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Abstract Neuroimaging and transcranial magnetic stimula-
tion provide insights into the neuronal mechanisms underly-
ing speech disfluencies in chronic persistent stuttering. In the
present paper, the goal is not to provide an exhaustive review
of existing literature, but rather to highlight robust findings.
We, therefore, conducted a meta-analysis of diffusion tensor
imaging studies which have recently implicated disrupted
white matter connectivity in stuttering. A reduction of frac-
tional anisotropy in persistent stuttering has been reported at
several different loci. Our meta-analysis revealed consistent
deficits in the left dorsal stream and in the interhemispheric
connections between the sensorimotor cortices. In addition,
recent fMRI meta-analyses link stuttering to reduced left
fronto-parieto-temporal activation while greater fluency is as-
sociated with boosted co-activations of right fronto-parieto-
temporal areas. However, the physiological foundation of the-
se irregularities is not accessible with MRI. Complementary,
transcranial magnetic stimulation (TMS) reveals local excit-
atory and inhibitory regulation of cortical dynamics. Applied
to a speech motor area, TMS revealed reduced speech-
planning-related neuronal dynamics at the level of the primary
motor cortex in stuttering. Together, this review provides a
focused view of the neurobiology of stuttering to date and
may guide the rational design of future research. This future
needs to account for the perpetual dynamic interactions

between auditory, somatosensory, and speech motor circuits
that shape fluent speech.
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Abbreviations
AF Arcuate fasciculus
ALE Activation likelihood estimation
DTI Diffusion tensor imaging
FA Fractional anisotropy
FDR False discovery rate
IFG Inferior frontal gyrus
IPL Inferior parietal lobe
M1 Primary motor cortex
MEP Motor evoked potential
MFG Middle frontal gyrus
MTG Middle temporal gyrus
SLF Superior longitudinal fasciculus
SMA Supplementary motor area
SMG Supramarginal gyrus
SPL Superior parietal lobe
STG Superior temporal gyrus
TBSS Tract-based spatial statistics
TMS Transcranial magnetic stimulation
VBS Voxel-based statistics

Introduction

Stuttering is a speech disorder which most often occurs be-
tween the age of 3 and 6 years [1]. Lifespan incidence is
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higher than 5 %, with high rates of recovery (52–87 %) [2, 3].
Lifespan prevalence is 0.72 % with a sex ratio of 2.3 [4].
Neither etiology nor pathogenesis is known [5]; thus,
stuttering is characterized by its symptoms. The hallmark
signs of stuttering are involuntary sound and syllable repeti-
tions, sound prolongations, and speech blocks [6]. In some
cases, additional facial and limb movements such as
grimacing, hand tapping, or stamping with one’s foot accom-
pany these speech motor signs. Strategies to avoid stuttering
include word substitutions, sentence reordering, but also to
fall silent in certain situations. Failure in communication pro-
vokes negative emotions such as fear and embarrassment. The
course of stuttering varies across individuals and distinct phe-
notypes emerge. Depending on severity, stuttering critically
compromises quality of life [7].

Similar to other behaviourally defined disorders, the cause of
stuttering is multifactorial and is associated with various genetic
and environmental risk factors. The large presence of familial
stuttering and the high concordance rate in twins support a ge-
netic role in stuttering [8]. To date, few linkage studies have
nominated contributing genes [9, 10]. Genome-wide signifi-
cance [10] still awaits replication [11••] and more genome-
wide association studies are required [12]. It remains to be seen
whether future efforts will demonstrate the polygenetic basis of
stuttering and thus shed light on the questions of involved trans-
mission models, chromosomes, genes, or sex factors.

