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Abstract Aphasia is a common consequence of left hemi-
sphere stroke and causes a disabling loss of language and
communication ability. Current treatments for aphasia are in-
adequate, leaving a majority of aphasia sufferers with ongoing
communication difficulties for the rest of their lives. In the
past decade, two forms of noninvasive brain stimulation, re-
petitive transcranial magnetic stimulation and transcranial di-
rect current stimulation, have emerged as promising new treat-
ments for aphasia. The most common brain stimulation pro-
tocols attempt to inhibit the intact right hemisphere based on
the hypothesis that maladaptive activity in the right hemi-
sphere limits language recovery in the left. There is now suf-
ficient evidence to demonstrate that this approach, at least for
repetitive transcranial magnetic stimulation, improves specific
language abilities in aphasia. However, the biological mecha-
nisms that produce these behavioral improvements remain
poorly understood. Taken in the context of the larger neurobi-
ological literature on aphasia recovery, the role of the right
hemisphere in aphasia recovery remains unclear. Additional
research is needed to understand biological mechanisms of
recovery, in order to optimize brain stimulation treatments
for aphasia. This article summarizes the current evidence on
noninvasive brain stimulation methods for aphasia and the
neuroscientific considerations surrounding treatments using

right hemisphere inhibition. Suggestions are provided for fur-
ther investigation and for clinicians whose patients ask about
brain stimulation treatments for aphasia.
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Introduction

Approximately one third of all people with acute stroke have
aphasia, the vast majority due to left hemisphere (LH) lesions
[1, 2]. Improvements in language are fastest in the first few
months after stroke and gradually slow down over time [3].
Although recovery is highly variable, on average survivors
achieve 70 % of the maximum possible recovery on common
aphasia tests 90 days after stroke [4]. The only widely accept-
ed treatment for post-stroke aphasia is speech-language ther-
apy, which improves outcomes in some aspects of language
and functional communication [5]. However, the effects of
speech-language therapy on overall aphasia outcomes are rel-
atively modest, and about two thirds of people with aphasia at
stroke onset who survive to follow up continue to have chron-
ic language deficits 18 months later [6]. Living with aphasia
reduces participation in life activities, independence, and
mood and increases the cost of care [7–10]. Clearly, new treat-
ments are needed to improve outcomes for people living with
aphasia.

Aphasia specialists have long sought biologically based
interventions to augment recovery. A number of medications
have been tested for aphasia, based on the theory that increas-
ing neurotransmitter availability in partially disrupted path-
ways may mitigate deficits related to these disruptions.
Correcting these neurotransmitter disruptions could enhance
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language abilities on a day-to-day basis or potentially facilitate
relearning of language skills during speech-language therapy,
much as stimulants that improve attention in a child with at-
tention deficit disorder might improve learning at school. The
results for some medications have been encouraging [See 11
for review]. In general, these studies have been small, and
larger, more definitive trials are needed.

A more ambitious and potentially more impactful goal of
biologically based treatments is to alter the process of brain
reorganization that underlies aphasia recovery. After the initial
stabilization of blood flow and resolution of brain swelling in
the first weeks after a stroke, recovery relies on reorganization
of brain networks, which occurs both spontaneously and in
response to behavioral training [12], such as speech-language
therapy. As in animal models of sensorimotor stroke, the pri-
mary changes after a stroke causing aphasia include recruit-
ment of perilesional tissue adjacent to the stroke in the LH and
recruitment of homotopic (mirror image) right hemisphere
(RH) sites (Fig. 1) [13•]. Engagement of preserved language
areas of the LH and recruitment of nearby perilesional tissue is
widely thought to support recovery of language functions
[14–22]. The role of the RH in recovery is less clear [23••].
Optimizing brain reorganization to achieve a maximally effi-
cient language network could theoretically yield significant

gains in aphasia recovery. This could potentially be accom-
plished in various ways, for instance enhancing plasticity in
the months following stroke, coaxing the brain’s language
network into a more efficient organization, or by restoring
plasticity long after stroke. Based on these goals, a number
of small studies have recently examined whether noninvasive
electrical or magnetic brain stimulation can improve aphasia
recovery. These techniques are used to excite or inhibit partic-
ular areas of the brain and are being tested for use on a wide
range of neurologic and psychiatric conditions [24]. There has
been a great deal of excitement about these techniques
amongst aphasia researchers, clinicians, patients, and families.
Indeed, results from early studies have been encouraging, al-
though certainly not definitive.

