functional consequences of
these pathologies, such as radiotracer and radiological studies
of dysphagia, gastric emptying, esophageal and intestinal tran-
sit times, and anorectal dysfunction. The present review will
summarize principles and main findings of these diverse
methods for imaging peripheral pathology in PD.

Imaging the Sympathetic Nervous System

Pathological α-synuclein inclusions are present in the sympa-
thetic ganglia and intermediolateral column of the medulla in
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the vast majority of examined PD patients [4••, 13]. Orimo
and colleagues showed that accumulation of α-synuclein ag-
gregates in distal, cardiac sympathetic axons precedes that of
the neuronal cell bodies [14]. A recent, large post-mortem
series reported that the density of α-synuclein inclusions in
the ganglia is greater than that found in the intermediolateral
column [13]. Taken together, these finds are compatible with a
chronological, peripheral-to-central spreading pattern of α-
synuclein inclusions in the sympathetic nervous system.

The post-ganglionic, noradrenergic nerve terminals of the
sympathetic nervous system can be imaged with 123I-meta-
iodobenzylguanidin (MIBG), which is an analogue of the ad-
renergic blocking ligand guanethidine. Its uptake and storage
is similar to norepinephrine, and MIBG can therefore be used
to assess in vivo the integrity of sympathetic nerve terminals.
Function of these terminals can also be imaged with the PET
ligand 18F-fluorodopamine, which is enzymatically converted
to 18F-fluoronorepinephrine by dopamine-β-hydroxylase, and
stored in noradrenergic vesicles [15].

Cardiac Imaging

The majority of sympathetic imaging studies in PD have in-
vestigated myocardial denervation. This literature has been
extensively reviewed in several recent publications [16–18],
so only main findings and principles will be summarized here.

MIBG is administered intravenously and its myocardial
uptake detected by gamma camera recordings at 15 min (early
phase) and 3–4 h post-injection (late phase). Most studies
acquire simple planar images of the thoracic region and a
striking loss of cardiac signal is visually apparent in the
majority of PD patients (Fig. 1). In addition to simple visual
interpretation, the cardiac uptake is semi-quantitatively eval-
uated by calculating the heart-to-mediastinum (H/M) signal
ratio. The purpose of early and late imaging is to evaluate
tracer delivery and then storage. Whereas most healthy sub-
jects display increasingH/M ratios from the early to late image
time points, the opposite is true for PD and dementia with
Lewy bodies (DLB) patients [19]. The more rapid tracer
wash-out is believed to be caused by a lack of storage vesicles
in diseased sympathetic terminals, which facilitates enhanced
tracer clearance [20]. Recently, several MIBG studies have
demonstrated that 3D tomographical imaging has superior

diagnostic accuracy to planar imaging, as it allows detailed
cardiac segmental analysis [21, 22].

Cardiac MIBG signal is decreased in 80–90 % of patients
with clinical probable PD [23–26], though only ∼50 % of
Hoehn and Yahr 1 cases, whereas patients with atypical par-
kinsonian disorders, such as PSP, CBD, and multiple system
atrophy (MSA) most often show normal or near-normal car-
diac signal [19, 23]. Two meta-analyses demonstrated pooled
sensitivity and specificity of ∼85 % for separating PD from
other parkinsonian disorders [27, 28]. Cardiac MIBG uptake
is also decreased in a majority of rapid-eye-movement sleep
behavior disorder (RBD) patients [29], many of whom go on
to develop an alpha-synucleinopathy [30•]. One study has
reported that RBD patients display a reduced cardiac MIBG
signal comparable to that seen in moderate-to-late stage PD
patients, and exceeding the signal loss seen in newly diag-
nosed PD patients without RBD [31]. Similar to PD, cardiac
MIBG signal is decreased in ∼90% of patients with DLB [18].
A recent study reported that the combination of MIBG and
dopamine transporter SPECT imaging yielded sensitivity and
specificity of 95 and 91 % for differentiating DLB from
patients with Alzheimer’s disease, where cardiac sympathetic
innervation and nigrostriatal dopamine innervation is pre-
served [32].

