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Abstract A new appreciation of the microbiome is changing
the way we perceive human health and disease. The
holobiontic nature of humans is even etched into our DNA
in the form of viral symbionts. Empirical evidence for the
presence of endogenous retroviruses (ERVs) in the human
genome and their activity in homeostatic and pathologic states
has accumulated; however, no causal relationship with human
disease has been established to date. In this review, we will
focus on the role of endogenous retrovirus-K in neurologic
disease. Specifically, we will attempt to reconcile the patho-
logic contribution of ERVK in disparate neurologic diseases
by providing evidence as to inter-individual differences in
ERVK genotypes, addressing the molecular regulation of
ERVK, and provide detailed examples of ERVK-mediated
processes in nervous system diseases.
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Introduction

The DNA provirus hypothesis—where viral DNA integrates
into a host genome—was proposed by Nobel laureate Howard
M. Temin in the 1960s [1]. Indeed, over 8% of humanDNA is
the result of retrovirus integrations scattered throughout the
genome. Among the 31 lineages of endogenous retroviruses

(ERVs) within the human genome, (which are spread among
several Retroviridae subfamilies), the betaretrovirus ERVK
(alias human endogenous retrovirus-K, HERV-K) is the most
recently endogenated ERV. The ERVK (HML-2) clade is
estimated to have been active as recently as 250,000 years
ago [2••], and is considered the most transcriptionally active
ERV. Several insertions in the human genome are relatively
intact, permitting the expression of viral RNA and proteins.
Full-length ERVK elements retain a classical retroviral ge-
nome structure, with core genes gag (group-specific antigen),
pr (protease), pol (polymerase), and env (envelope) flanked by
long terminal repeats (LTRs) [3]. Regulatory proteins within
ERVK have also been described [4, 5]. There is even evidence
of ERVK virion production in HIV infection [6] and lympho-
ma [7]. Unlike canonical retroviruses, Dube et al have recently
proposed that ERVK virions can contain either infectious viral
RNA or viral DNA genomes [8], thus changing how ERVK
expression and replication should be viewed in the context of
health and disease pathology.

Genotypic Interindividual Differences in ERVK

There are approximately 1000 ERVK (HML-2) integrations in
humans, based on the human reference genome. Of these, all
are considered replication-defective, with only 24 fixed loci
retaining the capacity to encode viral proteins from at least 1
of their genes [3, 9]. However, evidence suggests that this is a
fraction of the entire ERVK presence within individual human
genomes [2••, 10, 11•].

Polymorphic ERVK insertions (unfixed proviruses) have
been identified in several cohort studies [2••, 3, 9, 12, 13],
with considerable variation between ethnic groups, as well as
distinct inter-individual profiles. These studies indicate that
people carry a distinctive ERVK signature based on individual
genotypes. For a given locus, ERV polymorphism can occur as
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integration of a full-length ERV (with varying degrees of
coding capacity), a solitary LTR, or an unoccupied pre-
integration site [3, 9, 14]. Recently, Belshaw’s group has per-
formed Next Generation Sequencing on individual human
genomes revealing that several unfixed ERVK (HML-2) loci
are absent from the human reference genome annotation [2••].
Moreover, the frequency of unfixed ERVK (HML-2) loci var-
ied dramatically in the populations tested [2••], further
supporting the idea that specific ERVK signatures may be
associated with inter-individual differences in ERVK expres-
sion, pathology and disease states.

Sequence variation, resulting in ERValleles, may also alter
the function of viral proteins. For example, the ERVK-18
envelope protein is a superantigen that is encoded by 3 distinct
alleles, which can alter the amino acid sequence of the protein
[15], with predicted but uncharacterized biological effects.
Among these 3 ERVK-18 env alleles, the K18.3 form is the
minor allele with a frequency of 10.8 % within the Caucasian
population [15]. The ERVK-18 env polymorphism has been
shown to be a risk factor for Multiple Sclerosis (MS); homo-
zygous carriers of the K18.3 allele had a significantly in-
creased risk of this disease, suggesting that ERVK-18 may
influence the genetic susceptibility to MS [16, 17]. ERVK-18
has also been associated with enhanced risk of Type 2 diabetes
(T2D) in individuals with schizophrenia (SCZ) [18], with a
risk haplotype comprised of 2 single nucleotide polymor-
phisms (SNPs) in the env region (rs558648 and rs1090799).
These results remain controversial, as several cohort studies
disagree over whether ERVK-18 polymorphisms are risk fac-
tors in T2D and SCZ [18, 19].