Most brain stimulation studies on aphasia to date have
aimed either to enhance activity in brain areas thought to sup-
port good recovery from aphasia or, more commonly, to sup-
press activity in brain areas thought to interfere with recovery.
These studies have proceeded, however, even as neuroscien-
tists continue to debate basic questions about how language
networks reorganize after stroke. There is a striking lack of
consensus in the literature regarding key aspects of the neuro-
scientific theories guiding the use of brain stimulation for
aphasia, particularly the role of the RH in recovery [23••]. In
addition, the results of brain stimulation trials are often used as
evidence supporting particular theories of aphasia recovery,
despite a lack of neurobiological data to confirm the mecha-
nisms of action of these methods.Without a better understand-
ing of the brain basis of aphasia recovery and the mechanisms
by which brain stimulation improves outcomes, the field risks
developing suboptimal brain stimulation treatments based on
erroneous assumptions and then reinforcing those assump-
tions based on weekly positive clinical results. A more thor-
ough understanding of the brain basis of aphasia recovery and
of the neurobiological effects of brain stimulation techniques
will increase our chances of developing new interventions that
have a meaningful clinical impact on outcomes for people
with aphasia.

Below, I will describe the two main forms of noninvasive
brain stimulation currently being investigated for use in post-
stroke aphasia, and the current state of the evidence supporting
their use. I will then describe the controversy surrounding the
neurobiological theories guiding the most common ap-
proaches to treatment and suggest ways to improve the
chances of turning these promising investigational techniques
into meaningful clinical interventions.

Noninvasive Brain Stimulation Methods Used
for Aphasia

The two most common noninvasive brain stimulation tech-
niques are repetitive transcranial magnetic stimulation

Fig. 1 Reorganization of language networks in post-stroke aphasia.
Results are shown from a meta-analysis of functional neuroimaging
studies of people with chronic post-stroke aphasia and matched control
subjects (Adapted from [13•]). The top row shows normal brain activity in
the left-lateralized language network in control subjects. The bottom row
shows the reorganized brain activity during the same language tasks in
people with aphasia. Results are rendered onto a template brain so the
locations of stroke damage are not shown. Three patterns are notable: (1)
preserved activity in native LH language areas when viable tissue remains
in these areas, (2) shifts in activity within the LH to so called
Bperilesional^ locations, and (3) activation of a BRH language network^
that mirrors the native LH language network activated by controls
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(rTMS) and transcranial direct current stimulation (tDCS)
(Table 1). rTMS involves passing a very brief high-current
electrical pulse through an insulated coil of wire held over
the scalp. The pulse produces a rapidly changing magnetic
field that induces electrical current in underlying brain tissue,
causing neuronal firing. rTMS, as commonly used for aphasia,
is thought to affect a small area of brain tissue directly under
the coil (approximately 1 cm3), although downstream effects
are expected in areas connected to the site of stimulation [25,
26]. Low-frequency rTMS (typically 1 Hz) reduces excitabil-
ity of the stimulated cortical site, whereas high-frequency
rTMS (>5 Hz) increases excitability. These effects persist mi-
nutes to hours after rTMS is stopped, and daily repeated ses-
sions can induce more durable effects although the biological
basis of these long-lasting effects is less clear. This Boff-line^
effect is the basis for therapeutic uses of TMS in a variety of
neurological and psychiatric conditions [27].

In contrast to rTMS, which induces electrical currents in
the brain using magnetic fields, tDCS directly applies a low
level of constant electrical current to the scalp using electrodes
[28]. In ex vivo studies, this direct electrical current slightly
depolarizes or hyperpolarizes neurons, making them more or
less likely to fire [29]. In aphasia treatment studies, the current
is typically applied for 10–30 min, often in combination with
speech-language therapy. Unlike the highly focal effect of
TMS, tDCS has an anatomically broader effect. Electrical
field modeling suggests that entire lobes of the brain may be
impacted by typical tDCS methods, which use large saline-
soaked sponges as electrodes [30]. Recently, Bhigh definition
tDCS^ methods have been developed using multiple smaller
electrodes to focus the electrical current [31•] although the
effects are still thought to be less localized than typical

