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Abstract There is a paucity of accurate and reliable bio-
markers to detect traumatic brain injury, grade its severity,
and model post-traumatic brain injury (TBI) recovery. This
gap could be addressed via advances in brain mapping which
define injury signatures and enable tracking of post-injury
trajectories at the individual level. Mapping of molecular
and anatomical changes and of modifications in functional
activation supports the conceptual paradigm of TBI as a dis-
order of large-scale neural connectivity. Imaging approaches
with particular relevance are magnetic resonance techniques
(diffusion weighted imaging, diffusion tensor imaging, sus-
ceptibility weighted imaging, magnetic resonance spectrosco-
py, functional magnetic resonance imaging, and positron
emission tomographic methods including molecular
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neuroimaging). Inferences from mapping represent unique
endophenotypes which have the potential to transform classi-
fication and treatment of patients with TBI. Limitations of
these methods, as well as future research directions, are
highlighted.
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Introduction

Traumatic brain injury (TBI) is recognized as a major public
health concern because it is a leading cause of death in children
and young adults and a significant driver of long-term disability
in survivors [1-3], with direct and indirect healthcare expendi-
tures between $50 and 100 billion in the USA alone [3, 4].
Despite this tremendous burden, there is a lack of accurate
and reliable biological markers to detect TBI, classify its sever-
ity, stratify patients for treatment, and predict outcome [5, 6].
In the acute clinical setting, TBI severity is classified on the
basis of level of consciousness [7] and on structural abnormal-
ities identified on cranial CT scan [8, 9]. While the clinical
classification may be confounded by the presence of concom-
itant sedation or physiological and metabolic perturbations,
structural imaging is less susceptible to this problem.
However, cranial CT scan, the most widely used structural neu-
roimaging tool, lacks sensitivity for the detection of smaller,
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microscopic lesions that constitute traumatic axonal injury
(TAI), a pattern of multifocal white matter disruption seen in
TBI of all severities (see below). TAl is a key determinant of
clinical outcome following injury [10] and is identifiable with
more sensitive magnetic resonance imaging techniques
[11-16]. Lesions associated with TAI tend to be distributed in
multiple sites across the central nervous system and evolve
dynamically over time—disrupting systems responsible for in-
tegrated and temporally sustained cerebral function [17-19].
This disruption is more likely to affect domains of function
which do not localize to a specific location site in the brain
but are dependent on the connectivity and integrative capacity
of distributed neural systems, e.g., conscious awareness, atten-
tion, memory, and planning—domains of cognition and behav-
ior whose impairment are phenotypic hallmarks in patients with
TBI [20-28]. This has led to the view that TBI is analogous to
disorders of neural integration [18, 29], the corollary of which is
that recovery of neurologic function following TBI will be
closely linked with restoration or reconfiguration of integrative
neural connectivity [30, 31e, 32].

In recent years, the detection and characterization of TBI
have been transformed by the introduction of new MRI pulse
sequences and enhanced sophistication in statistical and com-
putational approaches to mapping of regional brain data [33].
The use of diffusion-weighted imaging (DWI), diffusion ten-
sor imaging (DTI), and susceptibility-weighted imaging
(SWI) has enlarged our understanding of TAI [14, 21, 25,
34-39]. Results obtained with MR spectroscopy reveal dy-
namic biochemical changes which track clinical severity and
outcome following TBI [40-42]. Mapping of functional acti-
vation using positron emission tomography (PET), functional
MRI (fMRI), electroencephalography (EEG), and magnetoen-
cephalography (MEG) indicates changes in large-scale con-
nectional architectures which may help differentiate cognitive
phenotypes and classify outcome probabilities following TBI
[30, 43-46, 47]. Molecular probes used in conjunction with
positron emission tomography reveal neurodegenerative and
neuroinflammatory events associated with TBI in the acute or
chronic setting [48—50]. Taken together, results from brain
mapping are consistent with an emerging model of TBI
“endophenotypes,” clinically latent patterns which represent
biological links between underlying molecular and cellular
phenomena and externally observable clinical syndromes.
Here, recent inferences from brain mapping in patients with
TBI are selectively reviewed, together with current knowledge
gaps and priorities in the scientific agenda.

Neurobiological Considerations
Three pathological processes are believed to contribute sub-

stantively to the disorder of systems observed in TBI: axonal
injury, synaptic dysfunction, and modifications in glia
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(Table 1). TAI (also referred to as “diffuse axonal injury”) is
a unique pattern of multifocal neural damage induced by sud-
den shearing/stretching forces applied to projections lying
within the white matter tracts of the central nervous system
[51, 52+, 53-56]. TAI is linked to a sequence of events that
may include cellular mechanotransduction, axoskeletal dis-
ruption, transport interruption, membrane failure, calcium en-
try, focal axonal swelling, mitochondrial dysfunction, lipid
peroxidation, proteolysis, and, if the injury is severe or
sustained enough, cell death [57—59]. Axonal damage is asso-
ciated with increased inflammatory signaling mediated in part
by activated microglial cells [60], and evidence of neuroin-
flammation may be detected years after the initial injury [48,
61, 62]. TAI is a common pathological substrate encountered
in TBI of all severities. It is associated with many of the acute
clinical manifestations of TBI including loss of consciousness,
confusion, and impairments in cognition. Recent research sug-
gests that TAI may be linked to neurodegenerative conditions
whose clinical onset is observed years after exposure, such as
Alzhemier’s disease [63], non-Alzheimer’s dementias [64],
and chronic traumatic encephalopathy [19, 65¢, 66].