Phenotypic Variation in the Expression of ERVK

Current research indicates that not all ERVs remain silent
passengers within our genomes; re-activation of ERVK is
associated with many inflammatory diseases, such as cancers
[7], HIV infection [4], rheumatoid arthritis [20], systemic
lupus erythematosus [20] as well as neurologic conditions
including multiple sclerosis (MS) [21], schizophrenia (SCZ)
[22], bipolar disorder (BD) [22], amyotrophic lateral sclerosis
(ALS) [23•], and Creutzfeldt-Jakob disease (CJD) [24]. While
there is ubiquitous ERVexpression in many tissues, regardless
of health or disease, it has been shown that individuals largely
exhibit distinct ERVexpression signatures [22]. A difficulty in
understanding these individual profiles and their association
with disease states is a lack of appreciation for the biological
control of ERVs.

At the molecular level, there is limited experimental evi-
dence to indicate the cellular state or signals that are required
to control the expression of ERVK. Accumulating evidence
points to the importance of epigenetic mechanisms in the
control of transposable elements including ERVs, and has

been reviewed elsewhere [25]. The transcription of ERVK is
under the control of viral promoters called long terminal
repeats (LTRs), which flank either side of the provirus. To
date, only transcription factors Sp1 [26], Sp3 [26], YY1 [27],
MITF-M [28], and steroid hormone receptors [29, 30] have
been experimentally shown to induce ERVK activity in hu-
man cells. Our group has recently focused on examining the
role of proinflammatory transcription factors in the induction
of ERVK expression. Using bioinformatics, we have revealed
that the ERVK promoter contains multiple conserved putative
binding sites for proinflammatory transcription factors, in-
cluding nuclear factor kappa B (NF-κB) and interferon re-
sponse factors (IRFs) [31••]. Specifically, the viral promoter
harbors 2 conserved Interferon Stimulated Response Elements
(ISREs) (Fig. 1); thus, inflammatory stimuli may modulate
ERVK transcription. We have also generated substantial ex-
perimental evidence using human neuron and astrocyte
in vitro models to support this claim (unpublished results).
Thus, ERVK can exploit anti-viral immune responses and
perhaps certain disease backgrounds, as select transcription
factors can promote ERVK expression.

Additional evidence supports the importance of innate
immune signaling in ERVK re-activation, as select antiviral
and proinflammatory cytokines can enhance ERVK expres-
sion. Cytokines, notably Tumor Necrosis Factor α (TNFα)
and Interferon γ (IFNγ), play critical roles in the pathology of
many neurodegenerative diseases including ALS [32, 33],
SCZ [34], MS [35], and CJD [36]. TNFα and IFNγ are potent
activators of NF-κB and IRF1, respectively, and may, thus,
enhance ERVK transcription in these neuroinflammatory dis-
eases (Fig. 1). We have recently generated evidence in human
neuron and astrocyte in vitro models to support this claim
(unpublished results). TNFα has previously been demonstrat-
ed to augment ERVK expression in rheumatoid arthritis—
another inflammatory disease [37]. TNFα-mediated induction
of ERVW env expression, following the binding of NF-κB
with the ERVW promoter, has also been documented [35]. In
addition, ERVK-18 expression can be enhanced upon IFNα
treatment of peripheral blood lymphocytes [15]. Exogenous
IFNα drives IRF9 activation and its translocation to the nu-
cleus where it binds to ISREs in target promoters (Fig. 1).
These results are consistent with our observation that ISREs in
the ERVK LTR serve as key promoter elements. The ERVK
env may also confer a self-regulating capacity, as an immu-
nosuppressive domain in the transmembrane (TM) protein
alters cytokine release through its immunomodulatory effects
[38•]. Although recombinant ERVK transmembrane protein
and ERVK virions induced substantial IL-10 secretion in
peripheral blood mononuclear cells (PBMCs), reproducible
inter-individual differences in the IL-10 response were ob-
served [38•]. Moreover, notable enhancement of proinflam-
matory cytokine expression and impairment of genes involved
in innate immunity [38•], further suggests that the ERVK TM
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protein will alter the regulation of ERVK, as well as host
genes. Additionally, ERVK encoded dUTPase can activate
NF-κB and promote proinflammatory cytokine secretion
[39]. Additional ERV proteins are suspected to influence
protein-protein interactions in humans [40]. Considering that
signaling pathways are finely tuned based on the activity of
interacting proteins, the genetic background of the host will
play a signif icant role in ERVK expression and
immunomodulation. These findings suggest that ongoing sig-
naling cascades in neuroinflammatory disease may trigger
ERVK re-activation, thus, promoting the expression of viral
RNA and proteins, which may further modulate the patholog-
ic status.