The phenomenon of stuttering has given rise to manifold
theories, each shaped by the perspective of a certain field such
as for example analytic psychology [13], speech and language
pathology [1, 5, 14], psychology [15, 16], linguistics [17–19],
biomechanics [20–22], and neuroscience [23–27]. Neuroscience-
based hypotheses have included an aberrant dominant hemi-
sphere structure [28–30], basal ganglia dysfunction [23], a dis-
connection syndrome [31], altered brain timing networks [25, 26,
32, 33], or an altered sensorimotor integration [20, 34, 35], most-
ly interrelating with each other. This multiplicity of causes is
plausible due to the fact that a broad assortment of linguistic,
cognitive, and sensorimotor processes are involved in speech
production. Speech is a very complex sensorimotor action, and
its intimate connection to language, a defining feature of human
cognition, makes speech and stuttering a very complicated field
of study for neuroscientists and neurologists. In the last 30 years,
studies on the neurobiology of stuttering have improved our
understanding of potential mechanisms, but there are still funda-
mental questions open. Here, we will summarize the main neu-
roscientific findings on chronic persistent stuttering.

The Continuous Speech Stream

The ultimate readout of language planning and speech motor
control is articulation that results in an audible, smooth, contin-
uous stream of speech. Articulation is a demanding coordinative

challenge because it requires the orchestration of respiratory,
laryngeal, and supralaryngeal structures by using approximately
100 muscles [36]. The respiratory system regulates the outflow
of air during speech and thus provides energy for the acoustic
targets of speech. The laryngeal system generates the quasiperi-
odic and tone-like sound fundamental for pitch modulation,
vowels, and voiced consonants (e.g., [b], [z], and [m]). Voiceless
and aspirated consonants (e.g., [p], [s], and [h]) require timely
voice offsets transmitted by short transient glottal abductions.
The supralaryngeal system comprises the pharyngeal, oral, and
nasal cavities whose architecture and configuration shape the
timbre and sound of the generated acoustic signal. The
supralaryngeal system, also called the vocal tract, can be con-
stricted at different places, for example via lip closure; lip pro-
trusion; tongue tip or body elevation, or retraction; and velum
elevation. Characteristic sound features of speech vowels are
generated by articulatory gestures such as jaw lowering, tongue
body elevation, and lip protrusion. In contrast, distinct acoustic
features of consonants are generated by the magnitude of ob-
struction, resulting in bursts due to closure and friction-like noise
due to fine-tuned constriction.

During speaking, our articulators are continuously in motion
[37]. Our thoughts are transformed into coupled articulatory
patterns that carry specific melodies and rhythms. Prosody and
articulation are built upon motor units that act on multiple time-
scales. Their execution happens simultaneously, in an overlap-
ping or subsequent manner continuously adapting to ever-
changing contexts due to changes in speaking rate, co-articula-
tion, or emotional load. Imagine a machine buildup of all nec-
essary effectors and degrees of freedom enabling the spatio-
temporal dynamics of sound production. Why would such a
machine only produce scattered sounds but not smooth, fluid
speech? One aspect is the unsolved problem of prosodic model-
ing in speech synthesis [38]. The other problem is a missing
feedback system in current speech synthesis programs. Human
speech production is closely coupled to its perception. The key
to fluent speech is a production-perception interaction. The time-
ly sequencing and context-dependent binding of speech units are
constantly monitored and adjusted by an effective sensorimotor
integration [39]. Feedback-related control couples not only per-
ception and production processes but also internal models that
closely relate to the sound envelop of a corresponding utterance
[40] possibly translating auditory targets into motor commands.
For this reason, it is necessary to consider the output and input
systems as well as internal models, interfaces, and monitors to
comprehensively elucidate the neurobiology of stuttering.

