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The development and recent approval of recombinant 

acid alpha-glucosidase for enzyme replacement therapy 

have been major milestones in Pompe disease research. 

Acid alpha-glucosidase is the enzyme responsible 

for degradation of glycogen polymers to glucose in 

the acidic milieu of the lysosomes. Cardiac and skel-

etal muscles are the two major tissues affected by the 

accumulation of glycogen within the lysosomes.  Both 

cardiomyopathy and skeletal muscle myopathy are 

observed in patients with complete enzyme deficiency; 

this form of the disease is fatal within the first year of life. 

Skeletal muscle myopathy eventually leading to respira-

tory insufficiency is the predominant manifestation of 

partial enzyme deficiency. The recombinant enzyme 

alglucosidase alfa is the first drug ever approved for this 

devastating disorder. This review discusses the benefits 

and the shortcomings of the new therapy.   

Introduction
Pompe disease owes its name to the Dutch pathologist 
J.C. Pompe [1], who first described the disease in 1932. 
This first report on the nosologic entity was a postmortem 
description of pathology in an infant who died from what 
was thought to be pneumonia. Two critical observations 
were made: 1) the disease is a vacuolar myopathy, and 2) 
there is a massive accumulation of glycogen, primarily 
affecting cardiac and skeletal muscle. The vacuoles were 
later identified as lysosomes, and the cause of the glyco-
gen accumulation was found to be a defect in lysosomal 
acid alpha-glucosidase (GAA) [2]. These early studies 
established the primary underlying pathology in muscle 
of Pompe patients, which is accumulation of glycogen in 

enlarged lysosomes. Recent efforts have brought about the 
development and production of the recombinant human 
GAA (rhGAA) for enzyme replacement therapy (ERT).  

Pompe disease is one of several lysosomal storage 
disorders (LSD) being treated by ERT [3•], but it is the 
only one in this class in which skeletal muscle is the pri-
mary target. The success of ERT in other diseases (eg, 
the non-neuropathic form of Gaucher disease) turned 
out to be hard to replicate in Pompe disease; the rever-
sal of pathology in skeletal muscle is more difficult than 
anticipated.  The emerging data from the first clinical 
trials with rhGAA suggested that the most critical factor 
defining the outcome of therapy is the underlying skeletal 
muscle pathology at the start of therapy. The view of the 
pathology as the accumulation of glycogen within swol-
len lysosomes and probable lysosomal rupture has not 
changed since the earliest studies, and the literature has 
been remarkably silent regarding the secondary events 
that may occur in skeletal muscle as a result of substrate 
accumulation in the lysosomes. In this review, we focus 
on the results of the clinical trials, the latest methods for 
early diagnosis, and the studies in knockout (KO) mouse 
models that shed new light on the pathogenesis of the 
disease and the mechanisms of muscle damage.   

Clinical Manifestations 
Clinical manifestations of the disease depend largely 
on the level of residual enzyme activity, which, in turn, 
depends on the nature of the genetic defect. Over 200 
mutations scattered across the gene have been found in 
Pompe patients. The mutations result in various out-
comes ranging from a complete lack of the enzyme to a 
near-normal amount of enzyme with reduced activity. 
Because the enzyme undergoes complex post-translational 
modifications while trafficking to the lysosomes, multiple 
abnormalities along this pathway add to the variability of 
the level of residual enzyme activity.  

The age of onset, organ involvement, and rate of 
disease progression are heterogeneous [4]. Traditional 
classification of infantile, juvenile, and adult forms has 
given way to the view that there is a continuum of disease 
severity. Recently, a group of experts agreed to classify 
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the disease into two broad categories: infantile and 
late-onset forms [5]. 

The infantile form includes classic and nonclassic 
variants. Classic infantile disease is a rapidly progres-
sive disorder manifesting as cardiomegaly, hypotonia, 
or mild hepatomegaly, resulting in death within the first 
year due to cardiorespiratory failure. In the nonclassic 
infantile form, the symptoms are still evident in the first 
year of life but the disease is characterized by a slower 
progression and less severe cardiomyopathy [6]. A com-
plete or near-complete GAA deficiency is typical for the 
infantile form [7]. 