rTMS methods. Like rTMS, tDCS can induce localized exci-
tation or inhibition of neuronal populations that can last for
minutes to hours after a short session [28, 32]. The polarity of
the tDCS electrode is widely thought to determine whether the
effect on the underlying brain tissue is excitatory or inhibitory.
The anode is generally thought to induce excitation, whereas
the cathode induces inhibition. This rubric, however, has been
brought into question by electrical field modeling studies
demonstrating large areas of current flow between the elec-
trodes [31•] in sometimes unexpected distributions especially
in people with brain lesions [33]. Further, effects of cathodal
stimulation on cognitive tasks in healthy subjects have been
inconsistent [34]. Despite these issues, most tDCS studies in
clinical populations assume that activity in the brain area un-
der the anode will be facilitated by stimulation, whereas the
area under the cathode will be inhibited. Both rTMS and tDCS
can enhance learning during motor or language training in
healthy subjects [35–38]. These effects have generated a great
deal of hope that rTMS or tDCS might improve language and
communication outcomes for people with post-stroke aphasia.

Evidence to Date for TMS and tDCS Treatments
of Aphasia

Naeser and colleagues provided the first evidence that nonin-
vasive brain stimulation might improve aphasia, applying low
frequency rTMS to the pars triangularis of the right inferior
frontal gyrus (IFG) in a small group of people with chronic
nonfluent aphasia [39, 40]. These initial open-label studies
suggested that this type of stimulation, aimed at suppressing
the RH homolog to Broca’s area, improved picture naming for

Table 1 Comparison of practical aspects of brain stimulation methods used in treatment studies of post-stroke aphasia

rTMS tDCS

Description of method Uses electromagnetic induction in an insulated coil of wire on
the scalp to induce neuronal firing, alter cortical excitability

Uses low levels of direct electrical current applied to electrodes
on the scalp to modulate resting membrane potentials and
alter likelihood of neuronal firing

Duration of session Typically 10–30 min Typically 10–30 min

Number of sessions Typically 5/week × 2–3 weeks Typically 5/week × 1–3 weeks

Pairing with speech therapy Speech therapy can be given before or after treatment, but is
difficult to conduct during treatment

Speech therapy can be given before, during, or after treatment

Portability Not easily portable Portable

Equipment cost Approximately $50,000; up to $150,000 including
neuronavigation equipment to precisely target specific
brain areas

Approximately $1000 to $14,000 depending on features

Area of effect More anatomically focal effect Larger anatomical area of effect

Ability to target effect to
selected brain area

Affected area is directly under the coil of wire Area affected is not always directly under electrodes, may
require individualized electrical field modeling, which is not
yet widely available, to precisely target brain areas

Tolerability Well tolerated; common side effects include transient
headache, dizziness

Well tolerated; common side effects include transient tingling,
itching, or burning sensation at stimulation site

Serious adverse events Very rare instances of single seizure None to date
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up to 8 months after 10 daily sessions of treatment applied
over 2 weeks.

Since the initial reports of Naeser and colleagues, over 20
other studies have tested rTMS treatments for post-stroke
aphasia, with or without adjunct speech-language therapy.
Collectively, these studies have included over 200 patients
during either the subacute or chronic phases of recovery.
Although a few have used other stimulation strategies (e.g.,
[41]), most rTMS studies on aphasia have used low frequency
stimulation to the RH homolog of Broca’s area, as in the
original Naeser and colleagues’ work. A recent meta-
analysis of seven such trials including 160 patients found sig-
nificant positive effects on naming, repetition, writing, com-
prehension, and global language impairment, with standard-
ized mean differences of 0.32 to 0.70 on individual language
domains, and 1.26 on global impairment [42••]. Studies that
have examined durability of effects suggest that language im-
provements may last months after a single 2-week course of
treatment in chronic patients [39, 43, 44].

tDCS studies on aphasia have emerged more recently and
have been somewhat more varied in their design. Studies have
targeted the LH [45], or the RH [46], or both [47]. Anodal and
cathodal stimulation have variously been applied to each
hemisphere in both fluent and nonfluent patients [48•].
Compared to rTMS, relatively fewer tDCS studies have been
published to date, and the variability in the methods used
makes it difficult to determine if effects on aphasia are reliable.
A recent Cochrane review of six tDCS studies including a
total of 66 patients concluded there were no reliable effects
on picture naming [49•]. It is perhaps too early for this kind of
quantitative review on tDCS, and future meta-analyses includ-
ing more homogeneous groups of studies may yield different
results. One recent meta-analysis combined six rTMS and
three tDCS studies that aimed to suppress RH activity and
found a significant positive effect of these methods on picture
naming with a standardized mean difference of 0.52 [50•].