Putative Protective and Pathologic Roles of ERVK
in Neurologic Disease

Amyotrophic Lateral Sclerosis (ALS)

Retroviruses, such as human immunodeficiency virus (HIV)
and human T-cell leukemia virus (HTLV), have been associ-
ated with an increased incidence of ALS-like syndromes [41,
42]. Currently, a single study has demonstrated a direct asso-
ciation between ERVK and ALS [23•], despite evidence for
retroviral pathology stemming from the repeated measure-
ment of reverse transcriptase (RT: the retroviral enzyme that
transcribes viral RNA into DNA) activity in this disease
[43–45]. Elevated levels of ERVK pol transcripts (derived

from select HML-2 and HML-3 loci) are detectable in post-
mortem brain tissues of patients with ALS, compared with
tissues from Parkinson’s disease, systemic disease, and acci-
dental death [23•]. Not only was ERVK RNA expressed in
ALS, immunohistological analysis revealed the presence of
RT protein in the cortical neurons of patients with ALS [23•].
Clusters of neurons in the prefrontal and motor cortex of
patients with ALS exhibited the strongest RT expression,
coinciding with the affected brain areas in this disease. An
earlier report demonstrated that over half of ALS patients
examined showed serum IgG reactivity against ERVK
(HML-2) gag protein [46]. Patients with reactive anti-HML-
2 gag antibodies exhibited a 10-fold reduction of viral RNA in
PBMCs, suggesting an effective and ongoing immune re-
sponse against ERVK in these patients with ALS [46]. As
discussed by Alfahad and Nath [47], these studies open new
avenues of investigation into the treatment of ALS.

Schizophrenia (SCZ) and Bipolar Disorder (BD)

Several studies have documented aberrant expression of ERVs
in patients with schizophrenia [22, 48–53], and to a lesser
extent, in patients with bipolar disorder [22, 48]. ERVW gene
expression has been discovered in blood samples [49–51], in
cerebrospinal fluid (CSF) [52], and in postmortem brain tissue
[52, 53] of patients with SCZ, and has been reviewed exten-
sively elsewhere [54]. Specifically, only ERVK10 (HML-2)
RNA was significantly overexpressed in both SCZ and BD
compared with healthy postmortem brain tissue [22]. The

Fig. 1 Proinflammatory signaling cascades and the associated transcrip-
tion factors that may stimulate ERVK gene expression in multiple neu-
rodegenerative diseases. TNFα, IFNγ and IFNα signaling leads to the
phosphorylation (P) and activation of NF-κB (isoforms p50 and p65),
IRF1, and IRF9, respectively. These proinflammatory transcription fac-
tors then translocate to the nucleus, where they bind their respective sites

in the target promoters. The ERVK promoter (5′ LTR) contains multiple
conserved putativeNF-κB binding sites, as well as 2 interferon stimulated
response elements (ISREs) that bind IRFs including IRF1 and IRF9
[31••]. Binding of nuclear NF-κB, IRF1, and/or IRF9 to the ERVK
promoter may induce the expression of downstream proviral genes. Env
envelope, Gag group specific antigen, Pol polymerase, Pr protease
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ERVK HML-7 clade is also significantly overrepresented in
SCZ compared with BD samples (but not in SCZ compared
with healthy controls), and under-represented in samples from
patients with BD compared with healthy-brain samples [22].
A study by Diem et al further demonstrated that ERVK
transcription was not affected by treatment with valproic acid
(VPA; a medication used to treat SCZ) or any of the other
medications tested, indicating that previous findings of an
association between ERVK transcription and SCZ cannot be
explained by patient treatment with any of the 4 medications
analyzed in this study [55•]. To date, this represents limited
and loci-specific alterations in ERVK expression in these
neuropsychiatric diseases.