Neural Underpinnings of Persistent Stuttering:
from Structure to Function

Chronic persistent stuttering is highly heterogeneous with re-
gard to symptoms, avoidance behavior, applied strategies to
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overcome disfluencies, and severity. Therefore, it is not sur-
prising that imaging studies have produced diverse, puzzling,
and sometimes contradictory results [41]. It has been sug-
gested that the Bcore^ of the stuttered response may have
nothing to do with changes in functional imaging observed
at rest, during speech, or following therapy [42]. This review
will not outline the diverging neuroimaging findings of the
last 30 years. In fact, we rather have concentrated on published
findings from diffusion tensor imaging (DTI) in an informa-
tive meta-analysis to obtain the most robust white matter
changes in persistent stuttering currently reported. Subse-
quently, we relate these structural findings to irregular brain
function as described in two recent activation likelihood esti-
mation (ALE) meta-analyses [43••, 44••]. To account for the
fact that the neural organization of speaking employs recurrent
networks working at a high temporal resolution, we comple-
ment the view by reviewing results of those few transcranial
magnetic stimulation (TMS) studies available.

DTI—the Left Dorsal Stream and Interhemispheric
Somatosensory Connections Are Affected in Stuttering

Fractional anisotropy (FA) is the most frequently reported pa-
rameter of DTI. It measures the directionality of water molecule
mobility on a submillimeter scale. This directedness is especially
high along the myelinated axons of the white matter, though
orientation distribution of axons and the degree of myelination
are not the only influencing factors. Axon diameter distribution
and the axonal tissue fraction or density affect the magnitude of
the FA as well. Moreover, the macroscopic geometrical arrange-
ment of white matter bundles such as crossing or fanning fibers
comes into play especially at the low resolutions of 2–3 mm3

usually employed in human diffusion-weighted MRI. However,
a reduced FA is commonly interpreted as less coherent white
matter structure [45]. Group comparisons of neuroimaging pa-
rameters are not trivial, as individually shaped brains need to be
aligned to a common space. To render DTI group statistics pos-
sible, this normalization is most often achieved by the projection
of voxels with the highest FA in the center of each gyrus or white
matter tract to a skeleton that represents a common tract-based
template for the studied group (tract-based spatial statistics,
TBSS [46]).

To date, nine DTI studies have reported whole-brain FA
reductions from white matter regions in cases with persistent
stuttering (Table 1). Sixty widespread loci result from the sev-
en studies that examined subjects older than 14. Loci number
and variability increase when adding studies in children (aged
3 to 12) as well (Fig. 1a). To reduce dimensionality, we cal-
culated an informative meta-analysis of the coordinates of
decreased FA using the ALE method. This method was intro-
duced for the meta-analysis of functionalMRI activationmaps
and detects three-dimensional conjunctions of coordinates,
weighted by sample size [47]. The 60 loci that were included

were from seven studies which interrogated 121 persons who
stutter and 124 fluent speakers aged 14 to 52 years. Higher FA
values in persons who stutter were not considered because
increases are infrequently reported. The current analysis
yielded three clusters of lower FAvalues in persons who stut-
ter (p<0.001; FDR q<0.05; Fig. 1b), located in the left hemi-
sphere and in the corpus callosum.

Subsequent deterministic DTI tractography served to estimate
the course of the white matter connections passing through the
significant clusters of the currentmeta-analysis. The chosen high-
quality diffusion tensor image of a representative single young
healthy subject has an isotropic resolution of 1 mm acquired on
an ultra-high-fieldMRI scanner using 60 diffusion directions and
4 averages [48, 49]. The first cluster was located in the left
superior longitudinal fasciculus (SLF III, 344 mm3 centered at
[41, 53, 42]; Fig. 1c left) of the inferior parietal lobe (IPL) adja-
cent to the angular gyrus and the posterior division of the
supramarginal gyrus (SMG). Reconstructed connections termi-
nated in the postcentral gyrus, in the ventral premotor cortex, and
in the posterior-ventral area of the inferior frontal gyrus (IFG)
pars opercularis as part of Broca’s area. The second cluster was
located below the fundus of the left central sulcus in the left SLF
but this time also including fibers of the arcuate fasciculus (AF,
280 mm3 centered at [38, 22, 30]; Fig. 1c middle). Connections
terminated frontally in the ventral motor cortex, in the ventral
premotor cortex, and in the posterior part of Broca’s area, the
IFG pars opercularis; parietal terminations reached the SMG and
the angular gyrus; and temporal terminations reached the poste-
rior superior temporal gyrus (STG) and in the middle temporal
gyrus (MTG). The third cluster was placed in the posterior
midbody of the corpus callosum (240 mm3 centered at [3, 22,
25]; Fig. 1c right) where interhemispheric fibers pass through and
terminate at the postcentral and precentral gyri close to the vertex.