A common criticism of brain stimulation treatment studies
for aphasia has been the focus on specific language tasks,
particularly picture naming, as the outcome measures, rather
than more ecologically valid measures of functional commu-
nication [49•]. Although it is hard to draw any firm conclu-
sions regarding the importance of effects demonstrated to date
on real-life communication ability, the primary aim of the
small early phase studies conducted so far has been to estab-
lish safety and prove that particular stimulation protocols can
modulate language abilities in aphasia. For these early stages
of methods development, it is reasonable to focus on sensitive
measures like picture naming. Larger phase II and phase III
trials in the future should focus on more clinically relevant
outcome measures after factors like location, duration, and
type of stimulation are optimized.

Overall, the most consistently successful brain stimulation
treatments for aphasia to date have utilized low frequency

rTMS or cathodal tDCS aiming to inhibit the RH, most typi-
cally the right IFG [50]. This consistency may be somewhat
misleading, however, as RH inhibition has been the most
commonly used treatment strategy to date, based on the
pioneering work of Naeser and colleagues. Indeed, some
crossover studies have shown greater benefit for other modes
of stimulation, including stimulation intended to inhibit the
LH [51] or excite the right [46]. Despite these conflicting
findings, many have taken the beneficial effects of low fre-
quency rTMS and cathodal tDCS over the RH as evidence that
involvement of the RH in aphasia recovery is maladaptive.
However, these conclusions must be considered in the larger
context of neuroscience research on aphasia recovery, in
which there is still a great deal of debate about the role of
the RH. It is thus worth considering the practical and scientific
motivations for inhibiting the RH to facilitate aphasia recov-
ery, along with supporting and contradictory neuroscientific
evidence for this treatment strategy.

Why Inhibit the RH?

Targeting the intact RH provides distinct practical advantages
for brain stimulation treatments of LH stroke survivors with
aphasia. Since stroke locations differ within the LH between
patients, stimulating the LH requires individualized targeting
to ensure that TMS or tDCS is administered to intact brain
tissue rather than an area of encephalomalacia. In addition,
because reorganization of LH language circuits likely differs
depending on stroke location, extra techniques like fMRI may
be needed to ensure that spared areas of the LH are involved in
language processing [52]. There are also theoretical safety
concerns for stimulating tissue around the lesion, including
current shunting through cerebrospinal fluid cavities and sei-
zure induction from excitation of epileptogenic tissue, al-
though the risk of significant adverse events with either
TMS or tDCS is extremely low regardless of the brain area
stimulated [53, 54]. Targeting the intact RH allows for the
possibility of identifying a single target that can be used across
groups of people with aphasia, without these complications
[13]. The simplicity of this approach could be key to making
brain stimulation treatments for aphasia accessible for wide-
spread clinical use in the future, just as the simplicity of the
TMS protocol used for depression has led to FDA clearance
and more widespread use than would be possible with a more
complicated approach [55].

From a neurobiological perspective, the hypothesis that
inhibiting the intact RH might improve aphasia outcomes is
derived primarily from the motor literature, based on the so
called Btheory of interhemispheric inhibition.^ In the motor
system, transcallosal inhibitory connections between the pri-
mary motor cortices of the two hemispheres may help to co-
ordinate bimanual movement [56]. After a stroke involving
the motor cortex, the interhemispheric inhibitory balance is
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disrupted and the intact motor cortex in the hemisphere oppo-
site the stroke inhibits the injured side [57, 58], contributing to
deficits [59, 60]. Inhibition of the intact motor cortex using
rTMS or tDCS can increase cortical excitability on the le-
sioned side and improve clinical motor function [61–64], sug-
gesting that this transcallosal inhibitory imbalance is clinically
important and modifiable. The theory of interhemispheric in-
hibition thus is well supported in the human motor system.

The design of Naeser and colleagues’ original rTMS study
was based on the hypothesis that the principles of interhemi-
spheric inhibition apply to language systems as well. The spe-
cific hypothesis was that LH damage releases transcallosal
inhibition on the RH homolog to Broca’s area, allowing it to
suppress surviving tissue around Broca’s area in the LH and
hence impede aphasia recovery. A logical treatment interven-
tion to remedy this right-to-left suppression would be to in-
hibit the RH homolog to Broca’s area, restoring proper inter-
hemispheric balance and allowing Broca’s area and surround-
ing tissue to play a larger role in language. Since the success of
the original rTMS protocol for aphasia, the theory of inter-
hemispheric inhibition has served as the framework guiding
many similar protocols using rTMS and tDCS to inhibit the
RH in aphasia [65–67]. The success of these protocols has
been taken as evidence that interhemispheric inhibition plays
a key role in language reorganization in aphasia [66, 42].