Some studies have reported an inverse correlation between
cardiac MIBG uptake and Hoehn and Yahr stage and with the
UPDRS motor score, but other studies have failed to detect
such a correlation—recently reviewed by Orimo et al. [16].
The reduction of cardiac MIBG uptake may also be more
pronounced in patients with the akinetic-rigid phenotype than
tremor-predominant patients [33]. Orthostatic hypotension is a
common symptom in treated PD [34], but its presence corre-
lates only poorly with cardiac MIBG uptake, often being
absent in those early cases who show reduced sympathetic
cardiac innervation [35–37].

Imaging Non-cardiac Regions

The thyroid receives rich sympathetic innervation [38] and is
visible on a normal MIBG planar image (Fig. 1). A marked
reduction in the thyroid uptake of 18F-fluorodopamine and 123I-
MIBG has been reported in PD patients compared to controls
[39, 40] (Fig. 1c). Decreased 18F-fluorodopamine uptake has also
been reported in the renal cortex of PD patients [39, 41].

Fig. 1 123I-MIBG planar anterior
images. a Healthy subject with
normal cardiac uptake. b PD
patient with moderately decreased
cardiac uptake. c PD patient with
severely decreased cardiac uptake
and absent thyroid uptake. h
heart, m mediastinum, t thyroid
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Involvement of the kidneys in PD has received very little atten-
tion, but the renal cortex receives extensive sympathetic innerva-
tion [42], so it seems probable that autonomic denervation could
also affect this organ.

Several recent studies have demonstrated the presence of
pathological α-synuclein inclusions in the submandibular sal-
ivary glands of PD patients [4••, 43], and these glands are also
innervated by the sympathetic nervous system [44]. However,
the submandibular and parotid glands did not exhibit
decreased 18F-fluorodopamine uptake in moderate-stage PD
patients [39, 41], suggesting that sympathetic denervation of
the salivary glands is insignificant. Alternatively, 18F-
fluorodopamine may not be a specific marker of the sympa-
thetic innervation of the salivary glands.

In summary, established PD and nearly all DLB patients
display decreased uptake of MIBG and fluorodopamine in the
heart, as do a majority of RBD cases; however, only 50 % of
new PD cases have been reported to show loss of sympathetic
innervation. These observations underscore the point that
RBD constitutes a unique phenotype of PD. Some studies
report a correlation of loss of cardiac MIBG uptake and motor
severity, but levels of cardiac sympathetic denervation on im-
aging correlate poorly with cardiac autonomic symptoms.
Decreased signal is also seen in the thyroid and renal cortex
of PD cases but the clinical significance of this is unclear.

Imaging the Parasympathetic Nervous System

The dorsal motor nucleus of the vagus (DMV) may be the
initial target structure in the brain stem of PD patients [45].
At post-mortem, the DMVexhibits a ∼50 % neuron loss [46,
47] andα-synuclein inclusions are found in the vagus nerve of
most PD patients [4••]. Approximately 90 % of α-synuclein
pathology in the gastrointestinal tract is in the form of neurites
rather than inclusion bodies in the soma [48–50]. The distri-
bution of pathological gastrointestinal α-synuclein inclusions
displays a rostro-caudal gradient [4••, 5], which is similar to
the density of vagal innervation [51]. These findings suggest
that α-synuclein pathology may preferentially be located in
vagal efferents rather than intrinsic enteric neurons. This view
is further supported by reports of only minimal or no loss of
enteric neurons in PD [52, 53]. It has been suggested that a
neurotrophic pathogen may initiate or exacerbate the forma-
tion of α-synuclein inclusions in vagal terminals of the gut
with secondary spreading in a prion-like fashion to the DMV
[54]. This hypothesis has been reinforced by the observation
that total truncal vagotomy in ulcer patients reduced their risk
of PD by ∼50 % after decades of follow-up [55].