Our current meta-analysis related the most robust white
matter changes in stuttering to the left dorsal language stream.
This is in line with diffusion tractography studies reporting a
reduced FA in these streams [50], the absence of streamlines in
a large portion of the left AF [51], as well as a reduced
tractography density of the left SLF III [52] in persons who
stutter compared to fluent speakers. The four branches of the
SLF and AF are the prominent fiber bundles mediating the
interaction between frontal, parietal, and temporal regions
[53–55]—also evident in the current tractography results.

Another robust outcome of the current meta-analysis was
the reduced FA in the interhemispheric fibers of the posterior
midbody of the corpus callosum. Our deterministic fiber track-
ing showed that the disrupted callosal connections most likely
connect sensorimotor regions (Fig. 1c right). The reconstruct-
ed pathways link medial regions of the post- and precentral
gyri, but the more lateral regions that are known to control
orofacial structures were not involved. Before drawing con-
clusions on this restricted course, one should consider that
transcallosal fibers are massively crossed by orthogonal
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association and projection fibers. The DTI tractography algo-
rithm used is influenced by these crossing fiber populations,
and the reconstruction of all callosal connections cannot be
easily solved [56]. No diffusion tractography study on
stuttering has fully reconstructed transcallosal connections.
This may be due to these methodological difficulties. Hence,
the current tractogram does not allow ruling out an involve-
ment of fibers terminating in ventral sites of the sensorimotor
cortex.

The interpretation of the reduced FA values is not trivial.
Particularly, the dorsal stream is affected by crossing fibers
from transcallosal as well as corticospinal and corticothalamic
connections or other subcortical loops.Whether FA reductions
result from a weakened intrahemispheric connectivity, a
strengthened interhemispheric connectivity, or both remains
to be shown. Ultra-high-field imaging [48] in combination
with a sophisticated tracking algorithm [56] might disentangle
macro-anatomy-related changes. In contrast, FA is not affect-
ed by crossing fibers within the corpus callosum; fibers run
exclusively in one direction, reducing the number of variables
that influence FA to the degree of myelination, axon diameter
distribution, and axon population density. The axons with the
largest diameter reside in the posterior midbody of the corpus

callosum [57] in healthy human subjects. From this, it follows
that the interhemispheric transmission is fastest and most ef-
ficient in this area which is capable of transmitting reliable,
precisely timed neuronal coupling. Hence, it is plausible that
the frequency-specific interhemispheric correlation structure
of spontaneous oscillatory neuronal activity is nested in the
highest frequency range (32–45Hz) between the sensorimotor
cortices compared to the temporal lobes (4–6 Hz) and the
lateral parietal areas (8–23 Hz) [58]. Large-diameter axon fi-
bers may also determine the degree of interhemispheric-
correlated fMRI resting-state activity which is again highest
in the somatosensory cortices [59]. In stuttering, the reduced
FA could be related to either reduced myelination or altered
axonal diameter distribution [60] in the affected area. Howev-
er, these two possibilities could have different outcomes:
While reduced myelination would cause a deficient interhemi-
spheric interaction, increased density of large-diameter axon
fibers could result in a strengthened interhemispheric interac-
tion. For this reason, it would be desirable to employ advanced
methods that better resolve the axon diameter distribution
Bin vivo^ [61, 62].