Transcallosal fiber pathways between language areas do
exist, providing the anatomical basis for interhemispheric in-
hibition [68] although it remains unclear whether or not these
connections are predominantly inhibitory. Two rTMS studies
in the subacute phase of stroke recovery have included PET
activity during a verb generation task as an outcome measure
in order to assess the biological effects of treatment [67, 69].
In these cases, laterality indices of activity demonstrated a
leftward shift after rTMS that did not occur with sham
rTMS. These findings could support the theory of interhemi-
spheric inhibition, but a number of caveats limit their inter-
pretation. For example, PET scans restrict the ability to con-
trol for task difficulty (see below for more discussion on this
issue). Further, the use of laterality indices of activity pre-
cludes localization of activation changes, making it difficult
to know whether changes occurred primarily in the RH, LH,
or both, as would be predicted by the theory of interhemi-
spheric inhibition. As such, it remains unclear whether the
findings of these studies truly support the theory of interhemi-
spheric inhibition. Moreover, studies have not assessed neu-
robiological outcome measures in the chronic phase of apha-
sia recovery, from which most clinical evidence for efficacy
of rTMS and tDCS derives. Thus, despite the success of
rTMS and tDCS studies aiming to inhibit the RH to improve
aphasia, the existence and importance of interhemispheric
inhibitory interactions in language networks still remains
largely theoretical, based mainly on extrapolation from the
motor system.

Apart from rTMS and tDCS studies, several recent func-
tional imaging studies do provide some support for the
notion that RH activity in aphasia is maladaptive, although
not for interhemispheric inhibition specifically. These stud-
ies have noted increased RH activity during incorrect nam-
ing responses or inverse relationships between activity and
performance across groups, suggesting that some RH areas
recruited in aphasia might be ineffective, inefficient, or
maladaptive [70–74]. In some longitudinal functional im-
aging studies, RH recruitment has peaked early in recovery
or immediately after training and has diminished over time
in association with clinical improvements, suggesting that
Bturning off^ the RH might improve long-term recovery
[15, 75–77].

Contradictory Evidence Regarding the Role
of the RH in Aphasia Recovery

In contrast to the results of rTMS and tDCS studies and the
recent functional imaging studies above, multiple older lines
of evidence suggest instead that the RH compensates for LH
damage and supports recovery from aphasia. This evidence
begins with Barlow’s 1877 case of a boy who became aphasic
after a small stroke to the left posterior IFG, then recovered,
but worsened again after a small symmetrical stroke in the RH
[78]. More recently, similar adult cases have been reported in
which a first LH stroke caused aphasia and after partial recov-
ery a second RH stroke worsened language performance [79,
80]. Several other lines of evidence have also suggested RH
compensation in aphasia: a relationship between poor aphasia
outcomes from LH stroke and Bclinically silent^ RH strokes
[81], worsening of language performance in aphasic patients
after right carotid anesthesia [82], and left visual field and left
ear advantages in people with aphasia [83–85]. These sources
lack the spatial resolution to implicate particular parts of the
RH in aphasia recovery but suggest that overall the RH con-
tributes to language ability after damage to the native LH
language network.

More recently, some functional imaging and electrophysi-
ological studies of aphasia have reported activity in RH areas
that mirror typical LH language areas, corresponding to a
clinical response to treatment [86, 87]. Based on evidence
for RH compensation in aphasia, some successful forms of
speech-language therapy have been designed to engage the
RH in language processes, for example Melodic Intonation
Therapy. These methods have been shown to induce remod-
eling of the RH as predicted [88, 89], and in a pilot study,
applying anodal tDCS to enhance right IFG activity during
treatment improved fluency of speech output compared to
sham tDCS [90].

