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Abstract Cognitive impairment and dementia are significant
sequelae of Parkinson disease (PD) and comprise a key feature
of dementia with Lewy bodies (DLB), a disease with similar
clinical and neuropathological features. Multiple independent
causes have been implicated in PD dementia (PDD) and DLB,
among them the accumulation of β-amyloid, a neuropatho-
logical hallmark of Alzheimer disease. Over the last decade,
PET imaging has emerged as a viable method to measure
amyloid burden in the human brain and relate it to neurode-
generative diseases. This article reviews what amyloid imag-
ing has taught us about PDD and DLB. Current data suggest
that brain amyloid deposition tends to be more marked in
DLB, yet contributes to cognitive impairment in both DLB
and PD. These results are broadly consistent with neuropa-
thology and CSF studies. β-Amyloid may interact synergisti-
cally with other pathological processes in PD and DLB to
contribute to cognitive impairment.
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Introduction: A Brief History of Amyloid Imaging

Until recently, the assessment of the molecular basis of neu-
rological disorders was largely limited to postmortem tissue.
This changed with the development of amyloid radioligands
such as [11C]Pittsburgh compound B (PiB) (Table 1) [1]. PiB
binds fibrillar amyloid with nanomolar affinity in postmortem
specimens [2–4]. As a result, it avidly stains neuritic plaques, a

hallmark of Alzheimer disease (AD). In addition, it also stains
many diffuse plaques, depending on their content of fibrillar
amyloid [4–6]. In contrast, PiB does not appear to significant-
ly label soluble oligomers or monomers of β-amyloid (Aβ).
At brain concentrations achieved in human imaging, PiB has
negligible off-target binding for Lewy bodies [7], neurofibril-
lary tangles (NFTs) [8], or other protein aggregates in post-
mortem brain tissue. However, PiB also labels vascular Aβ,
the defining feature of cerebral amyloid angiopathy [4, 9, 10].
As required for a successful biomarker of Aβ, amyloid imag-
ing in AD reliably reports significant amyloid deposition, and
reliably reports its absence in young healthy control subjects
(HCS) [11, 12] and in patients with other neurodegenerative
diseases, including autopsy-proven Creutzfeld–Jacob disease
[13] and frontotemporal dementia (FTD) on the basis of
semantic dementia, albeit without autopsy confirmation [14].

Because the short half life of 11C limits the use of PiB, a
number of 18F-labeled amyloid ligands have been developed as
well, including [18F]florbetaben [15], [18F]florbetapir [16, 17],
and [18F]flutametamol [18, 19]. White matter uptake compli-
cates the use of the fluorinated molecules, but this disadvantage
has been offset by their significantly longer half-lives compared
with [11C]PiB, which permits their use at sites that lack radio-
chemistry facilities. Like PiB, these amyloid ligands demon-
strate specific affinity for amyloid plaques in postmortem tissue
and show increased retention in AD patients compared with
HCS [17, 19–22] and neurodegenerative diseases not associated
with Aβ accumulation, such as FTD [23•]. Head-to-head com-
parisons of PiB with these fluorinated ligands have demonstrat-
ed high correlations of cortical uptake of these tracers [24•].
Other amyloid ligands have also been developed, including
2- (1 -{6- [ (2 - [ 1 8F] f luoroe thy l ) (me thy l )amino] -2 -
naphthyl}ethylidene)malononitrile ([18F]FDDNP), which labels
amyloid plaques, NFTs, and Lewy bodies [25, 26].

Amyloid imaging of older HCS has demonstrated a broad
distribution of amyloid burden, with some HCS harboring
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amyloid loads well into the AD range [11, 12, 27–31]. In
fact, cortical deposits of amyloid can be detected in approx-
imately 25 % of HCS [12, 27, 28, 30, 31]. Consistent with
neuropathology studies, amyloid burden measured with
PiB PET increases with age [12, 29] and with the presence
of the apolipoprotein ε4 haplotype [12, 29, 30, 32]. These
findings have called into question the interpretation of a
“positive” amyloid scan. However, even in HCS, the pres-
ence of significant amyloid burden is associated with small
but significant impairments of global cognition and episod-
ic memory [33]. Furthermore, recent longitudinal studies
have consistently detected a contribution of baseline amy-
loid burden to the subsequent development of cognitive
impairment and dementia [31, 34–37]. Thus, although am-
yloid burden in HCS may have only subtle repercussions
for current cognitive function, it may nonetheless portend
future cognitive decline.