To summarize, non-invasive in vivo DTI provides the most
important insights into connectivity changes of brain networks

Table 1 Diffusion tensor imaging studies published between August 2002 and May 2015

DTI-study Method PWS Ctr Gender Age range p value Contrasts

TBSS/VBS

Sommer et al. [31] VBS 15 15 M/F 18–44 0.001 PWS<Ctr

Watkins et al. [65] TBSS 17 13 M/F 14–27 0.0025 PWS<Ctr

PWS>Ctr

Chang et al. [64] TBSS 9 12 M 9–12 0.001 PWS<Ctr

PWS>Ctr

Kell et al. [106] TBSS 13 13 M 18–44 0.001 PWS<Ctr

0.05* PWS>Ctr

Connally et al. [50] TBSS 29 37 M/F 14–45 0.002a PWS<Ctr

PWS>Ctr

Cai et al. [66] TBSS 20 18 M/F 18–47 0.002a PWS<Ctr

Cykowski [126] TBSS 13 14 M Nan 0.05* PWS<Ctr

Civier et al. [67] TBSS 14 14 M/F 19–52 0.001 PWS<Ctr

0.05 PWS<Ctr

Chang et al. [63••] TBSS 37 40 M/F 3–10 0.001 PWS<Ctr

PWS>Ctr

Fiber tracking Affected tracts

Connally et al. [50] Probabilistic 29 37 L corticospinal tract, L and R AF

Chang et al. [52] Probabilistic 15 14 L SLF, L AF

Cieslak et al. [51] Deterministic 8 8 L and R AF, L temporal-striatal tract

Kronfeld-Duenias et al. [68] Deterministic 15 19 L and R frontal aslant tract, L corticospinal tract

VBS voxel-based statistics, TBSS tract-based spatial statistics, PWS persons who stutter, Ctr controls, M male, F female, SLF superior longitudinal
fasciculus, AF arcuate fasciculus
a k≥10
*Corrected p values
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in stuttering. Short- and long-range widely integrated, parallel,
and often redundant neuronal subcircuits supply speech fluen-
cy. It is likely that connectivity changes of speech-relevant
perisylvian brain areas lead to disruption of speech functions.
Our meta-analysis emphasized the important role of left hemi-
sphere corticocortical connections, namely the SLF and the
AF, and transcallosal connections of the posterior midbody
for fluent speech production. However, right hemisphere con-
nectivity [50, 51, 63••, 64–66] as well as axons of the
corticospinal tract [50, 63••, 64–68], thalamic [64, 67], and
cerebellar [50, 63••, 64, 65] connections have also been re-
ported to show irregularities in stuttering. Similar to other
behavioral and cognitive processes, fluent speech production
depends on the embedding of various areas in the human
connectome [69••]. The following section of functional imag-
ing changes in stuttering mainly summarizes the altered re-
cruitment of cortical and subcortical areas suggesting irregular
input and output operations within the speech-related
connectome.

fMRI—Right Frontal Over-activation Characterizes
Stuttering While Right Parieto-temporal Co-activation
Characterizes Greater Fluency

So far, we have only elaborated on structural imaging, focus-
ing particularly on white matter integrity and thus the
connectome. A lot is already known about the underlying
function of the connections that come into focus here. Pre-
dominantly, left dorsal paths subserve linguistic as well as
speech motor functions. The AF, the medial part of the dorsal
stream, connects the IFG pars opercularis to the STG and
mediates complex syntax [70, 71] and phonology [72•].
Sublexical repetition of speech [73], speech planning [72•],
and articulation [74] map to the lateral part of the dorsal stream
and the indirect anterior portion of the SLF connecting the
precentral gyrus to the SMG and the STG [55]. Articulatory
phonetic skills rely on an effective auditory-motor integration
partly mediated by the recurrent networks of these dorsal
streams [53, 75••, 76].

The functional anatomy underlying stuttering has mostly
been studied with positron emission tomography [77–82] and
functional magnetic resonance imaging [83–87]. Two activa-
tion likelihood meta-analyses on stuttering were recently pub-
lished [43••, 44••]. The meta-analyses considered 23 function-
al imaging studies published over the past 30 years; these
included 213 [44••] and 222 [43••] persons who stutter and
186 [44••] and 188 [43••] control subjects, and Fig. 1d, e
summarizes their outcome.