It has been postulated that it may not be mutations in genes
associated with SCZ that result in a disease state, but rather
mutations in the regulatory regions of these genes [56]. ERV
LTRs are known to have promoter, enhancer, and regulatory
functions [57]. Approximately 50 % of all human-specific
ERVK (hsERVK–HML-2) elements show promoter activity
in human tissues [58]. Epigenetic silencing of ERVs by DNA
methylation is a known phenomenon and is thought to be a
part of the antiretroviral defense system [25]. Therefore, the
silencing or downregulation of genes with ERV sequences in
their regulatory regions may be the consequence of the host’s
attempts to stop the expression of these endogenous viruses.

Recently, a full-length almost intact ERVK (HML-2) se-
quence that displays strong enhancer activity, was identified
near the PRODH gene [59•]. Mutations in PRODH, which
encodes a mitochondrial enzyme, have been found to be
associated with neuropsychiatric disorders, including SCZ
[60]. Given this link between PRODH and schizophrenia,
Suntsova et al attempted to characterize this ERVK locus
(referred to as hsERVPRODH) and its potential enhancer activ-
ity for PRODH [59•]. They showed that the enhancer activity
of hsERVPRODH is regulated by methylation, and it acts syn-
ergistically with the PRODH internal CpG island to activate
the PRODH promoter. Transcriptional analysis showed that
PRODH displays the highest expression level in the hippo-
campus, where hsERVPRODH is hypo-methylated [59•]. The
hippocampus is known to be one of the structures of the brain
that is most affected in SCZ [61]; if hyper-methylation of
hsERVPRODH occurred, aberrant expression of PRODH in
the hippocampus would likely result.

Similarly, an ERVW LTR is located in the regulatory
region of the GABA receptor B1 gene (GABBR1) [56], a
gene located in region associated with risk for SCZ [62]. It is
speculated that hyper-methylation of this ERVW LTR may
downregulate GABBR1 in brains of patients with SCZ [56],
thus, accounting for its altered expression pattern [63, 64]. As
a result, Hegyi et al propose that the overexpression of ERVs
at the onset of disease leads to their subsequent silencing by
hypermethylation, which may pathologically contribute to
diseases such as SCZ [56]. This hypothesis also offers an

explanation as to why ERVW transcripts are readily found
in the CSF of patients with recent-onset SCZ, but rarely in
chronic patients [49, 52, 65]. It could be that the activation of
ERVs occurs early in the etiopathology of schizophrenia or
during highly symptomatic periods of disease, resulting in the
upregulation of some genes for which ERV elements act as
promoters or enhancers. This may be followed by hyperme-
thylation of ERV sequences as a defense mechanism, leading
to downregulation of ERV-regulated genes.

Multiple Sclerosis (MS)

Among ERVs associated with MS, ERVW has been the most
extensively studied. Many studies have reported significant
upregulation of ERVW RNA in brain samples from MS
patients [35, 66]. ERVW env protein is highly expressed
within astrocytes and microglia in MS plaques, and correlates
with the extent of inflammation and active demyelination [35,
66]. Augmented ERVWexpression has also been observed in
the CSF and blood of MS patients [67, 68]. A recent study has
also shown enhanced ERVW DNA copy number in the
PBMCs of women withMS; this phenomenon correlated with
disease severity scores [68]. In contrast, other studies depict a
lack of association between enhanced ERVW expression and
MS. Using high-throughput amplicon sequencing, Schmitt
et al reported a lack of significant difference in ERVW tran-
scripts between MS and control brain tissue samples, despite
clear evidence of inter-individual variability [69]. Similarly,
enhanced ERVW expression in the CSF and blood of MS
patients could not be detected in several studies [70, 71]. Thus,
a definitive association between ERVW activation and MS
neuropathology remains to be established.