The ability to image parasympathetic dysfunction is an un-
met medical need, but very little research has been done to
develop functional imaging of this branch of the autonomic
nervous system. One reason may be that parasympathetic, cho-
linergic neurons possess no distinctive molecular target, which

would allow highly specific imaging. In histology, measure-
ments of acetylcholinesterase (AChE) activity have been used
for decades to assess the integrity of the parasympathetic and
enteric nervous system [56, 57], and cardiac cholinergic inner-
vation [58]. Since AChE is not exclusively produced by
cholinergic neurons, immunohistochemical staining of a more
specific target, the vesicular acetylcholine transporter (VAChT),
has largely replaced AChE staining in histology. However,
VAChT is also not a specific marker of parasympathetic
neurons. For instance, the majority of the enteric neurons are
cholinergic and express VAChT [59].

In addition to the lack of distinct molecular targets, success-
ful parasympathetic imaging poses a unique problem, at least
if the gastrointestinal innervation is to be visualized. Many
otherwise suitable imaging tracers accumulate rapidly in the
liver, and radioactive metabolites are soon excreted into the
duodenum via the biliary system, rendering valid measure-
ments of the small-intestine wall activity difficult or impossi-
ble. As such, a radiotracer for the gastrointestinal system
requires slow biliary excretion kinetics or complete excretion
via renal filtration.

The PET ligand 5-11C-methoxy-donepezil binds non-
competitively and reversibly to AChE, and has been success-
fully used to visualize the AChE density in brains of patients
with PD or Alzheimer’s disease [60, 61]. 11C-donepezil also
exhibits specific, displaceable binding with nano-molar affin-
ity to a range of peripheral tissues, including the stomach,
intestine, and pancreas [62]. Importantly, no biliary excretion
of radiometabolites is seen during a 60-min PET scan [63•].
An early study showed that sub-diaphragmatic vagotomy in
guinea pigs induced a 50 % decrease of AChE activity in the
upper gastrointestinal tract [57], suggesting that a PET ligand
with affinity for AChE could be a valid marker of parasym-
pathetic denervation.

We recently investigated the suitability of 11C-donepezil to
image parasympathetic denervation in 12 early-to-moderate
stage PD patients and 12 healthy controls [63•]. The PD pa-
tients displayed a highly significant 35 % decrease in small-
intestine signal, which was visually apparent in most individual
patients (Fig. 2). Decreased signal in the pancreas was also seen
in the majority of patients. No correlations were seen between
the PET signal and disease duration, gastric emptying time, or
severity of constipation.

The cardiac 11C-donepezil signal was significantly
decreased by 9 % in the PD group, a much smaller reduction
than seen with MIBG. It was recently demonstrated that the
cardiomyocytes synthesize and secrete acetylcholine in a para-
crine fashion and express VAChT [64]. It seems highly likely
that the break-down enzyme AChEwould also be synthesized
by myocytes, although this was not measured by the authors.
Nevertheless, this raises the possibility that the decreased car-
diac 11C-donepezil signal in PD patients may reflect consid-
erable parasympathetic denervation, the detection of which is
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obscured by concomitant intrinsic signal arising from the
cardiomyocytes.

More 11C-donepezil studies are required to confirm that
these findings are caused by parasympathetic denervation in
PD patients. Studies should be conducted in groups of de novo
PD patients, and prodromal RBD patients, given that para-
sympathetic dysfunction is thought to be among the first
non-motor manifestations in prodromal PD.