These meta-analyses highlight the neurofunctional hall-
mark signs of persistent chronic stuttering. What is striking,
is the consistent over-activation of the frontal motor areas of
the right hemisphere encompassing the primary motor cortex,
the premotor cortex, the pre-supplementary motor area (pre-

SMA), the supplementary motor area (SMA), the IFG, the
insula, and the frontal and the rolandic operculum [43••,
44••] (Fig. 1d). An opposite pattern of cortical activity
emerges in the left hemisphere. Here, frontal regions show
no over-activation but instead a reduced activation of the M1
larynx area combined with reduced activity in the planum
temporale and the middle temporal gyrus. The left cerebellar
vermis and the left red nucleus also display robust imaging
changes that emerge from a comparison of speech-related he-
modynamic differences between persons who stutter and flu-
ent speakers. The only region that shows a higher activation is
the right parietal lobe. Stronger activations are located in the
anterior intraparietal sulcus and in the IPL PFcm. The remark-
able right hemisphere over-activation in stuttering suggests an
imbalanced hemispheric lateralization [28, 29]. It is not yet
clear whether this imbalance causes stuttering, whether it is
the result of impeded left fronto-parieto-temporal signal pro-
cesses, or if it reflects compensatory mechanisms [31, 78, 84,
88–90].

Every investigation of stuttering tries to find out how
fluency of speech production can be attained. Therefore,
imaging contrasts that relate brain activations to greater flu-
ency in persons who stutter are of special interest. In the
right hemisphere, such contrasts show a shift of activation
patterns to parietal areas spanning several loci in the IPL,
heavy involvement of the temporal lobe (Heschl’s gyrus,
planum temporale, and STG) and the cerebellum. Greater
fluency is associated with the recruitment of superior tem-
poral and inferior parietal regions in both hemispheres,
whereas severe stuttering is associated with dysfunction of
a distributed network of classical motor areas engaging sen-
sorimotor regions amongst the central sulcus including the
left and right somatosensory cortex, the left larynx motor
cortex, extended regions of the IFG including the left pars
opercularis, the left pars triangularis and right pars
orbitalis, bilateral SMA, and the cerebellum (Fig. 1e).
Fluency-related activations in unimodal and heteromodal
association areas of the parietal and right temporal lobe,
the right pars opercularis, and the posterior ventral part of
right Broca’s region strongly suggest an important role of
internal models and feedforward- and feedback-relevant
control mechanisms during speaking. In fluent speakers,
lateralization of speech production seems to start in the left
temporal and parietal regions [91], namely the somatosen-
sory cortex, the auditor cortex, and the planum temporale
which might be the source of the early sound feature-related
cortical entrainment observed in left Broca’s area and the
left premotor cortex even ahead of external speech produc-
tion [40]. Equivalent studies in stuttering are missing, leav-
ing the question open as to whether right lateraliza-
tion already occurs in the planning stage. However, one
TMS study has indeed observed missing lateralization at
an early stage.
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TMS Indicates a Restricted Range of Neuronal Dynamics
at the Level of the Primary Motor Cortex in Stuttering

Both DTI and fMRI elucidate the spatial distribution of large-
scale neuronal dysfunction in persistent stuttering, but its

physiological basis remains unclear. Nonlinear neuronal dy-
namics consist of excitatory and inhibitory activation, but the-
se cannot be discriminated with in vivo neuroimaging. The
only non-invasive technique that allows to measure excitatory
and inhibitory brain function in healthy humans is TMS [92].
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ATMS pulse induces currents in conductive tissue such as the
human cortex. When applied to the motor cortex, neurons are
stimulated and evoke motor potentials (MEP) serving as a
readout measure of excitability dynamics of local circuits.
State-dependent excitability regulation is quantified by com-
paring baseline MEP amplitudes with amplitudes resulting
under test conditions. Fortunately, the primary motor cortex
is the final overarching cortical output region [93] that gener-
ates speech behavior. Almost all dysfunctional computations
accumulate at this site, making it an attractive target for
stuttering research even in the nonspeech domain [94–96].

