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Abstract Cortical spreading depression, a slowly propa-
gating wave of transient neuronal and glial depolarization,
is widely accepted as the electrophysiologic substrate of
migraine aura and a trigger for headache. Recent clinical
and experimental evidence reinforces the putative role of
cortical spreading depression in migraine pathophysiology.
Imaging studies in migraineurs demonstrated hemodynamic
changes consistent with cortical spreading depression
during aura, whereas recent animal studies helped unravel
pathophysiologic aspects such as the triggering mecha-
nisms, genetic and hormonal modulation, and potential
therapeutic targets. Here, we provide an overview of recent
advances in our understanding of migraine pathophysiology
and treatment.
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Introduction

There is growing evidence that cortical spreading depression
(CSD) underlies migraine aura [1] and possibly acts as a
trigger for headache as well [2, 3]. CSD is a slowly
propagating depolarization of neuronal and glial membranes
evoked when extracellular K+ concentrations ([K+]e) increase
above a genetically determined threshold, for example, by
transient ischemia [4]. The threshold for initiation of CSD
presumably is lower in migraineurs than in the normal
population and possibly is linked to overall cerebral
hyperexcitability. Indeed, interictal cortical excitability is
increased in migraineurs [5], and there is a clinical
association between migraine and epilepsy [6]. The geneti-
cally determined CSD threshold is modulated further by
endogenous (eg, gonadal hormones) and exogenous factors
(eg, migraine prophylactic drugs) [7•, 8, 9, 10••]. Hence, the
susceptibility of brain tissue to CSD (and thus migraine) is
governed by complex interactions among multiple indepen-
dent triggers, risk factors, and modulators, some of which are
reviewed in the following text.

Basic Features of CSD

CSD, originally described by Leão [11], is an intense
depolarization of neuronal and glial membranes due to a
sudden loss of membrane resistance and ionic gradients. It
is characterized by cessation of all spontaneous or evoked
synaptic activity and massive K+ efflux causing [K+]e to
rise above 40–50 mM, exacerbated by cell swelling and
shrinkage in extracellular space as a result of water entering
the cells coupled to Na+ influx. High [K+]e in the tissue
undergoing CSD is believed to depolarize adjacent brain
tissue, and in this way, the CSD wave propagates into
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contiguous gray matter at an average speed of 3 mm/min,
regardless of functional divisions or arterial territories [12].
Large Ca2+ influx and glutamate efflux add momentum to
the spreading wave of depolarization [13].

Although little is known about the triggers of migraine
attacks in humans, CSD is initiated when local [K+]e
exceeds a threshold of approximately 10–12 mM in a
minimum critical volume of brain tissue (∼1 mm3 in
rodents). This can be achieved by cerebral ischemia and
trauma or direct cortical application of excitatory amino
acids, Na+/K+-pump inhibitors, or concentrated K+ solu-
tions in both lissencephalic [11] and gyrencephalic animals
[14], as well as in humans [15, 16, 17•]. Triggering CSD
often requires activation of the N-methyl-D-aspartate
(NMDA) subtype of glutamate receptors [18, 19], which,
as noted earlier, adds momentum to the depolarization wave
facilitating its spread. Direct intercellular transfer of ions
and small molecules through gap junctions also may
facilitate the spread.

CSD is associated with characteristic cerebral blood flow
(CBF) changes: an initial, species-dependent reduction in
CBF is followed by hyperemia, reaching up to 200% of
baseline in some species, and then by oligemia (40–90% of
baseline), which usually lasts up to an hour. During this
post-CSD oligemic phase, neurovascular coupling and
hypercapnic hyperemia are impaired [20]. Both the CSD
and the post-CSD oligemia may cause relative tissue
hypoxia [21]. Beyond the vasomotor effects, CSD affects
neurotransmitter and neuromodulatory systems, second
messenger cascades, immediate early genes, and growth
factors, as well as inflammatory mediators such as
interleukin-1β and tumor necrosis factor-α [22, 23].

Despite extensive investigation of CSD in experimental
animals in vivo and in vitro [11, 12, 24, 25] and in human
neocortical and hippocampal tissues in vitro [26, 27],
evidence supporting CSD in human brain in situ was
obtained only recently, using functional MRI during
migraine [28] and epidural and intracortical recordings in
injured brain [29–32].