AVAChT imaging ligand should theoretically be a better
marker of parasympathetic innervation. A detailed
biodistr ibution study of the VAChT ligand, 18F-
fluoroethoxybenzovesamicol (FEOBV), was recently pub-
lished by Petrou and colleagues [65]. However, radioactive
FEOBV metabolites are rapidly excreted via the biliary sys-
tem in 10–20 min in rodents and pigs (Borghammer, unpub-
lished observation). Data on biliary excretion kinetics of
FEOBV in humans have not been published, so it remains
possible that FEOBV could successfully image the density
of VAChTs in the gut, given that humans often exhibit slow
liver metabolism compared to rodents. Even if it cannot,
FEOBV may be able to estimate parasympathetic innervation
in other organs, including the salivary glands, thyroid, heart,
pancreas, and pelvic organs, none of which would be con-
founded by the presence of radiometabolites in the gastroin-
testinal lumen.

Gastrointestinal Functional Imaging

A full description of gastrointestinal symptoms in PD has re-
cently been covered in detail [66, 67], and will be only briefly
summarized in this review. The main focus here will be on
imaging methods suitable for studying functional changes of
the gastrointestinal tract in PD.

Oropharyngeal Imaging

A recent meta-analysis reported a pooled prevalence of sub-
jective dysphagia of 35 % in PD patients, but prevalence es-
timates in individual studies ranged from 16 to 55 % [68•].
Aspiration is also a common problem in PD [69]. Dysphagia
typically develops in later PD stages, but occasionally, it can
be the presenting feature [70].

The pathophysiological substrate of dysphagia is not
known, but has often been attributed to bradykinesia and ri-
gidity secondary to basal ganglia dysfunction. However,
hypometabolism in the supplementary motor area and the an-
terior cingulate cortex was found to correlate with dysphagia
in PD [71]. Esophageal motility is primarily determined by
neural pattern generators in the medulla oblongata. The upper
esophagus receives vagal innervation from the nucleus
ambiguus, and the lower esophagus receives its innervation
from the DMV [72]. Lewy body pathology is present in both
of these nuclei, although the DMV is much more severely
affected [45, 73].

Swallowing function is most commonly evaluated by bar-
ium videofluoroscopy, where subjects swallow a bolus of thin
barium suspension during a continuous x-ray [74].
Swallowing function for solids can be determined using
barium-coated bread. Oral and pharyngeal transit times and
oropharyngeal swallow efficiency are typically calculated.
Residues in the vallecula and pyriform sinus and aspiration
of liquid or solids can also be visualized.

Leopold and Kagel conducted a very detai led
videofluoroscopic study of 72 PD patients, and found epiglot-
tic dysmotility in 56 %, pharyngeal constrictor dysfunction in
42 %, esophageal dysmotility in 91 %, and gastro-esophageal
reflux in 56 % of the patients [75]. Another study found dis-
turbances of the oral and pharyngeal phase in 75 % of PD
patients compared to only 8 % of controls. Seven of the pa-
tients improved their performance after levodopa [76]. Amore
recent study compared swallowing function in controls to PD
patients with and without dyskinesias and surprisingly found
no difference in oral and pharyngeal transit time among the
groups. The efficacy of swallowing was decreased in the non-
dyskinetic group, but not in the dyskinetic group perhaps
explained by the greater levodopa intake in this group [77].
In addition, silent aspiration in PD patients was a frequent
finding in these videofluoroscopy studies.

Dysphagia can also be investigated using scintigraphic
methodology [78]. In short, the test subject swallows a bolus
of radiolabeled water or semi-solid food, the passage of which
is recorded by a gamma camera. Time-activity curves can
then be determined in the oropharyngeal and esophageal
subregions and stomach. Using combined scintigraphy
and EMG measurements, Potulska et al. reported abnor-
mal findings in all of 18 PD patients, although only 13
patients had subjective dysphagia. Importantly, prolonged

Fig. 2 11C-donepezil PET images. aWhole body PET scan of a healthy,
male subject. b Summed PET images (55–60 min post-injection) of the
upper abdominal region in a healthy control (top) and a PD patient
(bottom). Note the visually apparent decrease in the small-intestine
signal. l liver, p pancreas, s small intestine
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esophageal transit time was the most prominent feature in
the PD group [79].