Paired-pulse TMS protocols are suitable for testing
intracortical inhibitory and excitatory circuits [97]. Compared
to single-pulse responses, MEP amplitudes are reliably reduced
when a subthreshold pulse is followed by a superthreshold pulse
with a short interstimulus interval of 2 to 3 ms. This inhibition is
likely caused by excited GABAergic interneurons [98, 99]. In
stuttering, ipsilateral and contralateral tongue representations in
the left and right hemisphere showed a delayed inhibition of
intracortical circuits [100]. The opposite phenomenon,

intracortical facilitation, can be generated when applying paired
pulses with longer interstimulus intervals of 10 to 15 ms. In this
case, MEP amplitudes are amplified driven by the sensory input
on excitatory motor circuits [101••]. In stuttering, this facilitation
is remarkably reduced in the primary motor tongue area of both
hemispheres [100]. Thus, intracortical excitability regulation is
hampered in an area that controls one of the main effectors of
articulation. The combined reductions of intracortical inhibition
and facilitation indicate a restricted range of neuronal dynamics
at rest.

Although orofacial midline muscles such as the tongue are
bilaterally innervated from corticobulbar projections of both
hemispheres, speech motor plans are primarily encoded in the
left hemisphere motor cortex. However, this functional asymme-
try towards the left orofacial motor cortex is missing in stuttering
[102••], suggesting that a lack of a speech-motor-planning-
induced facilitation of the left orofacial motor cortex is a major
pathophysiological cause of disfluent speech production. This
lack might be related to the under-activation of this area [32] as
frequently reported in neuroimaging studies [44••] implicating a
fallible transmission or integration of speech-planning-related
feedforward signals [20, 33, 103•]. Conversely, given the regu-
larly reported over-activation of the right primary motor cortex
in stuttering [77, 85, 87, 104–106], one might expect to see a
speech-planning-induced facilitation of this site, but this pattern
was not noted [102••].

The right hemisphere is known to play a dominant role in
prosody perception and production [107–110]. One theory on
stuttering suggests a misalignment of segmental (phonemic)
and suprasegmental (prosodic) phonetic features [111]. While
consonantal voice onsets and offsets act on a fast temporal
scale with a resolution of 20 to 50 ms [112], features such as
rhythm, stress, and melody patterns span the temporal frame
of a whole utterance. The underlying auditory-to-articulatory
alignment requires a precise temporal coupling at multiple
timescales. Fast auditory signals are preferentially integrated
in the left auditory cortex, while slow auditory signals are
preferentially integrated in the right auditory cortex [113].
Supposing the sensorimotor control of slower suprasegmental
features to be lateralized to the right hemisphere, and slow
auditory targets such as melody and stress mainly arise from
the right frontal motor regions. This would suggest speech-
planning-induced facilitation of the right larynx area rather
than the right tongue area. Especially prosodic features are
regulated at the laryngeal level, and notably the right primary
motor larynx area shows increased hemodynamic responses in
persons who stutter [44••].

Conclusion and Outlook

Speech is regulated by co-activated neuronal circuits of
large-scale dynamic networks [114] and their dysfunction