Understanding the apparent contradictions in the literature
on the role of the RH in aphasia recovery will be critical to
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optimizing brain stimulation treatments for aphasia. Multiple
factors may contribute to the conflict in the field: method-
ological limitations in brain stimulation and neuroimaging
studies, differences in the RH role in recovery of specific
language functions and between the roles of specific RH
brain areas, and individual differences in the brain basis of
aphasia recovery. In terms of methodological limitations,
the first concerns the poor understanding of the long-term
neurobiological effects of RH inhibitory brain stimulation
protocols. As noted above, it remains unclear that brain
stimulation protocols known to induce short-term inhibi-
tion at the site of stimulation induce long-term inhibition
lasting weeks to months in association with the behavioral
benefits on language. The theory of interhemispheric inhi-
bition specifically suggests that such long-term RH inhibi-
tion at the site of stimulation should be accompanied by
enhanced LH engagement in brain areas directly opposite
the stimulation site; this too remains unproven. In a case
study on a chronic nonfluent aphasic patient who received
a 2-week course of low frequency rTMS to the right pars
triangularis and then unfortunately suffered a second
stroke, this time affecting the RH, we found no evidence
to support the theory of interhemispheric inhibition in ei-
ther the fMRI activity or the behavioral effects of the sec-
ond stroke [79]. It thus remains possible that a different
unpredicted neurobiological effect accounts for the long-
term effects of brain stimulation, at least in chronic apha-
sia. For instance, altering the inhibitory-excitatory balance
within a reorganized bihemispheric language network
might induce a renewed period of plasticity in the chronic
phase, allowing for further optimization of network effi-
ciency in both hemispheres [91]. Alternatively, multiple
sessions of RH inhibition might induce a longer-term ex-
citatory overshoot after treatment ends, such that enhanced
RH compensation accounts for behavioral improvements
seen after RH inhibitory brain stimulation.

Limitations of task-related brain activity, the primary
metric used to quantify RH involvement in language,
may also account for some inconsistent findings in the
literature on aphasia recovery. In particular, the impact of
performance and effort on task-related activity complicates
the interpretation of many functional imaging results.
Increasing effort on language tasks produces more activity
in both hemispheres in both controls and people with apha-
sia [92, 93]. Thus, while inverse correlations between ac-
tivity and performance may suggest maladaptive activity,
an alternate interpretation is that individuals with large
strokes and more severe aphasia must exert more effort to
perform the task and thus engage the RH to a greater de-
gree. In this context, when in-scanner performance is not
controlled in longitudinal imaging studies, a decrease in
RH activity may be a consequence of improved aphasia,
not a cause.

Aside from methodological limitations, some of the incon-
sistencies between previous studies on the RH’s role in apha-
sia recovery may derive from a complicated relationship be-
tween the RH and recovery. For instance, different specific
parts of the RH may play different roles in aphasia recovery,
such that some areas of the RH compensate for damage to the
LH language networks, while others are too inefficient to be
effective, and others may indeed interfere with optimal recov-
ery [13•, 79]. Likewise, the RH may be able to compensate
more effectively for some specific language functions com-
pared to others [94]. Finally, the specific pattern of language
system reorganization likely differs somewhat between indi-
viduals, based on personal characteristics and features of the
stroke [95, 96], and also may change substantially over time
after stroke [97•].

Conclusions

Overall, we are still early in the development of noninvasive
brain stimulation treatments for aphasia, but it appears that
protocols aimed at suppressing the RH, particularly the pars
triangularis of the right IFG, do improve specific language
abilities. However, many questions remain unanswered. Too
few studies have directly compared different brain stimulation
protocols to determine whether alternate approaches might
produce larger effects or whether personalizing stimulation
protocols based on individual differences will maximize ben-
efits. There is also inadequate evidence to determine the long-
term biological changes caused by rTMS and tDCS treatments
for aphasia, and so the mechanism of effect is poorly under-
stood. For this reason, it seems inappropriate to use behavioral
effects occurring days, weeks, or months after brain stimula-
tion treatments to support particular neurobiological theories
of aphasia recovery, most notably the theory of interhemi-
spheric inhibition. Going forward, including neurobiological
outcome measures in brain stimulation studies will produce a
great deal more progress toward understanding the biological
basis of aphasia recovery and optimizing brain stimulation
treatments. In particular, because of the thorny dependence
of task-related functional activity on effort and task perfor-
mance, it will be particularly useful to examine more stable
brain measures that do not depend on effort, such as gray and
white matter morphology and resting functional connectivity.
Finally, although some clinicians are now providing brain
stimulation treatments for aphasia on an out-of-pocket fee-
for-service basis, this is not yet clearly justified by the avail-
able data. Patients or families interested in brain stimulation
treatments should instead be referred to clinicaltrials.gov or
other resources to identify ongoing studies, and encouraged
to participate, given the safety of these techniques and the
promise of future benefits for people with aphasia.
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