Over the last 7 years, amyloid imaging has been applied
fruitfully not just to AD but also to Parkinson disease (PD)
dementia (PDD) and dementia with Lewy bodies (DLB). In
this review, we will explore these efforts to relate imaged
amyloid burden to clinical phenotype and to clinical course
in PD and DLB.

PD Dementia and DLB

Cognitive impairment is common in PD, increasing in severity
with advancing age and with progression of motor impairment
[38–40]. As a result, dementia is overrepresented in PD rela-
tive to the general population, by up to a factor of 6 [41], with
a prevalence of 30–80 %, depending on the motor stage and
the duration of the disease [42]. A diagnosis of PDD is made
when dementia develops in the setting of well-established
idiopathic PD,which by consensus is taken to be at least 1 year
of extrapyramidal motor symptoms [43]. PDD is clinically
similar to DLB, a dementia associated with concomitant

parkinsonism, visual hallucinations, and fluctuations of wake-
fulness and cognition [44]. In fact, these diseases share addi-
tional clinical features, including an association with REM
sleep behavioral disorder, sensitivity to dopamine receptor
antagonists, and response to acetylcholinesterase inhibitors.
DLB and PDD share neuropathological features as well, in-
cluding characteristic Lewy bodies and neurites (with involve-
ment of cortical neurons frequent in PDD and requisite in
DLB) [45]), and the loss of both nigral dopamine neurons [46]
and basal forebrain cholinergic populations [47]. For these
reasons, DLB and PDD are considered to be different clinical
expressions of the same fundamental neuropathological pro-
cesses. Their clinical differences, which consist primarily of
the relative timing of dementia and parkinsonism, have been
the focus of intense investigation [45].

Neuropathology Studies in PD and DLB

The biological basis for cognitive impairment in PD and DLB
appears to be multifactorial. Aggregation of α-synuclein [48,
49] into oligomers, Lewy neurites and Lewy bodies and the
involvement of cortical neurons contribute [50, 51], perhaps
through secondary synapse dysfunction [52, 53]. Loss of
monoamine neurotransmitter systems, including tegmental
dopamine neurons and basal forebrain cholinergic neurons,
which project to cognitive and limbic brain regions, also
appears to play a role [54]. Finally, concomitant pathology
characteristic of AD has been associated with both PDD and
DLB [55–57].

Although Lewy-body-associated neuropathologic changes
comprise the dominant findings in PD, PDD, and DLB, these
need not occur in isolation. Indeed, neuropathology studies in
PD report a range of concomitant neuropathological findings
characteristic of AD, including Aβ-containing plaques and
tau-containing NFTs. Approximately 35 % of PD cases are
estimated to fulfill Consortium to Establish a Registry for
Alzheimer's Disease criteria for a pathological diagnosis of
AD [58, 59]. Diffuse plaques are more common than cored
plaques in PD [60]. When dementia is present in PD, higher
densities of cortical and striatal (cored and diffuse) plaques
have been observed, compared with nondemented PD [60],
although diffuse plaques remain more prevalent [61]. Several
clinicopathologic studies of PDD have also found an associa-
tion between higher levels of Aβ and a faster transition to
dementia [60, 62, 63].

Concomitant Aβ pathologic findings are more common in
DLB than in PDD [55, 64, 65]. In fact, deposition of extracellular
Aβ into neuritic and diffuse plaques is present in approximately
85 % of cases of DLB [50, 66, 67]. The presence of amyloid
plaques in the striatum has been reported to differentiate DLB
and PDD from PD [68]. Interestingly, in that study, striatal cored
plaquesweremuchmore common inDLB than in PDD. In PDD

Table 1 Characteristics of amyloid imaging

• Reliably labels fibrillar forms of β-amyloid

• Labels cored plaques, some diffuse plaques, and amyloid angiopathy

• Provides a bulk measure of amyloid burden; lacks microscopic
resolution

• Reports regional distribution of amyloid

• Noninvasive

• Requires radiation exposure

• Expensive

• White matter uptake with 18 F variants requires expert interpretation

• Some fluorinated agents are FDA approved

• Negative scans are exceedingly rare in AD

• Positive scans are common in the healthy elderly
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and DLB, higher levels of Aβ have also been associated with
greater risk of mortality [69, 70]. The capacity for amyloid
burden to accelerate cognitive decline in PDD holds when
DLB and PDD are studied together [64, 65].