The relationship between TBI and changes in synaptic
structure and function is supported by an emerging body of
literature [67]. In animal models of TBI, dendritic beading and
fragmentation, decreased number of dendritic branches, and
changes in dendritic spine density are observed in injured
neurons and also in cells remote from, but monosynaptically
connected to, sites of injury [68—70]. Experimental TBI is
associated with downregulation in a number of key pre-
and post-synaptic proteins including synaptotagmin,
synaptophysin, synapsin, synaptojanin, post-synaptic density
protein-93 and protein-95, and DISC1 [67, 71]. Finally, hip-
pocampal long-term potentiation, a measure of synaptic effi-
ciency and plasticity, is depressed acutely following experi-
mental TBI [72—77]. However, this may be a time-dependent
and/or location-specific effect, and increased synaptic efficacy
and associated cortical hyperexcitability have been noted
weeks after white focal matter transection [78], with implica-
tions for post-injury epileptogenesis and plasticity.

The central role of astrocytes and oligodendrocytes in cen-
tral nervous system trauma is the object of intense investiga-
tion. Following injury, astrocytes may have both beneficial
roles, such as restoration of neurotransmitter and ionic homeo-
stasis in the extracellular milieu and modulation of inflamma-
tory signaling, and deleterious effects, such as glial scar
formation [79—81]. Impaired ability of astrocytes to exchange
potassium across the cell membrane may contribute to acute
neuronal or synaptic dysfunction [82]. There is also mounting
evidence that TBI is associated with acute oligodendrocyte
death, with consequent axonal demyelination, impaired action
potential propagation, and spontaneous remyelination
[83—85]—processes whose role in mediating chronic post-
traumatic neurodegeneration is not well understood.
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Table 1 Mechanisms of traumatic axonal injury

Cellular substrate

Neuroimaging correlate or biomarker

Cellular mechanotransduction
Membrane failure

Focal axonal swelling
Mitochondrial dysfunction
Lipid peroxidation

Proteolysis

Axoskeletal disruption

Cell death

Astrocytes: glial scar formation

Axonal injury

Glial modifications

Oligodendrocytes cell death: demyelination,

remyelination, axonal regrowth
Microglia

Synaptic dysfunction

Changes in dendritic morphology Changes in

DWI—restricted diffusion

DTl—decreased anisotropy

MRS—decreased NAA

fMRI, PET, ASL, EEG, MEG—changes in FC

PET radioligands—binding of amyloid protein
(PiB, florbetapir) and tau protein ([F-18]JFDDNP)

T2, FLAIR—hyperintense signal

DTl—increased radial diffusivity

MRS—increased Cho

PET radioligands binding translocator protein-
18 kDa (TSPO)

fMRI—changes in FC?

fMRI, ASL, EEG, MEG—changes in FC

pre- and post-synaptic proteins (synaptotagmin,
synaptophysin, synapsin, synaptojanin, post-synaptic
density protein-93 and protein-95, and DISC1)

Changes in LTP

DISC1 disrupted in schizophrenia 1 protein, LTP long-term potentiation, DWI diffusion-weighted imaging, D7/ diffusion tensor imaging, MRS magnetic
resonance spectroscopy, NAA N-acetyl-aspartate, /MRI functional magnetic resonance imaging, PET positron emission tomography, ASL arterial spin
labeling, EEG electroencephalography, MEG magnetoencephalography, F'C functional connectivity, PiB Pittsburgh Compound B, FLAIR fluid atten-

uated inversion recovery, 7SPO translocator protein

Collectively, the post-injury cellular morphological and elec-
trophysiological changes noted in axons, synapses, and glia
represent a plausible biological framework to understand the
alterations in anatomical and functional connectivity which
have been identified with the help of brain mapping ap-
proaches [18].

Statistical Modeling

Meaningful advances in neuroimaging have been tightly
coupled with the development of advanced novel analytical
approaches. Early analysis of neuroimaging data was based on
nonquantitative or semiquantitative examinations. Such
methods were prone to bias since they overlook large areas
of the brain, and they do not have standard application
methods which challenge the reliability of the results. The
establishment of standard image templates and advances in
image registration and normalization have enabled innovative
solutions for combining images across multiple subjects in
one space for analysis [86]. Methods have evolved to quanti-
tatively evaluate anatomical and functional differences in the
whole brain across many subjects, generating large and rich
datasets. New analytical tools have been developed to perform
voxel-based analysis, such as voxel-based morphometry ob-
tained with T1-weighted image sequences, or to generate
tractographic representations of white matter using DTI data
[87, 88].