The late-onset form includes childhood, juvenile, and 
adult-onset variants. Both childhood and juvenile disease 
present any time after infancy with mild or no cardiac 
involvement. The adult-onset form usually presents 
between the second and sixth decade of life and manifests 
as a slowly progressive skeletal muscle myopathy. The pre-
dominant manifestations of the late-onset form include 
proximal muscle weakness with respiratory muscle 
involvement. Respiratory failure is the cause of signifi-
cant morbidity and mortality in this form. Some residual 
enzyme activity can be found in late-onset patients.

Natural History
Pompe disease is a rare disorder with a total combined 
incidence estimated at one in 40,000 [8]. The development 
of ERT underscores the value of studies on the natural 
history of the disease. First, these data provide a critical 
reference for the efficacy of ERT. Second, the ability to 
conduct prospective studies will dwindle as more patients 
get access to therapy.

A study of the classic infantile form with 20 origi-
nal cases and 133 cases from the literature showed that 
the median age of death was 7.7 months for the origi-
nal group and 6 months for the retrospective study. 
Motor development in the original group was severely 
impaired; milestones, such as the ability to turn, sit, 
or stand, were not achieved or were quickly lost after 
acquisition. The majority of patients died before 1 year 
of age (only 5% of the original cases and 8% of all 
reported cases survived) [9].  

When nonclassic infantile patients were included in 
a retrospective study of 168 patients, slightly different 
data were obtained [10]. Median age of death was 8.7 
months, and the survival rate was 25.7% at 12 months 
and 12.3% at 18 months. The frequencies of presenting 
symptoms and signs were similar in both studies. Symp-
toms included cardiomegaly, cardiomyopathy, congestive 
heart failure, hypotonia, muscle weakness, respiratory 
distress, feeding difficulties, failure to thrive, gastro-
esophageal reflux, and sleep apnea. 

Studies of the natural course of late-onset disease dem-
onstrated a significant variability in terms of age of onset, 
rate of disease progression, development of respiratory 

problems, wheelchair dependence, and use of respiratory 
support [11,12]. In most patients, initial symptoms were 
related to mobility and limb-girdle weakness. Respiratory 
insufficiency was observed in patients of any age, even in 
those without limb-girdle weakness [11].  

ERT
The concept of ERT for Pompe disease and other LSDs is 
based on experimental evidence indicating that lysosomal 
enzymes can be taken up by the cells through receptor-
mediated endocytosis. In Pompe disease, the recombinant 
enzyme is a precursor containing mannose-6-phosphate 
groups that enable the enzyme to bind the receptor on the 
cell surface. Cation-independent mannose 6-phosphate 
receptor (MPR) is responsible for binding and directing 
the lysosomal enzymes into the endocytic pathway [13]. 
The receptor-enzyme complexes enter the cells in trans-
port vesicles that fuse with endosomes. The acidic pH of 
late endosomes induces the dissociation of the complexes; 
the receptor is recycled back, whereas the enzyme is trans-
ported to the lysosomes. Numerous proteins participate 
in the sorting and trafficking of the lysosomal enzymes 
[14]. Like the endogenous GAA precursor, the rhGAA 
is expected to undergo proteolytical cleavage along the 
transport route to yield intermediate forms followed by 
conversion to the fully active lysosomal species [15,16].

Clinical Trials
Currently, more than 280 patients in 30 countries are 
receiving alglucosidase alfa (Myozyme; Genzyme Corpo-
ration, Framingham, MA), which is a Chinese hamster 
ovary (CHO)-derived rhGAA. However, the published 
data include only the results of the first clinical trials for a 
small group of infantile and late-onset patients.  

Nine patients (six infantile and three late-onset 
patients) began therapy with a product purified from the 
milk of transgenic rabbits (trGAA), which was the first 
clinically applicable rhGAA. Eventually, the production 
of the milk product was discontinued (the method was not 
sustainable) and all surviving patients were transitioned 
to CHO-derived rhGAA.  

Of the six severely affected infants who started the 
therapy on trGAA, four were followed for 3 years. They 
began therapy at a dosage of 15 to 20 mg/kg weekly, 
which was later increased to 40 mg/kg weekly because the 
level of enzyme activity in skeletal muscle still remained 
significantly below normal on a lower dosage. Increase 
in the dosage resulted in the normalization of the level 
of GAA activity [17,18]. However, glycogen in muscle 
decreased in only one patient (who was 3 months of age 
at start) who made remarkable progress and reached mile-
stones never observed in untreated patients. His motor 
score normalized at the age of 2 years and he remained 
ventilator-free after 3 years of follow-up [18]. However, 
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this patient may have regressed because a later observa-
tion (Raben, Personal observation) clearly indicates that 
this child still has a myopathy. Two older patients in this 
study (7 and 8 months of age at start) became ventilator 
dependent before or soon after the therapy began, and 
one patient (2.5 months of age at start) became ventila-
tor dependent at the age of 2 years and died at the age of 
4 years, 3 months after a short period of fever, unstable 
blood pressure, and coma. 