In addition to Aβ, the intracellular accumulation of NFTs
has been linked to both PDD [49] and DLB [57]. NFTs are
frequently present but rarely marked. Thus, AD pathologic
changes are commonly observed in PD and DLB, most often
at levels insufficient for a pathological diagnosis of AD, but
their presence appears to have clinical implications.

Amyloid Imaging in PDD and DLB

Several cross-sectional imaging studies have explored amyloid
deposition in PD, PDD, and DLB. One general finding is that
amyloid burden tends to be modest in PD, overlapping with
that in HCS [27, 71–75, 76•, 77]. Although cortical Aβ levels
are often low in PD, they are not necessarily negligible. Indeed,
specific cortical retention of PiB can be observed in some cases
on direct visual assessment of the parametric images [27]. In
addition, consistent with the broad distribution of amyloid
burden in HCS described earlier, occasional PD cases demon-
strate increased amyloid deposition as well, into the AD range
[74, 75, 76•, 77]. Results obtained with florbetapir [23•, 78•]
have been similar. Despite its capacity to label Lewy bodies,
[18]FDDNP binding has also been reported to overlap in PD
and HCS [79]. Together, these data demonstrate that the range
of amyloid deposition in cognitively normal PD is similar to
that seen in the healthy elderly population.

Amyloid burden is generally low in PD subjects with mild
cognitive impairment (MCI), comparable to that in HCS [74,
76•, 80, 81•], and PiB uptake does not distinguish cognitively
normal PD subjects from PD subjects with MCI. Low levels of
cortical amyloid deposition have also been reported in most
cases of PDD, overlapping with levels seen in HCS and fre-
quently with levels observed in PD subjects as well [27, 71,
73–75, 76•, 77, 82]. Visual assessment of PDDpatients has been
notable for the frequent presence of focal cortical deposits of
amyloid [27]. Because aggregate scores of global cortical ligand
binding are insensitive to small foci of specific cortical retention,
quantitative assessment of small foci may prove useful in relat-
ing amyloid burden to clinical phenotype and prognosis.

A minority of PDD subjects demonstrate elevated cortical
amyloid deposition, in the AD range [71, 73–75, 76•, 77, 82].
The clinical characteristics of PDD patients with high and low
amyloid burden appear to overlap [71, 76•, 77, 83•], although
small sample sizes have limited these evaluations.

In contrast to the modest levels of amyloid observed in most
PiB studies of PDD, amyloid deposition inDLB subjects is often
high relative to that in HCS and PD subjects, in the AD range
[23•, 27, 71, 73, 74, 76•, 78•, 84, 85, 86•, 87•, 88, 89]. Some
DLB patients are clearly amyloid-negative, however. These

negative scans presumably denote those with “pure” diffuse
Lewy body changes without accompanying AD neuropatholog-
ical changes, although one PiB-negative DLB patient proved to
have substantial regional levels of Aβ despite low plaque burden
at autopsy [90•]. These results are broadly consistent with the
neuropathology studies described previously [55, 64, 65, 68].
Interestingly, higher cortical amyloid burden in a small cohort of
DLB and PDD subjects has been associated with greater cortical
and medial temporal lobe atrophy [83•], suggestive of
superimposed classic AD. As observed in HCS, risk factors for
higher amyloid burden in DLB and PDD subjects include age
and the presence of the apolipoprotein ε4 allele [73, 76•, 84].