The determination of neural connectivity, a measure of sig-
nal coherence or correlation across different regions of the
brain, requires specific statistical modeling [86]. Three types
of connectivity can be distinguished (Table 2): (1) structural
connectivity which is based on the anatomical connections
linking spatially discrete neural populations; (2) functional
connectivity which describes the statistical covariance of
time-dependent signals between neural populations; and (3)
effective connectivity, which evaluates directionally specified
cause-and-effect relationships between neural populations
[89, 90]. The evaluation of connectivity in functional neuro-
imaging data is accomplished with either seed-based correla-
tion or independent component analysis (ICA). In the seed-
based approach, a region of interest is identified a priori on the
basis of a model or hypothesis, and the correlation in signal
time courses between the seed and other brain regions is com-
puted [91]. Independent component analysis (ICA) is a mod-
el-free, data-driven technique which decomposes brain activa-
tion maps into discrete components each of which has its
unique time course, then estimates covariance from predefined
temporal windows [92].

Modeling and representation of brain connectivity data are
increasingly reliant on graph theoretical methods. Nodes
(vertices) are identified based on prior anatomical knowledge
or brain atlases; then, internodal connections (edges) are
mapped to produce a network graph [93, 94]. Different topo-
logical metrics may be used to describe the emergent graph.
Clustering coefficient expresses the probability that two ran-
domly selected nodes in a graph are connected to each other.
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Table 2 Alterations in brain connectivity

Definition

Data source

Analytical paradigms

Anatomical connectivity
neuronal links

Mono- or polysynaptic DTI

Fractional anisotropy, axial diffusivity, radial
diffusivity, white matter tract volume

Functional connectivity Statistical covariances between PET, fMRI, ASL Seed-based correlate
neuronal populations Independent component analysis
EEG Coherence analysis
MEG Independent component analysis

Causal interactions between
neuronal populations

Effective connectivity

EEG, ERP, MEG, fMRI, PET

Distributed source models

Structural equation modeling
Granger causality
Dynamic causal modeling

DTI diffusion tensor imaging, PET positron emission tomography, fMRI functional magnetic resonance imaging, ASL arterial spin labeling, EEG

electroencephalography, MEG magnetoencephalography

Path length is another measure that reflects integration of a
network and is measured by any unique sequence of edges
that connects two nodes with one another. Finally, node
degree, defined as the number of edges which are connected
to the node or the centrality of the latter, captures the impor-
tance of a given node in a network; the most highly connected
nodes are referred to as “hubs” [89]. In the following sections,
we will selectively review recent findings obtained when brain
mapping approaches have been applied in patients with TBIL.

Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is multiparametric
allowing versatile image reconstructions including morpho-
logical images, susceptibility-weighted images, diffusion-
weighted images, and metabolic and perfusion images [95].
Overall, MRI is more sensitive in detecting acute TBI com-
pared to CT scan which is often normal on initial presentation
[11-16]. Even commonly used MRI pulse sequences such as
T1 and T2 may lack sensitivity for the detection of TAI [96].
Recent progress in MRI acquisition suggests it is possible to
detect and characterize subtle structural and functional chang-
es associated with TBI [97].

Gradient Recalled Echo and Susceptibility-Weighted
Imaging

T2*-weighted gradient-recalled echo (GRE; also sometimes
referred to as just T2*) and susceptibility-weighted imaging
(SWI) are MRI pulse sequences that are highly sensitive to the
paramagnetic susceptibility of iron found in hemosiderin, a
breakdown product of hemoglobin which is deposited in the
brain tissue following parenchymal bleeds [98—102]. GRE
and SWI have greater sensitivity than CT and conventional
MRI sequences (T1- and T2-weighted imaging) in detecting
cerebral microbleeds in patients with hypertension, stroke,
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and small vessel disease [100]. Studies suggest that SWI is
even more sensitive than GRE in the detection of microbleeds
[101, 103]. MRI-identified microbleeds are used to support
diagnosis, characterize disease burden, and predict clinical
outcomes in patients with cerebral amyloid angiopathy
(CAA) [104, 105]. A recent study—whose relevance to TBI
is apparent in the subsequent discussion—combined results
from SWI, PET identification of amyloid using Pittsburgh
compound B, and DTI to evaluate network characteristics in
patients with CAA and aged-matched controls [106]. In this
study, graph analysis suggested that CAA patients had re-
duced global network efficiency which was linked to dimin-
ished cognitive and gait performance, effects which remained
significant in multivariable analysis.

Recent work indicates that focal parenchymal
microhemorrhages frequently co-locate with evidence of ax-
onal damage and could represent a valuable biomarker in a
subset of patients with TBI [38, 107—114]. The current model
is that biomechanical forces responsible for TAI can induce
extravasation of blood from multifocal damage to small ves-
sels [109], leading to a pattern sometimes referred to as “dif-
fuse vascular injury” [112] or “hemorrhagic DAI” [55]. On
GRE or SWI, traumatic microhemorrhages appear as focal
areas of reduced signal intensity caused by the paramagnetic
effects of deoxyhemoblogin which may be undetectable using
T2-weighted or FLAIR MRI sequences [115, 116]. The sen-
sitivity of these techniques in detecting microbleeds associat-
ed with DAI increases with the strength of the magnetic field
[117]. In addition, SWT is reported to have higher sensitivity in
detecting traumatic microbleeds compared to T2 -GRE [118].
The number and/or volume and distribution of SWI lesions
have been found to correlate with clinical severity of TBI and
with neurologic or cognitive outcome in both pediatric [38]
and adult TBI populations [16, 108]. Some investigators have
proposed traumatic microbleeds, when present, are unequivo-
cal surrogate markers of TAI; building on this postulate and by
training pattern classifiers via machine learning techniques, it
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is possible to accurately classify patients with TAI even if they
do not have microbleeds and, moreover, to better explain var-
iances in post-injury long-term cognitive performance [113,
119ee].