Nonetheless, other human endogenous retroviruses, in-
cluding ERVK, have been reported to be upregulated in MS.
Elevated levels of ERVK RNA have been found in the brain
tissue from MS patients [72]. As mentioned above, the
ERVK-18.3 env allele has been determined to be a risk factor
for MS. Interestingly, ERVK-18 env superantigen can be
transactivated by Epstein Barr Virus (EBV) latent membrane
protein LMP-2A [73, 74], and EBV infection is considered to
be one of the major risk factors for MS [75]. Similarly, ERVW
env protein also displays superantigenic properties, and can be
transactivated by EBV infection of astrocytes in vitro [76].
Together, these superantigens may promote the nonspecific
activation of T lymphocytes in the CNS, leading to extensive
demyelination and neuronal injury [77]. Thus, ERV-derived
superantigens may contribute to MS immunopathogenesis,
particularly in the context of EBV infection.

Activation of the host immune system has been implicated
as the ultimate effector in MS pathogenesis. Re-activation of
human endogenous retroviruses in the CNS may play an
important role in this process, as the immune system may
mount an antiviral response against ERV elements in order
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to eliminate ERV-expressing cells. Antiretroviral defense
mechanisms can be mediated by a variety of innate immune
sensors including Pattern Recognition Receptors (PRRs) that
detect retroviral RNA and proteins. PRRs, including Tripartite
motif containing 5 (TRIM5) and Toll like receptor 4 (TLR4),
are known to recognize retroviral capsid and envelope pro-
teins, respectively; engagement of these sensors with their
viral ligands activates signaling cascades that stimulate innate
immunity [78•, 79]. The role of TRIM5 in detection of gag
proteins encoded by MS-associated ERVs has not yet been
studied. Nonetheless, single nucleotide polymorphisms
(SNPs) in TRIM5 gene (as well as SNPs in other viral restric-
tion factors) have been associated with the risk of MS [80].
However, the functional outcomes of these SNPs remain
unclear.

Another mechanism by which ERV proteins may trigger
MS immunopathology is through molecular mimicry. Recent-
ly, ERVWenv proteins were predicted to share several Tand B
cell epitope regions with myelin oligodendrocyte glycoprotein
(MOG) and myelin basic protein (MBP) [81]. This suggests
that ERVW env overexpression in the CNS may break toler-
ance toward host MOG and MBP, generating an autoimmune
response against these myelin proteins, which can explain
extensive demyelination typically observed in MS. However,
the cross-reactivity between ERVW env and myelin protein
epitopes, and the resulting autoimmune reaction, needs to be
validated experimentally. In addition, whether antigen mimic-
ry is also employed by other MS-associated ERVs, such as
ERVK, remains to be explored.

HIV Infection

ERVK activity is well-documented in HIV infection [6, 82]
(reviewed in [4]), including the nervous system (Douville and
Nath, unpublished) [83••]. Recently, Bhat et al have provided
evidence that enhanced ERVK (HML-2) env protein expres-
sion in the brains of HIV infected individuals may confer
neuroprotective effects [83••]. This is based on the observa-
tion that neuroblastoma cells transfected with an ERVK env
expressing construct were protected from injury by
staurosporine and the HIV-1 Vpr protein, compared with the
control vector alone. Moreover, the protection from HIV-1
Vpr toxicity was recapitulated in vpr/RAG1−/− mice which
were adoptively transferred with neural stem cells expressing
ERV-K env into the striatum; these animals exhibited a signif-
icant reduction in TNFα expression compared with controls.
Exaptation of ERVK env may provide neurons a degree of
protection in the context of chronic neurodegenerative
diseases.

As well, cellular cytotoxic responses and antibodies pro-
duced against ERVK can prove to be detrimental to HIV-
infected cells [84, 85•]. During HIV infection, ERVK env
peptides can be a target for cytotoxic T cells [84]. NK cells

may also destroy HIV-infected cells via an antibody-
dependent cytotoxic mechanism, based on in vitro assays
[85•]. Additionally, it was observed that either the HIV strain
or the host were important factors in determining the extent of
ERVK env induction in HIV-infected cells [85•, 86], and thus,
may alter the degree of CNS tissue injury in HIV-associated
neurocognitive disorder (HAND).