The clinical significance of Aβ deposits in Lewy body
disorders remains a topic of active investigation. In some
cross-sectional studies, global amyloid deposition has been
found to relate to cognitive performance within diagnostic
groups [23•, 74, 76•, 80]. In addition, in a small study, the
absence of cortical amyloid deposition was associated with a
better response to acetylcholine esterase inhibitors [88]. The
higher amyloid burden of DLB relative to PDD has been
offered as one potential explanation for the major clinical
distinction between these related entities: the timing of de-
mentia relative to parkinsonism [27, 64, 71, 84]. In this model,
early and significant cortical amyloid burden may accelerate
cognitive decline in patients with Lewy body disease. When
this effect drives cognitive symptoms within 1 year of motor
symptoms, this would result in a diagnosis of DLB.

One longitudinal study of nondemented PD subjects has
been published to date. In that study, in which PD subjects
were followed up for up to 5 years, those with higher amyloid
burden progressed to cognitive impairment and dementia
faster than those with lower amyloid burden [81•]. The hazard
ratio for conversion was approximately 9 per unit PiB (distri-
bution volume ratio). Not all individuals with positive PiB
scans developed cognitive impairment, however, and some of
the original cohort remained cognitively intact after 5 years of
follow-up. These findings are similar to the results of longi-
tudinal PiB studies of HCS (see earlier) [31, 34–37].

Amyloid imaging thus identifies a contribution of brain
amyloid deposition to both DLB and PDD that is detectable
in life (Fig. 1). Higher amyloid burden in DLBmay contribute
to its accelerated cognitive phenotype relative to parkinson-
ism, possibly as a result of synergistic Aβ–α-synuclein neu-
rotoxicity. Cortical amyloid burden in PD, although lower
than in DLB, does not appear to be harmless, however, as it
has been associated with longitudinal cognitive decline.

Amyloid Deposition and Motor Features of Parkinsonism

PD can present with distinct motor phenotypes, including a
classic asymmetric tremor extrapyramidal syndrome, a pos-
tural instability gait disorder (PIGD) syndrome, and an
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akinetic rigid syndrome. Although all of these presentations
are associated with the presence of Lewy bodies at autopsy,
presentations that deviate from the classic asymmetric tremor
syndrome carry a higher risk of cognitive decline [91, 92]. A
small number of neuropathology and biomarker studies have
explored the relation between regional amyloid burden and
motor features of parkinsonism. Higher amyloid plaque den-
sity postmortem has been associatedwith the PIGD phenotype
[63]. One PiB imaging study on this issue has reported a
positive correlation between striatal amyloid burden and
PIGDmotor features in PD subjects withMCI [93•]. A similar
result was found using CSF [94]. This possible relation be-
tween amyloid burden and PD motor phenotype is intriguing,
as it would extend the influence of Aβ to the motor domain.
However, these results should be viewed as preliminary and
would benefit from confirmation in larger studies.

Relation of Amyloid Imaging to CSF Biomarkers

CSF biomarkers of amyloid burden provide an independent
assessment of levels of Aβ. In AD, CSF levels of Aβ-42 fall
early and levels of the intracellular protein tau and its phos-
phorylated form phospho-tau increase [95]. The reduction in
CSF levels of Aβ-42 has been attributed to its aggregation
into amyloid plaques, whereas the increase in the levels of tau
species has been interpreted to reflect of neuronal injury. In
AD, CSF levels of Aβ-42 and amyloid imaging findings are
strongly correlated [96•].

To date, amyloid imaging and CSF assessment of Aβ in
PD, PDD, and DLB have generated similar results. CSF levels
of Aβ and tau do not reliably differentiate PD subjects from
HCS cross-sectionally [97], although some PD subjects show
levels of Aβ-42 that are intermediate between those of HCS
and AD subjects [98]. In PDD, the level of Aβ can fall, with
relative preservation of the level of tau [99]. Two longitudinal
studies of cognition in PD have found that low CSF levels of
Aβ-42 are associated with a greater rate of cognitive decline
[100•, 101•]. One of these studies identified a tenfold greater
risk associated with low CSF levels of Aβ-42 for developing
dementia in PD; in contrast, normal Aβ-42 levels were asso-
ciated with a very low risk for developing dementia [101•]. In
DLB subjects, CSF levels of Aβ are frequently low, relative
to those in PD subjects, PDD subjects, and HCS, whereas
tau levels are more variable [97, 102]. As described above,
one CSF study has also explored the relation of Aβ to
motor function. Consistent with PiB imaging results, that
study reported that low CSF levels of Aβ-42 were associ-
ated with PIGD clinical features in PD [94]. Together, the
amyloid imaging and CSF Aβ-42 reports corroborate one
another.