CSD and Aura

Leão [33] and Milner [34] both pointed out the similarity
between the velocity of CSD propagation and the march of
visual aura reported by Lashley [35]. As with CSD in
mammalian cortex, the speed of spread of migraine aura is
approximately 3 mm/min. Aura is characterized by negative
symptoms (eg, loss of sensation, visual scotoma) often
preceded by positive symptoms (eg, paresthesias, visual
scintillations), reminiscent of the cessation of cortical
neuronal activity preceded by a brief burst of action
potentials at the CSD wavefront. The first compelling

evidence for the CSD theory of migraine in human brain
was obtained using intra-arterial 133Xe tomography during
aura. A slowly spreading oligemia (25–35% below base-
line) was found propagating anteriorly from the occipital
cortex with a speed similar to that of CSD [36, 37]. In some
cases, the oligemia was preceded by focal hyperemia
resembling the hemodynamic effects of experimental CSD
summarized earlier. The temporal association between
cerebral hemodynamic changes and migraine symptoms
suggested that oligemia was probably not the cause, but
rather a consequence of a primary upstream event,
presumably CSD. These findings subsequently were cor-
roborated by positron emission tomography [38] and
magnetoencephalography [39]. However, the strongest
piece of evidence emerged from high-field strength
functional MRI (fMRI) studies during aura. Brain oxygen
level-dependent (BOLD) imaging, which detects the
ratio of non-paramagnetic oxygenated hemoglobin to
paramagnetic deoxyhemoglobin as a rough measure of
the difference between oxygen delivery and consumption,
forms the basis for fMRI [40, 41]. A focal increase in
BOLD signal was detected during visual aura, spreading
within occipital cortex at a rate of 3.5 mm/min in a fashion
that was retinotopically congruent with the patient’s aura
symptoms. This initial BOLD increase was followed
minutes later by a decrease, suggesting a rise and then a
fall in CBF [28]. These and other lines of evidence [8]
strongly suggest that CSD is the electrophysiologic
substrate of migraine aura.

Evidence for an Enhanced Cortical Excitability
in Migraineurs

It is not clear how CSD is triggered in migraineurs.
However, because most factors that facilitate CSD occur-
rence are excitatory, depolarizing events (eg, NMDA
receptor activation, intense neuronal activity such as
seizures), it is plausible to hypothesize that migraineurs
have enhanced cerebral excitability. In support of this
hypothesis, migraineurs exhibit a reduced threshold to
evoked phosphenes (bright scintillations) after transcranial
magnetic stimulation. Patients with probable chronic
migraine reportedly show increased transcranial magnetic
stimulation-induced excitability, which may correlate with
the frequency of their migraine attacks [42].

Mutations in genes encoding ion channels and pumps
expressed by neurons or glia have implicated glutamatergic
neurotransmission as a critical modulator of CSD threshold
and cortical hyperexcitability in the pathophysiology of
migraine. Familial hemiplegic migraine (FHM) is an
autosomal dominant migraine syndrome characterized by
severe and prolonged auras (eg, unilateral motor deficits,
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coma); more than 60% of FHM patients also suffer from
migraine attacks with typical aura or without aura, making
FHM a useful genetic model to explore the mechanisms of
more common types of migraine as well. Numerous FHM
mutations in three different genes have been identified, all
of which appear to enhance cerebral excitability via
different mechanisms (Table 1).

FHM type 1 is caused by gain-of-function mutations in
the CACNA1A gene on chromosome 19p13 encoding the α1

pore-forming subunit of Cav2.1 voltage-gated Ca2+ channels
(P/Q type) expressed on both presynaptic terminals and
somatodendritic membranes. Mutant channels open at lower
depolarizing voltages so that Ca2+ influx is enhanced
through single Cav2.1 channels under depolarizing condi-
tions, and neurotransmitter release presumably is increased
[43]. The control of transmitter release by Cav2.1 channels is
much more prevalent in excitatory (eg, glutamate) than
inhibitory (eg, γ-aminobutyric acid) synapses [44, 45], and
an enhanced probability of glutamate release has been
demonstrated in cortical pyramidal cell synapses of FHM1
mutant mice [46••]. Therefore, FHM type 1 mutations are
believed to enhance cerebral excitability by both increasing
glutamate release and amplifying the postsynaptic depolar-
ization [46••, 47, 48]. FHM type 1 accounts for 50% of all
FHM families [49].