Diffusion-Weighted and Diffusion Tensor Imaging

Contrast signal in magnetic resonance diffusion-weighted im-
aging (DWI) is produced when water diffusion probabilities
within tissue become less random—as, for example, when
water is sequestered inside cells due to cytotoxic edema
[120]. This pulse sequence has been extensively validated in
the diagnosis of acute ischemic stroke [121, 122]. Diffusion
tensor imaging (DTI) takes advantage of the anisotropic dif-
fusion properties of water molecules in tissue to enable infer-
ences regarding underlying white matter microstructure [123];
fiber tractography based on DTI provides a three-dimensional
representation of white matter tracts in the central nervous
system [124].

Studies conducted over the past two decades indicate that
tissue diffusion characteristics are sensitive diagnostic and
prognostic variables in patients with TBI. Water diffusion be-
comes restricted in acute TBI, presumably secondary to cyto-
toxic edema. The biological significance of post-TBI restrict-
ed tissue water diffusion has been supported by animal studies
demonstrating histological changes which co-localize with
areas of abnormal signal on DWI [125—127]. Areas of restrict-
ed diffusion detected with DWI represent a biomarker of
nonhemorrhagic TAI that is more sensitive than CT or con-
ventional T1 and T2 pulse sequences [14, 27, 34, 96, 110,
128-146]. Data suggest that DWI lesion number, volume,
and location can increase the accuracy of outcome prediction
in patients with TBI across the severity spectrum [34, 110,
128, 130, 131, 137, 146-148]. In an analysis of 77 patients
with moderate—severe TBI, higher whole brain apparent dif-
fusion coefficients were associated with discharge to home or
rehabilitation [146]. In an earlier study involving 26 patients
with TAI, the volume of lesions identified with DWI strongly
correlated with modified Rankin scale at discharge [34].
Results from a larger cohort demonstrated a strong association
between DWI lesions in the corpus callosum and the extended
Glasgow outcome scale at 12 months [110].

In recent investigations, it has been shown that DTI is a
sensitive method to detect and characterize tissue changes
associated with TBI of all severities [149, 150]. In rodent
models, changes in white matter anisotropy have been linked
to histological evidence of TAI [36, 151-159]. In humans,
DTI demonstrates a range of white matter alterations which
are observed in mild, moderate, and severe TBI, and which
may help classify post-injury functional and cognitive recov-
ery phenotypes [14, 20, 21, 24, 25, 27, 35, 37, 42, 52+, 111,
119,160, 161, 162, 163, 164e+, 165, 166, 167]. White matter
tracts in which early post-traumatic DTI changes are most

tightly linked to long-term outcome include the corpus
callosum [20, 21, 37, 149, 160, 161, 166, 168, 169], internal
capsule [37, 42, 170, 171], and brainstem [28, 37, 168,
172—-174]. In a recent prospective multicenter study [37],
105 patients with severe TBI underwent brain MRI a mean
of 21 days after injury, and DTI variables were evaluated in 20
predefined white matter regions based on the atlas established
by Mori et al. [175]. Here [37], early discrimination between
functional outcome categories was significantly improved
with a prediction model that included DTI data, as compared
to a model based exclusively on the International Mission for
Prognosis and Analysis of Clinical Trials (IMPACT) score [176].
Repeated DTI assessments during post-TBI recovery re-
veal dynamic changes in white matter, suggesting an active
process whose biological underpinning might relate to differ-
ent contributions of axonal damage, neuronal repair, demye-
lination, remyelination, and gliosis [21, 28, 177-180]. In one
study, 30 patients with severe TBI were scanned with DTI
8 weeks post-injury and again at 12 months [21]. At follow-
up DTI, fractional anisotropy had increased and reached nor-
mal or supranormal levels in the internal capsule and in cen-
trum semiovale and the presence and magnitude of this in-
crease was correlated with favorable functional outcome,
while the presence of persistently low fractional anisotropy
in the corpus callosum and cerebral peduncle was correlated
with poor outcome [21]. In another study on moderate TBI
patients evaluated 5—14 days after injury, fractional anisotropy
was significantly reduced in the corpus callosum and/or inter-
nal capsule compared to controls and remained depressed
6 month later [177]. Newcombe et al. recently reported on
12 patients with moderate or severe TBI who underwent serial
MRI in the acute phase and again 2—4 times during a follow-
up period of up to 2.7 years after injury [178]. While there was
considerable heterogeneity in individual time-courses, analy-
sis suggested a dynamic process with time-dependent de-
creases in fractional anisotropy which were contingent on in-
creases in axial and radial diffusivities and which were linked
to performance on visual memory and learning tasks [178].
A growing body of research indicates that DTI might sup-
port predictions of cognitive recovery, or the outcome of
neurorehabilitation, following TBI [20, 25, 27, 111, 119es,
166, 181-184], a detailed review of which is beyond the scope
of'this paper. A general finding is that pathological changes in
regional white matter integrity are associated with impair-
ments in a range of cognitive domains; however, the type,
specificity, and magnitude of these associations are inconsis-
tent across studies. In a very recent report, graph analysis was
used to interpret DTI tractography data in 52 subjects who
were scanned a mean of 37.56 months after moderate or se-
vere TBI and compared to age-matched controls [119ee].
Using machine learning techniques, the presence of TBI was
predicted with 93.4 % accuracy, while information processing
speed, associative memory, and executive function were
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significantly associated with centrality measures in the cingu-
late cortex and caudate. In another recent study, Strangman
et al. found that post-rehabilitation performance on tests of
memory and learning were associated with reduced fractional
anisotropy, respectively, in the parahippocampal white matter
and anterior corpus callosum, left anterior internal capsule,
and right anterior corona radiata [181]; however, fractional
anisotropy predictions were no more accurate that pre-
rehabilitation test scores.