In summary, subjective dysphagia is a relative common
non-motor symptom in PD patients, but often shows poor
correlation to objective measures. Moreover, imaging studies
and other modalities demonstrate that the vast majority of
patients have objectively quantifiable dysfunction in the
oropharyngeal and esophageal motility [68•]. Interestingly,
objective esophageal dysfunction may be evenmore prevalent
than oropharyngeal dysfunction, which could be explained by
the observation that the esophageal mucosa consistently dis-
plays the most severe α-synuclein pathology in the entire
gastrointestinal tract [4••, 5].

Gastric Imaging

The rhythmic contractions of the stomach wall are generated
by interstitial pacemaker cells of Cajal [80], but considerable
autonomic modulatory input from the CNS also controls
volume, contraction strength, and acid secretion [81, 82].

Gastroparesis is a common manifestation in PD and pre-
sents with symptoms of nausea, vomiting, early satiety, and
bloating [83, 84]. Nausea and vomiting is present in 15 % of
PD patients [85] and abdominal fullness in up to 50 % [86].
The underlying pathology of these symptoms is unclear, but
α-synuclein pathology in the DMV and vagal efferents and
intrinsic pathology in the enteric neurons of the stomach wall
[4••, 87] is believed to interfere with gastric motility.

Solid meal gastric emptying scintigraphy is considered the
reference standard for evaluation of gastric emptying time
(GET) [88]. A radioactive standard meal is ingested and
followed by serial scintigraphic images until 90 % emptying
is reached. The presence of prolonged GET in PD is often
cited in the literature, but relatively few studies have employed
solid meal scintigraphy to measure GET in PD patients. An
early study saw no difference in GET between PD patients and
elderly controls, but both groups differed from young controls
[89]. Another study found that PD patients with fluctuating
symptoms showed delayed GET compared to non-fluctuating
patients, and both patient groups had delayed GET compared
to controls [90]. Krygowska-Wajs et al. detected delayed GET
in patients with familial PD, but only a non-significant trend
towards prolonged GET in idiopathic PD [91]. In contrast, a
recent study of 12 early-to-moderate PD patients in the off-
state found that GET was significantly faster in the patients
[63•]. No significant difference in GETwas detected between
treated and untreated PD patients [92]. Thus, although many
PD patients certainly have delayed gastric emptying, the find-
ings in the literature is somewhat mixed. It is also not clear to
what degree the presence of prolonged GET correlates with
subjective symptoms of gastroparesis or medication state.
Most of the cited studies reported a wide range in the GET
data, often with substantial overlap with control values.

Indeed, in our recent series, we saw two PD patients with
extremely rapid GET (T1/2 < 30 min) suggestive of gastric
dumping [63•]. Similar rapid emptying in some PD patients
was also reported by other authors [91, 92].

Gastric emptying can also be estimated with the 13C-sodium
breath test. In short, a meal containing 13C-sodium octanoate or
acetate is ingested, subsequently absorbed in the jejunum, and
metabolized in the liver to 13CO2. The concentration of 13CO2

expired from the lungs is measured and can be converted to an
estimate of GET [93]. Both solid and liquid meal breath tests
have been utilized to examine GET in PD patients [93–99].
Most of these studies reported significantly increased GET in
the PD group compared to controls with both meal types.
However, the breath test is dependent not only on gastric emp-
tying but also successful small-intestine absorption, which is
known to be deranged in PD [100]. Thus, the somewhat more
consistently prolonged GET in breath test studies could be
explained by a dual pathology of delayed gastric emptying
and small-intestine dysfunction.