FHM type 2 mutations in the ATP1A2 gene on
chromosome 1q23 also might increase ambient [K+]e and
glutamate in the synaptic cleft as a result of a loss of
function of the α2 Na+/K+ adenosine triphosphatase
(ATPase), a P-type ion pump that uses adenosine triphos-
phate to actively countertransport Na+ and K+ ions. FHM
type 2 point mutations produce substitutions of conserved
amino acids in important functional regions, such as the
intracellular four to five loop containing the nucleotide-
binding domain and the extracellular seven to eight loop,
which is responsible for β subunit binding [50]. The Na+/
K+ ATPase generates the ion gradients that maintain
resting membrane potential and cell volume, regulate
resting and activity-induced [K+]e levels, and provide the
driving force for nutrient and neurotransmitter uptake
[51].

The FHM type 3 missense mutation (Gln1489Lys) in the
SCN1A gene on chromosome 2q24 encoding the α1 subunit
of NaV1.1 voltage-gated Na+ channels [52] accelerates
channel recovery from fast inactivation, an effect predicted
to increase dendritic excitability and neuronal firing rates
[53]. As a consequence, a relatively weak depolarizing
stimulus (perhaps without consequences in healthy individ-
uals) may cause excessive neuronal firing that increases
[K+]e above the critical value that triggers CSD. Therefore,
elevated extracellular glutamate and [K+]e may be a common
mechanism of reduced CSD threshold in migraine [54].

CSD Susceptibility as a Consequence of Enhanced
Excitability in Migraine

Experiments on mutant mouse models provide mechanistic
insight into modulation of CSD susceptibility as a relevant
mechanism in migraine. Spontaneously occurring or engi-
neered mutations within the CACNA1A gene modulate CSD
threshold. For example, the tottering mutation (a proline-to-
leucine substitution in the S5-S6 linker region of repeat
domain II of the α1 subunit of the P/Q-type Ca2+ channel)
causes loss-of-channel function, impaired presynaptic Ca2+

influx, and reduced neurotransmitter release, mainly inhib-
iting excitatory neurotransmission [45, 55–58]. Tottering
mice show a 10-fold resistance to CSD, with a slower CSD
propagation speed and a failure to sustain regenerative
spread of the depolarization wave [44]. In contrast, mutant
mice expressing human FHM type 1 mutations in the same
gene (R192Q or S218L) show increased CSD susceptibility
[7•, 59, 60]. In accordance with the more severe clinical
phenotype associated with the S218L mutation, CSD
susceptibility was even higher in S218L mutant mice than
in R192Q mutants, and S218L mutant mice developed
coma and seizures in addition to the transient hemiplegia
observed in both mutants in response to CSD [7•].
Furthermore, FHM type 1 mutant mice showed a facilitated
subcortical propagation of CSD [7•], providing a potential
explanation for the hemiplegia, seizures, and coma in FHM
patients [61, 62].

Table 1 Familial hemiplegic migraine syndromes

FHM type Gene Protein Cell type Functional change CSD susceptibility

1 CACNA1A Cav2.1 Neurons Gain of function ↑

2 ATP1A2 Na+,K+-ATPase Astrocytes Loss of function ?

3 SCN1A Nav1.1 Neurons Gain of function ?

Three familial hemiplegic migraine (FHM) syndromes have been identified, associated with pathogenic mutations in genes encoding neuronal or
astrocytic ion channels or pumps. The functional consequences of mutations associated with all three syndromes are predicted to augment
excitability and cortical spreading depression susceptibility, although this has been demonstrated only for FHM1 thus far