Concordance of Amyloid Imaging and Postmortem
Neuropathology in DLB and PDD

As a bulk measure of brain amyloid accumulation, amyloid
PET has had remarkable success. However, it is important to
keep in mind that, as described already, amyloid imaging is

Fig. 1 Representative
[11C]Pittsburgh compound B
(PiB) scans of a healthy older
subject and patients with
Alzheimer disease, Parkinson
disease (PD), PD with dementia,
and dementia with Lewy bodies.
Amyloid deposition in PD is
usually mild and comparable to
that seen in normal control
subjects. In PDD, amyloid
deposition is common, but is not
usually marked. Amyloid
deposition in DLB is often
significant, to levels that approach
those observed in AD. Note that
focal cortical deposits of amyloid
may not be reflected in aggregate
measures of PiB binding derived
over large cortical regions
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neither a selective marker of neuritic plaques nor a measure of
total Aβ burden. Rather, amyloid imaging is a highly specific
marker of fibrillar amyloid [8]. If the goal were to measure
total Aβ burden, PiB would necessarily fall short, given its
inability to label all Aβ species, independent of their fibrillar
content [7, 90•]. In addition, because PiB stains cored and
neuritic plaques reliably, but also labels those diffuse plaques
that contain fibrillar amyloid in a dose-dependent manner
[4–6, 103], as well as cerebral amyloid angiopathy [9, 10,
103, 104], variation in the proportions of neuritic and diffuse
plaques in PD and DLB subjects could conceivably contribute
to differences in their amyloid imaging characteristics. These
caveats constrain interpretation of amyloid imaging, in gener-
al and in PD, PDD, and DLB. Nonetheless, the accumulating
data reviewed here suggest that the amyloid species that PiB
detects are detrimental, and the ability to measure them ante-
mortem is proving valuable.

Outstanding Issues

The observation that brain amyloid burden is often high in
DLB, overlapping with that in AD, along with the high
frequency of elevated amyloid deposition in HCS, constrains
the specificity of amyloid imaging as a marker of clinical or
preclinical AD. As DLB is the second most common neuro-
degenerative dementia, after AD [105, 106], positive amyloid
imaging in dementia may signify DLB. Similarly, it will be
important to determine the extent to which positive amyloid
imaging in MCI patients or in healthy patients may portend
future DLB rather than AD.

In addition, the possible contribution of even modest levels
of cortical amyloid deposition to cognitive decline in PD is
noteworthy. Some data suggest that the cognitive repercus-
sions of amyloid burden in PD and DLB should be more
severe than in the general population. On the one hand,
amyloid burden may be an independent contributor to cogni-
tive decline in PD and DLB, and amyloid deposition may
occur sporadically in PD and DLB as it does in the general
population. However, a number of studies have demonstrated
a synergistic relationship between α-synuclein and Aβ depo-
sition. For example, Aβ-42 and α-synuclein increase each
other’s toxicity and aggregation [107, 108•]. Aβ deposition
may therefore contribute to cognitive impairment in PD both
directly, as it would in the general population, and indirectly,
by enhancing α-synuclein toxicity. As a result, Aβ may be
more toxic in the synucleinopathies, and patients with Lewy
body disease may be unable to tolerate even modest levels of
Aβ. Amyloid imaging may therefore carry particularly impor-
tant prognostic information in PD and DLB.

Although PiB has been used in numerous in vitro and
in vivo studies, experience with the fluorinated agents is more
limited. The capacity of florbetapir and its sister compounds to

label different fibrillar amyloid species in PD and DLB re-
quires further quantification. Additional studies with these
new ligands will be necessary in order to understand and
interpret the imaging characteristics of these ligands in PD
and DLB, as they make their way into clinical practice.

Lastly, the specific molecular cascades in which amyloid
participates, and the relation of those cascades to the develop-
ment of cognitive and motor symptoms in PD and DLB
remain to be fully elucidated.