Small-Intestine Imaging

The small intestine has received little attention in PD research,
and very few imaging studies have been conducted. Recently,
Dutkiewicz and colleagues assessed the small-bowel transit time
using serial SPECT scans in 10 PD patients with no gastrointes-
tinal complaints and 10 control subjects after ingestion of a cap-
sule containing the gamma emitting isotope 99mTc [101]. In all
healthy controls, the capsule had left the small intestine within
4 h, whereas the capsule was still present in the small intestine in
seven PD patients at 4 h and in one patient at 24 h. This study
suggests that the oro-cecal transit time, and probably the small-
intestine transit time, is prolonged in PD patients. This interpre-
tation is supported by another study that evaluated colonic transit
time in six PD patients using radio-opaquemarkers and CTscans
[102]. Five PD patients had prolonged colonic transit time, and
two patients also retained radio-opaque markers in the small
intestine 24 h after ingestion of the final capsule suggesting
prolonged small intestinal transit time.

Colonic Imaging

Constipation is among the most frequent non-motor symp-
toms in PD with prevalence estimates ranging from 30 to
70 % [103–105]. Thus, subjectively reported constipation
shows considerable variation in PD, which is probably related
to variable definitions of constipation applied in the studies.
Constipation is more frequent in PD patients with RBD com-
pared to those without RBD [106], and it may be the first non-
motor symptom in prodromal PD, appearing >10 years prior
to diagnosis in a sizeable fraction of PD patients [8, 9].

Several studies reported Lewy pathology in the nerve ter-
minals of the submucosal and myenteric plexus of the colon
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[50, 53]. The vagus innervates the upper two thirds of the
colon, and consistently exhibits Lewy pathology in the axons
and the DMV. The distal part of the colon receives its para-
sympathetic innervation from preganglionic neurons situated
in the sacral part of the intermediolateral cell column. These
neurons are involved in controlling colonic motility and also
cause contraction of the striated detrusor bladder muscles
during micturition [107, 108]. The sacral parasympathetic
neurons display consistent α-synuclein pathology and proba-
bly cell loss in PD patients and incidental Lewy body cases,
but it remains unclear to what degree these pathologies are
responsible for the colonic dysmotility [109•, 110].

The most widely usedmethod for measuring colonic transit
is the radio-opaque marker (ROM) technique. A defined num-
ber of radio-opaque plastic markers containing barium sulfate
enclosed within a gelatin capsule are ingested for a defined
number of days prior to radiological imaging. A planar x-ray
image of the abdomen is performed 24 h after ingestion of the
last capsule, and the segmental and total colonic transit time
(CTT) can be calculated based on the number of retained
markers [111].

Using ROM methodology, several studies reported in-
creased CTT in PD patients compared to healthy controls
[112–115]. An early study reported that many de novo PD
patients did not have increased CTT [116]. However, the au-
thors applied a very strict definition of increased CTT in the
study. Had they used the most commonly and best validated
cutoff score for number of retained ROM [111], a different
conclusion emerges from their data, namely that 80 % of de
novo PD patients exhibit prolonged CTT. Ashraf et al. found no
correlation between number of bowel movements per week and
CTT or subjectively reported constipation in PD patients, sug-
gesting that objectively measured colonic pathology correlates
poorly with subjective symptoms [117]. Tateno and colleagues
found no difference in CTT in PD patients on and off levodopa
treatment, suggesting that colonic function is affected mainly
by disease involvement [118]. Interestingly, one study found no
significant difference in CTT between PD and MSA patients,
although their sample size was relatively small [119].

It has been proposed that an even distribution of
ROM throughout the colon is indicative of slow-transit
time constipation, whereas a predominance of ROM in
the descending segments signifies outlet obstruction
constipation [120]. This distinction is important in the
context of PD, since many patients suffer from
dyssynergic defecation characterized by inability of the
pelvic muscles to relax during defecation [115, 121].
This observation is further supported by the consistent high
prevalence of subjectively reported straining during defecation
in PD patients, which tends to be a more prevalent symptom
than decreased number of defecations [103, 122]. Three CTT
studies investigated segmental distribution of ROM in the colon
of PD patients, and generally reported particularly prolonged

rectosigmoid CTT [112, 115, 118]. This suggests that constipa-
tion in PD is often of the Boutlet obstruction^ type.