Magnetic Resonance Spectroscopy and Magnetic
Resonance Spectroscopic Imaging

Proton magnetic resonance spectroscopy (MRS) evaluates the
signal of covalently bound protons to map regional concentra-
tions of a range of chemical compounds. Commonly measured
compounds include choline (Cho), creatinine/phosphocreatine
(Cr), N-acetyl aspartate (NAA), lactate, and glutamate/
glutamine (Glx) [185]. NAA is associated with neuronal and
axonal integrity and decreased levels of NAA or NAA indexed
to Cr (NAA/Cr) have been found after TBI in humans [40—42,
186—196]. Early reports indicated that brain NAA/Cr decreases
acutely after TBI in the frontal lobe and that NAA/Cr correlated
with injury severity (GCS) [188] and outcome (GOS) [40, 195].
Low NAA/Cr in the brainstem is strongly associated with un-
favorable TBI outcome, often in tissue without discernible
damage on conventional morphological MRI [186]. More re-
cent work with serial MRS suggests that tissue NAA/Cr and
NAA/Cho values decline rapidly then progressively recover
over 1-4 weeks to near-normal levels in patients with favorable
outcomes while levels remain lower in those with unfavorable
outcome [41, 190, 196]. Linear discriminant analysis of com-
bined MRS and DTI acquired 3—4 weeks after injury in patients
with severe TBI suggested that these two approaches are com-
plementary and when used in combination accurately discrim-
inate between favorable and unfavorable 1-year functional out-
comes [42]. Another study in mild TBI subjects which com-
bined MRS with functional MRI suggested a positive correla-
tion between NAA/Cr levels in the corpus callosum and inter-
hemispheric functional connectivity [197]. Although results are
promising, a number of questions remain regarding optimal
methods for MRS data acquisition and analysis in patients with
TBI[198, 199].

Functional Brain Mapping

Functional neuroimaging, the mapping of time-dependent sig-
nal changes to directly or indirectly track underlying neuronal
activation, can be achieved with several modalities including
positron emission tomography (PET), functional MRI (fMRI),
electroencephalography (EEG), and magnetoencephalogra-
phy (MEG).
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Positron Emission Tomography

PET methods identify the distribution of molecular probes la-
beled with a positron-emitting tracer or radionuclide [200].
Radionuclides best studied in the evaluation of TBI patients
include '"F Flourine-18-2-fluoro-deoxy-p-glucose (FDG) and
130-H20 which represent indirect markers of brain glucose and
oxygen uptake. Both of these methods have been used to infer
regional functional activation in the central nervous system be-
cause of the physiologic coupling between cellular energy me-
tabolism and blood flow in normal situations [201]. Recently, it
has been proposed that absolute indices of global and regional
cerebral glucose metabolism could help differentiate unrespon-
sive subjects with different levels of conscious processing
[202—204]. In severe TBI patients evaluated less than 5 days
after injury, comatose subjects had significantly reduced FDG-
PET uptake in the thalamus, brainstem, and cerebellum when
compared to noncomatose subjects [205]. Reduced glucose up-
take has been observed in bilateral medial and basal frontal
lobes, the cingulate gyrus, and the thalamus in severe TBI pa-
tients with chronic disorders of consciousness [202, 203, 206,
207]. Functional disconnection between brainstem arousal cen-
ters and the precuneus was described in a '>O-H20-PET study
of patients who were in a persistent vegetative state. A remark-
able case report combining DTI and FDG-PET documented
recovery of verbal communication and motor function in a
patient who remained unconscious for 19 years after severe
TBI, a change which correlated with increased fractional an-
isotropy and glucose uptake in posteromedial parietal cortices
that encompassed cuneus and precuneus [208].