New Directions

Amyloid imaging is one of several imaging and nonimaging
biomarkers that are contributing to our understanding of PDD
and DLB. For example, fluorodeoxyglucose PET, PET and
single photon emission computed tomography of the dopa-
mine system and the cholinergic system, structural and func-
tional MRI, and meta-iodobenzylguanidine (MIBG) imaging,
which assesses sympathetic cardiac denervation, are provid-
ing important insights as well [109•, 110•]. Nonimaging
biomarkers of the CSF and blood are also promising [109•,
110•]. Increasingly, applying these tools together is proving
informative. For example, amyloid imaging and dopamine
terminal (vesicular monoamine transporter) imaging have
been acquired together to differentiate DLB from AD and
FTD [86•] and from AD subjects, PD subjects, and HCS
[78•]. This approach may be useful for distinguishing the
causes of MCI as well [111].

By expanding imaging to multimodal PET, researchers are
beginning to dissect molecular cascades associated with cog-
nition in PD and DLB. For example, brain inflammatory
changes that are characteristic of AD are increasingly amena-
ble to PET measurement. Using the PET ligand
[11C]PK11195 as a marker of microglial activation, along with
PiB imaging, one study has found evidence for voxel-level
correlations between microglial activation and amyloid bur-
den in PD and PDD [77]. Nonspecific and variable binding of
[11C]PK11195 has complicated its use, however, and next-
generation studies with more sensitive ligands such as
[11C]PBR28 are under way. These tools may help to deter-
mine the relative timing of amyloid deposition and microglial
activation, and their relation to cognitive impairment in PD
and DLB.

Tau aggregates are also becoming an important molecular
imaging target. Paired helical filaments of tau (PHF-tau) pro-
gressively accumulate in the medial temporal lobe in AD and
spread to neocortex as the disease progresses [112]. Recent
reports have demonstrated propagation of tau aggregates in
cell culture and animal models, with trans-synaptic spread
[112], raising the possibility that tau propagation may contrib-
ute to progression of disease. Interestingly, PHF-tau deposi-
tion has also been reported in PDD [49, 55] and DLB [55, 57],

Curr Neurol Neurosci Rep (2014) 14:472 Page 5 of 9, 472



with greater deposition and spread than PD, reflected in higher
Braak NFTstage [55]. These results suggest that the molecular
processes associated with PHF-tau deposition may also con-
tribute to cognitive impairment in PD and DLB. It is also
noteworthy that NFTs are the dominant abnormality associat-
ed with the parkinsonian tauopathies—progressive
supranuclear palsy and corticobasal ganglionic degeneration
[112]—and that the regional distributions of NFTs in progres-
sive supranuclear palsy and corticobasal ganglionic degener-
ation are distinct from those in AD, PDD, and DLB.

In this context, PET ligands for PHF-tau molecular imag-
ing are being developed and characterized [25, 113–118].
Preliminary results for some ligands are quite promising, with
greater affinity for tau than for Aβ in vitro and with a distri-
bution of retention in human AD subjects that is reminiscent
of Braak NFT staging [115–118]. If successful, PHF-tau PET
will have broad applicability for the study of the parkinsonian
dementias. Such ligands will be useful not only to explore the
relation of PHF-tau burden to cognition and clinical course in
the Lewy body diseases but also to differentiate the
synucleinopathies and the parkinsonian tauopathies.

A PET ligand for α-synuclein is not yet available. The
future development of such a marker will have widespread
application in understanding and diagnosing PD, PDD, and
DLB.

Conclusion

Amyloid imaging provides a noninvasive means to assess
brain amyloid burden antemortem. To date, PD and DLB
studies using amyloid imaging are broadly consistent with
studies of CSF Aβ-42 and neuropathology. Together, these
results suggest that Aβ deposition contributes to cognitive
impairment in both PD and DLB. More work is needed to
confirm these early observations, however. Notably, corti-
cal amyloid deposition is common in DLB and is not
specific to AD. Therapeutic trials in AD can now leverage
amyloid imaging both to identify and to stratify subjects
and as a surrogate measure of therapeutic success. The
development of anti-amyloid therapeutics, if successful,
would have a large impact on research in PD and DLB,
as well as immediate application in the treatment of these
patients.
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