�Fig. 1 DTI (a–c) and fMRI (d, e) imaging changes associated with
persistent chronic stuttering. a Loci of reduced FA as reported in
multiple studies were shown on a transparent isosurface of the MNI
brain. Red spheres indicate foci from studies of persons aged 14 to 52
who stutter, and orange spheres indicate loci from children aged 3 to 10
who stutter [63]. b Blue illustrates clusters of reduced FA in persistent
stuttering as derived from a meta-analysis using the activation likelihood
estimation (ALE) method (p<0.001; FDR q<0.05). c Diffusion
tractography derived from full brain deterministic fiber tracking in
[125] an ultra-high-resolution DTI data set of a single subject [49].
Tracts are shown that cross a sphere with a diameter of 5 mm
surrounding the MNI coordinates of the meta-analysis after a linear
registration to the subject’s native space. d Trait stuttering is captured
by contrasts between persons who stutter and fluent speakers.
Therefore, it reveals brain areas that are either more active (red and
orange dots) or less active (blue and light blue dots) in persons who
stutter compared to fluent speakers. Right hemisphere over-activations
reside in the precentral gyrus, lip motor cortex, rolandic operculum,
insula, IFG pars opercularis, IFG pars orbitalis, pre-SMA, middle
frontal gyrus, IPL, and SPL. Left hemisphere over-activations reside in
the SMA and in the SPL. Left hemisphere under-activations are located in
the left larynx motor cortex, left MTG, left superior temporal sulcus,
cerebellar vermis, and the red nucleus [43••, 44••]. Trait stuttering
contrasts enlighten brain abnormalities that cause stuttering or that
compensate for it. e Supplementary, state stuttering analyses capture
within-group contrasts which enlighten areas in the brain that are more
active when fluency is enhanced (green and light green dots) compared to
areas that are more active when fluency is worse (purple and violet dots).
Disfluency-related activations reside in Broca’s area in the right IFG pars
orbitalis, the left IFG pars opercularis and pars triangularis, bilaterally in
the SMA, the somatosensory cortex, and the cerebellum, and in the left
precuneus and the left globus pallidus. Fluency-related activations reside
mostly in the right hemisphere, namely the Heschl gyrus, the planum
temporale, the posterior STG, MTG, SMG, IPL, IFG pars opercularis,
and the MFG. Left hemisphere correlates are in the IPL [43••, 44••]. State
stuttering contrasts might reveal causes of stuttering events, attempts to
compensate for stuttering, or the correlates of stuttering as a motor act
[44••]
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results in persistent stuttering. Reduced speech-related dy-
namics in the left hemisphere and augmented right hemi-
sphere involvement are cardinal neuronal signs possibly
caused by imbalanced wiring. This review lacks a detailed
description of subcortical contributions to stuttering be-
havior, although there is converging evidence for cerebel-
lar, thalamic, as well as basal ganglia irregularities [23,
50, 65, 86, 115–118]. We attach importance to the cortical
dynamics within the speech-related connectome as a result
of new meta-analyses offering a condensed view of imag-
ing changes associated with chronic persistent stuttering.
This is by no means intended to scale down the impor-
tance of neuroimaging findings derived from every indi-
vidual study. Quite the contrary is true; it elucidates that
current methods are not sensitive enough to fully disen-
tangle the brain dynamics of stuttering. However, our re-
view provides a focused view on the brain deficits of
persons affected with persistent stuttering, which might
open the gate for a rethinking of how best to proceed.
Future studies employing TMS, deep brain stimulation
[118], sophisticated neuroimaging techniques [119, 120],
and selected animal studies [121, 122•, 123•, 124•] may
advance mechanistic models [75] and may eventually
guide success in therapeutic efforts aiming to facilitate
fluency. The following questions are of particular interest:
What are the interhemispheric interactions that allow flu-
ent speech production and how do they change in
stuttering? Which brain dynamics characterize single acts
of stuttering and would it be possible to interfere with
those sudden interruptions of the integrity of the speech
motor network? Is it possible to employ special hearing
aids to facilitate the maturation of temporo-parieto-frontal
interactions necessary for stable sensorimotor integration?
Which neuromodulatory interventions could strengthen
the left fronto-parieto-temporal network to overcome the
problem that only fluency-enhancing techniques such as
chorus speaking or speaking to the rhythm of a metro-
nome unburden the computational load of the frontal mo-
tor network [116] and bypass the IFG, precentral gyrus,
insula, putamen, nucleus caudatus, and globus pallidus?
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