In FDG-PET evaluations of patients in the subacute phase
following severe TBI who did not have focal anatomical lesions
on MR, a correlation was established between reduced glucose
uptake in the prefrontal cortex and the cingulate gyrus and
impaired memory and executive function [209-211].
Investigation of memory task activation using ">O-H20-PET
indicated that recovering moderate and severe TBI patients en-
gage a frontal, anterior cingulate, and occipital network which
is larger and less asymmetric than healthy controls, suggesting
an impairment in cortical processing efficiency [212]. Resting
FDG-PET studies in patients with mild TBL/concussion have
yielded a range of findings [213-217]. No difference in resting
FDG-PET uptake was noted on one comparison of patients
with post-concussion symptoms and healthy controls [217].
Others have reported that concussion patients have reduced
resting glucose metabolism in temporal and frontal regions
[214, 215] or in cerebellum, vermis, pons, and medial temporal
lobe [216]. An intriguing recent study completed in military
mild TBI subjects during wakefulness and REM sleep identi-
fied a reduced metabolic rate of glucose in the amygdala, hip-
pocampus, parahippocampal gyrus, thalamus, insula, uncus,
culmen, visual association cortices, and midline medial frontal
cortices [213].
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Functional Magnetic Resonance Imaging

fMRI has emerged as the leading approach to map brain
functional activation in humans. Correlative analysis conduct-
ed in TBI patients suggests a good match between regional
activations obtained with PET and fMRI, although the spatial
resolution is higher with fMRI [218]. The blood-oxygen-
level-dependent (BOLD) fMRI signal correlates with neuro-
nal activity as suggested by concurrent local field potential
recordings in the visual cortex of nonhuman primates [219].
The value of fMRI has become increasingly apparent in the
assessment of patients with disorders of consciousness, many
of whom have had a TBI. These studies employ three distinct
experimental paradigms [220]: (i) active fMRI studies which
map BOLD signal changes associated with a specific motor or
cognitive task; (ii) passive fMRI studies which map BOLD
signal changes associated with an auditory, visual or sensory
stimulus, and (iii) resting-state fMRI studies which map
BOLD signal in the absence of any given task or stimulus.
This literature has been reviewed elsewhere [220-222]. Here,
we selectively review some of the recent fMRI studies.

Convergent lines of research indicate that spontaneous
brain activity is organized topographically in dissociable
large-scale functional networks which have quantifiable in-
trinsic and extrinsic connectivities (Table 2) [29, 223-226].
The resting-state paradigm has particular relevance in brain-
injured patients in whom task responsiveness may not be re-
liably present. Resting-state fMRI activity associated with loss
and recovery of consciousness following severe TBI has been
characterized in several recent studies [43, 45, 47+, 163, 164ee,
184, 227, 228, 229, 230, 231, 232, 233, 234-].

A significant number of studies have centered on activity or
connectivity within the structures of the default mode network
(DMN), a neuronal system which includes nodes in the medial
and lateral parietal, medial prefrontal, and medial and lateral
temporal cortices [223, 235, 236]. Deactivation of the DMN is
associated with engagement in goal-oriented activity [235],
and changes in DMN activity or coherence have been identi-
fied in a range of neurological and psychiatric disorders. A
recent coordinate-based meta-analysis of resting functional
neuroimaging data (PET and fMRI) found that patients with
disorders of consciousness have consistent reductions in ac-
tivity within cortical structures associated with the DMN [43].
Resting functional connectivity of nodes within the DMN is
significantly decreased in TBI patients across the severity
spectrum [47e, 184, 229, 232, 233, 234, 237-240], a pattern
which has been linked to DTI evidence of white matter dam-
age within the DMN [163]. Disruption of selected edges with-
in the DMN may have particular significance in predicting
emergence from coma: thus, in a cohort of patients who
underwent fMRI within the first week after injury, connectiv-
ity strength between the posterior cingulate cortex (PCC) and
medial prefrontal cortex was significantly greater in patients

who recovered consciousness when compared to those who
did not [233].

Recently, other non-DMN networks have been explored to
describe neural changes following brain injury and to enhance
the accuracy of phenotype and outcome classification.
Deficiencies in task-induced deactivation of the DMN, or loss
of the anticorrelation normally observed between the DMN
and other networks, have been reported in patients with im-
paired consciousness [241-243], post-TBI cognitive impair-
ment [164e, 239, 244, 245], and post-concussion syndrome
[246]. In 133 brain-injured subjects who underwent fMRI 3—
10 months after injury, functional connectivity within the sa-
lience network (in particular between the ACC and left ante-
rior insula) accurately differentiated between vegetative state
and minimally conscious state patients, while DMN connec-
tivity (especially between PCC and left lateral parietal cortex)
was linked to emergence from the vegetative state [234].
Using machine learning techniques, another group found that
intrinsic network functional connectivity strength discriminat-
ed between vegetative state and minimally conscious state
patients with an accuracy of >80 % in several large-scale
networks (frontoparietal, salience, auditory, sensorimotor,
and visual networks), with auditory network intrinsic connec-
tivity providing the best discrimination, in particular, edges of
the auditory network that connect auditory and visual cortical
centers [47¢].

In addition to investigating loss and return of conscious-
ness in brain-injured patients, fMRI can map cognitive states
and trajectories following TBI [227]. A graph analysis of rest-
ing fMRI data demonstrated that recovering TBI patients have
longer average path lengths and reduced network efficiency
most prominently affecting the posterior cingulate cortex hub
[45]. While reduced network or edge functional connectivity
is widely reported in many studies of TBI and could represent
a valuable biomarker of TAI, selective increases in within-
network fronto-parietal connectivity measures have been re-
ported in patients in the chronic stage of post-TBI recovery
and could represent compensatory mechanisms [163, 184,
230, 247., 248, 249]. Task-fMRI studies conducted in TBI
patients have indicated wider recruitment of cortical resources
suggesting a loss processing efficiency in patients recovering
from TBI [250-253]. Impaired working memory in chronic
TBI patients has been correlated with decreased activation of
frontal sites which are nodes in well-characterized memory
networks [254]. Tracking of memory task-induced superior
frontal activation in patients with TAI revealed a progressive
normalization over time that correlated with improved task
performance [255].