In addition, other ERVK proteins may promote changes in
dendritic spine morphology in pyramidal neurons. The ERVK
regulatory protein Rec has been shown to interact with the
mRNA binding protein Staufen-1, causing its accumulation in
the nucleus [5]. This interaction may alter Staufen-1-mediated
mRNA trafficking and turnover, functions that are essential
for regulation of neuronal synapses during long-term plasticity
in learning and memory [87]. The interaction with Staufen-1
also favored Rec-dependent viral RNA transport [5], and thus
may enhance ERVK protein expression. Moreover, ERVK
and HIV gag proteins can both independently interact with
Staufen-1 to enhance their respective production of virions [5,
88], as well as ERVK env expression within HIV-1 virions
[89]. Together, these studies suggest that ERVK expression in
the CNS may have both protective and pathologic
consequences.

Prion Disease

Prion diseases, such as Creutzfeldt-Jakob disease (CJD) in
humans, are a group of rare but fatal neurodegenerative dis-
orders. The causative agent of these diseases is believed to be
an infectious misfolded cellular protein called a prion protein
(PrPSC), which is resistant to proteinase degradation and ac-
cumulates inside neurons, leading to neuronal toxicity and
death [24, 90]. The disease propagates upon transmission of
PrPSC to new cells, which further catalyzes the conversion of
the normal cellular prion protein (PrpC) into its abnormal
form; however, the mechanisms behind this conversion have
not been clearly elucidated.

Recently, augmented expression of several ERVs has been
observed in the CSF of CJD patients [24]. Although the
frequency of ERVK transcripts was higher in CJD CSF sam-
ples compared with the controls, this result did not reach
statistical significance. Nonetheless, the increased expression
of ERVs in CJD suggests that endogenous retroviruses may
contribute to the pathogenesis of this prion disease. For in-
stance, ERV viral RNA molecules may elicit the transforma-
tion of PrPC to PrPSC [90]. In support of this hypothesis, small
highly structured RNAs have been shown to interact with
human recombinant PrPC and stimulate its conversion to a
proteinase resistant isoform [91]. Interestingly, RNA mole-
cules derived from ERVK elements have extremely conserved
complex secondary structures resembling that of the small
highly structured RNAs used in these studies [91] (Carr and
Douville, unpublished). Highly structured RNAs derived from
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HIV-1 have also been shown to interact with the human
recombinant PrPC and impart proteinase resistance to it
in vitro [92]. Thus, increased levels of ERVK RNA in the
CSF of CJD patients have the potential to drive the transfor-
mation of the normal human prion protein to its infectious
misfolded isoform.

In addition, ERVs may facilitate the spread of pathologic
prion agents intercellularly by recruiting prion proteins to
virions as ERVs replicate. In fact, it was recently demonstrated
that murine PrPSC associates with gag and env proteins on
Moloney Murine Leukemia Virus (MMLV) particles, and
infection with MMLV strongly enhances the extracellular
release of murine PrPSC, thus, augmenting the infectivity of
this prion protein [90, 93]. Similarly, human PrPSC has also
been shown to be recruited by HIV-1 virions [93]. Human
endogenous retroviruses, ERVWand ERVK, which are capa-
ble of producing virions [7, 21], may also be able to recruit
PrPSC either through interactions with surface gag and env
proteins or with viral RNA, thereby transmitting prion pro-
teins to new cells and facilitating the progression of human
prion diseases.

Moreover, CJD is neuroinflammatory and marked by aug-
mented levels of proinflammatory cytokines, including TNFα
[36, 94]. Mice models of CJD also exhibit increased TNFα, as
well as NF-κB activity [95]. Recently, the toxic domain of
human prion protein has been shown to activate NF-κB and
lead to TNFα production in a macrophage cell line [96].
Based on our prediction of NF-κB responsive elements in
the ERVK promoter [31••] (Fig. 1), it is possible that PrPSC-
induced TNFα production and NF-κB activation may en-
hance ERVK transcription in CJD brains. This may culminate
in a positive feedback loop favoring further neuroinflamma-
tion, ERVK re-activation, and prion infection.