We recently measured colonic volume in 24 early-to-
moderate stage PD patients and 15 controls on abdominal
CTscans, and found significantly larger volumes of transverse
and descending colonic segments in the patients [102].
Volume measurements of the colon may provide a novel
method to study gastrointestinal pathology in PD. Finally,
two very early case studies reported severe megacolon in rel-
atively late stage patients [123, 124]. Massive dilation and, in
several cases, obstruction of the colon was seen subsequent to
a barium meal or enema. The dilation was often more distinct
in the rectosigmoid segment. Taken together, these results
show that the colon volume is significantly increased in the
more distal segments in PD patients and confirm that consti-
pation may often be of the outlet obstruction type.

Rectoanal Imaging

Propulsive reflexes of the distal colorectum and defecation are
controlled by central defecation centers in the lumbosacral
spinal cord [125, 126]. As covered above, the sacral parasym-
pathetic nuclei, including Onuf’s nucleus, show consistent
Lewy body pathology in PD patients at post-mortem, which
may contribute to dyssynergic defecation.

Rectoanal dysfunction is very common in PD and contrib-
utes to the high prevalence of constipation. Several studies re-
ported that straining for defecation is present in up to 83 % of
PD patients [103, 122, 127]. Edwards et al. showed that 67 %
PD patients at early-to-moderate disease stage exhibit
defecatory problems such as straining and feeling of incomplete
emptying. Only 30 % of the same patients had less than three
bowel movements per week as a marker of constipation [128].
Excessive straining and a feeling of partial or incomplete emp-
tying are known to be indicators of outlet obstruction constipa-
tion as opposed to slow-transit constipation [120].

Rectoanal function can be evaluated using defecography.
In short, a barium contrast medium is instilled into the rectum
and subsequently monitored by x-ray images at rest, contrac-
tion, straining, and defecation to measure emptying rate, re-
laxation of pelvic floor muscles, and pathological features
such as rectal prolapse [114, 120]. Defecography is evaluated
along with physiological measures, including anorectal ma-
nometry, which record rectal and anal pressure during rest
and contraction, and electromyography (EMG), exploring
the contraction function of the puborectalis muscles [120].

Several studies investigated rectoanal function in PD pa-
tients. An early study of six patients in the off-state reported
paradoxical contraction of the puborectalis and external anal
sphincter muscles during straining and incomplete rectal emp-
tying, which was improved after apomorphine administration
[121]. Other studies showed that PD patients had non-
significantly increased rectal volume at first sensation, decreased
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rectal contraction, and significantly increased post-defecation
residual volume [115, 129]. Wang et al. found a significant
correlation between difference in anorectal angle at rest and
straining and total CTT, demonstrating that prolonged CTT is
in part determined by dyssynergy in the pelvic floor musculature
[112]. Botulinum toxin injection in the puborectalis muscle sig-
nificantly decreasedmanometric anorectal tone and improved the
anorectal angle during straining [130].

Conclusions

Imaging methods provide attractive non-invasive tools to study
the involvement of the peripheral nervous system in PD. Most
PD patients show sympathetic denervation of the myocardium
and probably also the thyroid and renal cortex. The PET ligand
11C-donepezil may provide a novel method of visualizing the
marked parasympathetic denervation known to occur in most
patients. A range of functional techniques clearly demonstrate
dysfunction in all parts of the gastrointestinal tract, which, im-
portantly, are often more frequent than the subjective symptoms
experienced by the patients. This is important since the pres-
ence of subjective non-motor symptoms is increasingly being
used to categorize different phenotypes of PD patients and to
identify prodromal PD patients in the population [131]. Thus,
objective measures of peripheral pathology in PD may have
utility not only for expanding our understanding of this disorder
but also for guiding treatment of the troublesome non-motor
symptoms and for facilitating prodromal diagnosis.
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