Arterial Spin Labeling

Arterial Spin Labeling (ASL) is an MRI acquisition sequence
which allows a direct measure of regional cerebral blood flow
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[256, 257] and can serve as a marker of functional activation
albeit with temporal and spatial characteristics that are distinct
from BOLD [258, 259]. In ASL, arterial blood is labeled
magnetically and serves as an endogenous tracer, which al-
lows the noninvasive quantification of regional brain tissue
perfusion. In the chronic phase following moderate to severe
TBI, resting ASL demonstrates reductions in the cerebral
blood flow with more prominent regional hypoperfusion in
the posterior cingulate cortices, the thalami, and multiple lo-
cations in the frontal cortices correlating with structural
changes on DTI [260, 261]. During sustained attention and
working memory tasks, chronic phase TBI patients had para-
doxical increased activation of superior occipital cortices and
the left superior temporal cortex whereas these areas were
deactivated in healthy controls [262]. ASL has recently been
used to evaluate patients with mild TBI [263, 264]. A longi-
tudinal evaluation of concussed collegiate football players
who underwent ASL 1 day, 1 week, and 1 month after injury
found a reduction in right insular and superior temporal sulcus
perfusion acutely that normalized at 1 month, although dorsal
insular perfusion remained lower in subjects with persisting
post-concussion symptoms [264].

The relationship between ASL measures of cerebral blood
flow and BOLD functional connectivity was recently evaluat-
ed in healthy controls both in the resting state and during a
working memory task [265]. Findings suggest that nodes with
high resting or task-evoked BOLD functional connectivity
(i.e., hubs) are also regions with comparatively elevated per-
fusion, a correlation which was most prominent in the DMN
and executive control network [265]. ASL time courses may
be may be used to evaluate large-scale functional activation
and connectivity patterns with significant homologies to those
obtained with BOLD [266-269]. The relevance of ASL con-
nectivity analysis in patients with or recovering from TBI is
currently unknown.

Electroencephalography

Electroencephalography (EEG) expresses, in the frequency
domain, the composite electrical signal generated by dendritic
synapses in the superficial layers of the cerebral cortex. When
compared to fMRI, EEG has higher temporal resolution but
lower spatial resolution; however, the pragmatic possibilities
of EEG which can be deployed at the bedside in hospitalized
or critically ill patients are of considerable interest.
Quantitative EEG employs computational approaches to ana-
lyze amplitude, frequency, power, phase, and coherence, ei-
ther independently or in different combinations. The analysis
of EEG coherence or connectivity represents a unique oppor-
tunity to evaluate the impact of TBI on functional integration.
Although early work in patients with severe TBI suggested an
association between EEG coherence and MRI markers of neu-
ral integrity [270], a relation was not found between
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interhemispheric EEG coherence and post-injury outcome
[271]. Subsequent quantitative EEG studies provide evidence
of a loss of functional connectivity in patients with TBI
[272-280]. Spatially distributed neuronal synchronization in
the gamma frequency—which has been associated with per-
ceptual awareness [281]—is impaired in patients with severe
TBI [274]. In mild TBI patients studied with a high-density
EEG array, interhemispheric and intrahemispheric (fronto-pa-
rietal, fronto-temporal, and temporo-parietal) coherence was
comparable to healthy controls in the resting condition but
significantly decreased during a working memory task [272].
Graph theoretical analysis applied to high-density EEG data
acquired in the resting state of mild TBI subjects indicates that
while global network efficiency is unchanged, the connectiv-
ity of dorsolateral prefrontal cortex and inferior frontal gyrus
was increased, supporting the hypothesis that TBI results in a
reorganization of network topology that may represent injury-
associated or post-injury compensatory processes [280].
Similarly, in subjects with mild TBI following blast exposure,
reduced EEG phase synchrony (indicating diminished inter-
hemispheric connectivity) was noted in the frontal region, a
finding which was associated with DTI evidence of damage to
frontal white matter tracts [279]. Application of ICA and
graph theory to EEG data from mild TBI patients suggests a
significant decrease in the long-distance connectivity associ-
ated with a loss of small-world network topology [273].