Conclusions

Although ERVK has not been shown to be a causative agent
of nervous system disease, its expression can clearly influence
both protective and pathologic aspects of motor neuron, neu-
ropsychiatric, and neurodegenerative diseases (Table 1). A
common thread among ERVK-associated disease appears to
be the presence of inflammatory signals; but how this retro-
virus fits into the complex interplay between infection, immu-
nity, autoimmunity, and environmental exposures is yet to be
fully elucidated. Activation of multiple ERVs may coopera-
tively stimulate a multitude of host antiretroviral immune
responses against ERV-expressing cells; and, ERVs may ex-
ploit this response, culminating in a positive feedback loop
favoring further viral gene expression, excessive neuroinflam-
mation, and subsequent neuronal injury and loss. Moreover, it
is important to consider that specific ERVK loci can confer
select pathologic contributions. Bulk measurement of ERVs
(without consideration of the individual integrations and their
genomic context) may be an insufficient methodology to
address their role in distinct neurologic diseases. Examining
an individual’s unique complement of ERVs may prove to be
a better predictor of disease risk, once further inroads are made
in understanding the protective and pathologic roles of each
integrated provirus. It will be important for future studies to
expand how we measure ERVK activity in the CNS; im-
proved screening for ERVK expression in specific cell types,
CNS regions and disease stages, as well as an expansion
toward single-loci ERVK measurements will broaden our
current knowledge in this area. Current studies are limited
by the availability of commercial ERV-specific reagents for
molecular biology and the expense of high-throughput screen-
ing techniques – a possible solution for our field would be the

Table 1 Summary of potential mechanisms of ERVK protection and pathogenesis in neurodegenerative diseases

Neurological disease Putative mechanisms of protection or pathogenesis

Amyotrophic Lateral Sclerosis
(ALS)

ERVK RNA and proteins may stimulate a proinflammatory immune response against ERVK-expressing neurons
[23•], leading to neuronal injury and loss. ERVK may also exploit this inflammatory response [31••], thus
establishing a cycle of ERVK reactivation and excessive inflammation.

Schizophrenia (SCZ) and Bipolar
Disorder (BD)

ERVKLTR sequences and env protein may act as regulatory elements for genes associated with SCZ and BD [56,
59•]. Upon detection of ERVK over-expression (brought on by infection or inflammation), methylation of
ERVK sequences may decrease the subsequent expression of SCZ and BD associated genes (necessary for
normal neurological function), leading to a diseased state.

Multiple Sclerosis (MS) ERVK-encoded superantigens may exacerbate neuroinflammation [73, 77], and thus lead to demyelination.
Recognition of ERVK RNA and proteins by innate immune sensors may generate an antiretroviral response
against ERVK-expressing cells in the CNS [78•, 79], thus causing neuronal injury and loss. ERVK env may
mimic myelin proteins, which may produce an autoimmune response and contribute to demyelination [81].

HIV infection ERVK env protein may confer protection against HIV-1 Vpr-induced toxicity [83••]. Humoral and cytotoxic
immune responses targeted at ERVK antigens may promote the killing of HIV-infected cells [84, 85•]. ERVK
Rec protein may promote changes in neuronal dendritic spine morphology by interacting with Staufen-1 [5].

Creutzfeldt-Jakob Disease (CJD) ERVK RNA may stimulate conversion of normal proteins to pathogenic prion proteins [91]. ERVK virions may
recruit and facilitate intercellular transmission of prion agents [92]. ERVK RNA and proteins may exacerbate
neuroinflammation.
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development of an ERV resource bank, as has been accom-
plished with the NIH AIDS Reagent Program.

Another benefit of ERV research in the context of nervous
system disease is the possibility of improved therapeutics. For
example, patients with schizophrenia and bipolar disorder are
treated with a range of chemotherapeutics including antipsy-
chotics and lithium. Lithium is protective against HIV neuro-
toxicity, and HIV patients treated with this medication show
cognitive improvements [97]. Clozapine is an antipsychotic
drug, which actually inhibits HIV replication in vitro [98].
Since both of these drugs interact with exogenous retrovi-
ruses, it is possible that they may have some effect on ERVs
as well. In support of this notion, there is epidemiologic
evidence that incidence of ALS is extremely rare among
individuals with SCZ (much lower than predicted for the
general population) [99]. Common medications for SCZ
may convey prophylactic neuroprotection, inhibiting the de-
velopment of ALS [99]. There is some evidence that medica-
tions routinely prescribed to schizophrenics may stop inflam-
mation and support neuronal survival [100]. Abating inflam-
mation may also decrease the expression of ERVK, which is
upregulated by inflammatory transcription factors [31••].With
improved biomarkers for neurologic disease risk, the use of
currently vetted SCZ medications may be repurposed for the
prevention or delay of ERVK-associated nervous system
diseases.
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