ATPase adenosine triphosphatase
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Consistent with the female preponderance of nonhemi-
plegic migraine with aura and familial as well as sporadic
hemiplegic migraine [63, 64], female mice expressing the
R192Q or S218L mutation exhibited a significantly higher
susceptibility than male mice toward CSD [7•]; this sex-
related difference was completely abrogated by ovariecto-
my and “postmenopausal” age. Estrogen augments the
effect of glutamate on Purkinje cells and the sensorimotor
system [65], and estrogen and progesterone reportedly
evoke changes in excitability during transcranial magnetic
stimulation [66]. Interestingly, androgens appear to influ-
ence CSD in the opposite direction in FHM type 1 mutant
mice: castration increased KCl-induced CSD frequency and
propagation speed, and this was prevented by testosterone
replacement in an androgen receptor-dependent manner [9].
Although the mechanisms linking sex steroids to migraine
remain poorly understood, these data suggest that genetic
and hormonal factors modulate both CSD and migraine
susceptibility (Fig. 1).

Microembolism as a Possible Endogenous Trigger
for CSD

Migraine is associated with an increased risk of stroke,
especially in younger women suffering from migraine with
aura [67–69]. Patent foramen ovale is more common in
migraineurs with aura, and vice versa [70]. Cardiac or
pulmonary arterial defects (eg, patent foramen ovale,
pulmonary arteriovenous malformations) with right-to-left
shunts that increase the risk of cryptogenic stroke also are
associated with a higher incidence of migraine [71].
Closure of such defects may reduce or abolish migraine

attacks [72]. These findings imply that subclinical cerebral
ischemia due to paradoxic embolism may trigger a migraine
attack [73]. Indeed, cerebral ischemia is a well-known
experimental trigger of CSD. Recent experimental data
clearly demonstrate that cerebral microembolism can
initiate CSD without causing lasting tissue injury [4].
Therefore, in susceptible brains, CSD may be triggered by
transient mild hypoperfusion events, and less frequently,
such events may lead to microinfarcts, placing migraine and
stroke on a spectrum of vascular complications. If true in
humans, vascular and hematologic disorders may act as
migraine triggers.

CSD as a Headache Trigger

Besides causing the aura, CSD also has been proposed as a
trigger of headache [74]. CSD can activate the meningeal
trigeminovascular system and downstream pain pathways
in rodents and lead to meningeal inflammation and plasma
extravasation [2, 3, 75]. Although the mechanism of
activation remains unknown, it has been assumed that H+,
K+, NO, and other agents released into the extracellular
space during CSD depolarize or otherwise activate adjacent
perivascular trigeminal nerve endings surrounding local
blood vessels. These changes may be facilitated by CSD-
induced activation of matrix metalloproteinases and mild
disruption of the blood–brain barrier [76]. CSD as a
headache trigger is supported further by data showing that
migraine prophylactic drugs, which are efficacious in
preventing migraine attacks with or without a perceived
aura, decreased CSD susceptibility [10••]. Reminiscent of
the gradual buildup of their clinical efficacy over weeks to

Fig. 1 A simplified scheme for the cortical spreading depression
(CSD) theory of migraine. In susceptible brains, diverse triggers, such
as intravascular microemboli and head trauma, can evoke CSD and
lead to migraine aura and headache. The overall CSD susceptibility—
that is, the likelihood of triggering CSD upon a given stimulus type
and intensity—is enhanced (red) or suppressed (blue) by endogenous

factors, such as monogenic or polygenic determinants and sex
hormones, and exogenous factors known to influence migraine
susceptibility, such as weather, fasting, specific types of food, sleep
deprivation, stress, and drugs. Thus far, only the last item (ie, migraine
prophylaxis) has been shown to affect CSD susceptibility; the others
remain to be tested. FHM—familial hemiplegic migraine
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months, these drugs required chronic treatment to suppress
CSD in experimental animals and did not show efficacy
when tested acutely after a single dose.

Conclusions

A large body of clinical and experimental evidence
implicates CSD as the electrophysiologic event underlying
migraine aura and possibly the headache. Enhanced
excitability appears to be a common theme in brains
susceptible to migraine, which may translate into enhanced
CSD susceptibility. Animal studies point toward genetic
and hormonal factors modulating CSD susceptibility and
suggest that transient mild ischemic events may trigger
CSD without residual tissue damage. Improved understand-
ing of the clinically relevant triggers and modulators of
CSD will help researchers design targeted therapies for
migraine.
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