Magnetoencephalography

Magnetoencephalography (MEG) records magnetic fields pro-
duced by neuronal electrical activity. Magnetic course imaging
(MSI) combines MEG and MRI to map functional activation in
the brain. MEG and MSI may be particularly valuable in the
evaluation of patients with mild TBI and post-concussion syn-
dromes [282]. Among 84 patients with mild TBI, MEG identi-
fied focal abnormalities in prefontal, posterior parietal, inferior
temporal, hippocampus, and cerebellum [283]. MEG record-
ings made during cognitive flexibility tasks demonstrated dis-
organized and inefficient cortical activation of executive net-
works in mild TBI patients when compared to healthy volun-
teers [284]. In a direct head-to-head comparison, MEG was
found to be significantly more sensitive to focal abnormalities
in patients with post-concussion syndrome than structural MRI
or EEG [285], single-photon emission tomography [286], or
even DTI [287]. Resting-state MEG recordings in the alpha
band in TBI patients compared to healthy controls indicate
reduced functional connectivity [288] or, analogously, reduced
Lempel-Ziv complexity [289], changes which suggest under-
lying distributed network damage. MEG-identified deficiencies
in functional connectivity were recently described in multiple
frequency bands (delta, theta, and alpha) and linked to post-TBI
symptoms of inattention, anxiety, and depression [290].
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Data acquired with MEG may also represent sensitive bio-
markers of post-injury adaptation and plasticity. In a remarkable
longitudinal evaluation of patients recovering from moderate to
severe TBI who were studied before and after rehabilitation,
resting-state MEG data revealed a loss of local and long-
distance slow-frequency (delta and theta bands) connectivity
and an increase in higher-frequency (alpha and beta) connec-
tivity, changes which correlated with improved performance on
neuropsychological testing [30]; moreover, network topologies
in the post-rehabilitation patients more closely matched those
observed in healthy controls than topologies seen in the pre-
rehabilitation state [30]. Graph analysis applied to the same
dataset showed that topological parameters following TBI are
differentially affected in the delta band and decreased in the
alpha band and that, following rehabilitation, these parameters
evolve towards those of the control group [291]. These results
support the hypothesis of a balance or trade-off between neural
synchrony in slow and fast spectral bands as a fundamental
mechanism driving post-injury recovery [291].

Molecular Neuroimaging

Recent work conducted with PET radioligands in vivo has
generated invaluable insights on molecular mechanisms
which may drive axonal injury and disrupt brain connectivity
in TBI, including the deposition of amyloid protein, tau pro-
tein, and the detection of cerebral inflammatory activity
[48-50, 292-301].

There is extensive evidence of an association between brain
amyloid pathology and TBI [19, 296, 302-305]. Imaging of
amyloid protein using carbon 11-labeled Pittsburgh
Compound B ([11C]PiB) in a heterogeneous sample of 15 pa-
tients who were assessed 1 day to 1 year after TBI demonstrated
cortical and striatal amyloid deposition which was not detected
in healthy controls, findings which were corroborated in the
postmortem brains of subjects who died after TBI [50].
Among patients with mild cognitive impairment, PiB-defined
amyloid deposition is significantly higher in subjects with a
history of TBI than those without, a difference which was not
observed in cognitively normal individuals [306].

The role of tau protein as a molecular determinant of TAI
and in post-TBI neurodegenerative disorders has been illus-
trated in a number of recent reports [19, 52¢, 65¢¢, 66, 307,
308]. [F-18]FDDNP, a selective tau protein radioligand, has
been used to evaluate retired American football players who
had a documented history of TBI and presented with cognitive
or psychiatric manifestations [49, 309]. Tau protein deposition
was prominent in several subcortical structures including mid-
brain, basal ganglia, thalamus, amygdala, frontal, parietal,
posterior cingulate, medial and lateral temporal—a distribu-
tion which closely matches postmortem neuropathological
analyses in subjects who died of chronic traumatic

encephalopathy, a neurodegenerative syndrome linked to
TBI exposure [49, 66, 309].

Innate and adaptive immunologic responses occur both
acutely and in the chronic setting after TBI and may represent
targets for therapeutic modulation [310-315]. Two studies
using selective PET markers of activated microglia document-
ed persisting inflammation in the brain months to years after
TBI [48, 62], corroborating neuropathological findings in de-
ceased patients with a history of TBI [316]. Labeling of acti-
vated microglia was increased in several brain regions of re-
tired American football players with a history of TBI, findings
which appeared to correlate with performance on tests of
learning of memory [297].

Conclusions and Future Directions

Recent work in brain mapping supports the paradigm of a
“human connectome”: a multi-level representation of the neu-
ral matrix which constitutes the central nervous system [317].
The connectome model appears particularly valuable in the
detection, diagnosis, classification, and recovery prediction
in patients with TBI, which is a distributed, multifocal brain
disorder. The connectome approach also suggests potentially
transformative therapeutic possibilities such as the modulation
of brain network activity to restore appropriate functional con-
nectivity following TBI. Achieving these goals will require a
comprehensive, organized approach to characterize and clas-
sify TBI and post-TBI recovery in cellular and molecular
terms and to build models that link biological events to
endophenotypes (including imaging) and clinical phenotypes.
In the realm of functional neuroimaging, we need to under-
stand how neural-hemodynamic coupling, which constitutes
the basis of fMRI inference, might be confounded in the acute
and chronic phases of TBI. The effects on the fMRI (or EEG)
signal of prior neurological disease and cognitive impairment,
concurrent physiologic variation, and sedative medication
need to be identified and separated to reliably map neural
activity. Registration methods should account for deformation
associated with brain injury such as cerebral edema and mass
effect in the acute phase and atrophy and hydrocephalus in the
chronic phase. To enhance TBI data sharing, collaboration,
and multisite investigation, standardized approaches will be
needed for neuroimage acquisition, quality control, storage,
analysis, and interpretation. Collectively, it is hoped that these
advances will advance the goal of alleviating the burden as-
sociated with TBI.
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