Based on the results of this first study, two other 
patients (aged 3.1 and 5.9 months at start) began ther-
apy with the trGAA at a dosage of 40 mg/kg weekly. 
As in the first study, the level of GAA activity in muscle 
increased significantly in both, but glycogen reduction 
was observed in only one patient who showed significant 
improvement of motor function over the course of a 10-
month follow-up [19]. In both studies [18,19] anti-GAA 
antibody did not seem to correlate with clinical decline 
or lesser effect of therapy. 

Data for a 3-year follow-up have been reported for 
three late-onset patients (aged 11, 16, and 32 years) who 
started therapy with trGAA [20•]. Weekly infusions of 
10 mg/kg resulted in only a slight increase in GAA activ-
ity in muscle; after 12 to 24 weeks of therapy the dosage 
was increased to 20 mg/kg weekly. However, even on 
a higher dosage the level of GAA activity remained 
below the normal range and glycogen was only slightly 
decreased. At the start of therapy all the patients were 
wheelchair bound and two older patients were ventila-
tor dependent. The best clinical response was observed 
in the youngest patient who was least affected at start 
of therapy. This patient gained normal muscle strength 
and function. Two other patients remained wheelchair 
bound, but they too showed a lower degree of disability 
and improved quality of life [20•].  

Two studies with CHO-derived rhGAA have been 
reported so far. First, an open-label phase I/II study (5 
mg/kg twice weekly) was conducted in three patients (2.5, 
3, and 4 months of age at start) with infantile Pompe 
disease [21]. Prior to ERT, two patients had severe car-
diomyopathy typical for classic infantile form. The third 
patient, who was the youngest at the enrollment and 
least severely affected, fit the criteria of the nonclassic 
infantile form because he had less severe cardiomyopathy 
and normal baseline cardiac evaluation despite virtually 
absent GAA activity. This patient did well on therapy, 
showed significant improvement in motor function, and 
began walking independently at 12 months of age. Two 
other patients showed steady decrease in heart size and 
maintained normal cardiac function for more than 1 
year. Both patients had some improvement in muscle 
function, but both subsequently deteriorated and became 
ventilator dependent after episodes of viral pneumonia. 
In both cases, the decline coincided with the rising titers 
of antibodies against rhGAA. Data for 16 to 18 months 
of treatment were reported, at which time all three were 

alive; however, as of July 2006 only the best responder 
was still alive [22••]. 

The second open-label phase II trial with CHO-derived 
rhGAA was conducted in eight severely affected infan-
tile patients (age 2.7 months to 14.6 months) [22••]. All 
patients fit the criteria of classic infantile form. They were 
on 10 mg/kg weekly for the 52-week initial stage, and the 
surviving patients continued on 10 to 20 mg/kg weekly 
or biweekly for up to 153 weeks. GAA activity in skeletal 
muscle increased in all patients. As in all previous studies, 
the most dramatic effect of ERT was on cardiac muscle.  
The effect on skeletal muscle, however, was extremely 
variable. Two patients died during the initial stage, and 
four additional patients died during the extension phase, 
bringing the total number of deaths to six. The deaths 
were attributed to complications of the disease. Median 
age at death or treatment withdrawal for all patients was 
21.7 months, significantly later than would be expected 
for untreated patients. The two surviving children showed 
significant reduction in skeletal muscle glycogen level on 
therapy and were over 3 years of age at the time the study 
was published. 

The safety and efficacy of alglucosidase alfa were 
assessed in two additional open-label trials. The results 
of these trials have not yet been published in a peer-
reviewed journal; therefore, we will not discuss the 
details of these studies but present a brief outline and 
the mortality rates. One study (conducted between 2003 
and 2005) involved 18 patients aged 6 months or younger 
with cardiac hypertrophy who were ventilator free at 
start of therapy. Within the first 12 months of treatment, 
there were no deaths. As of July 2006, four patients 
had died. The second is an ongoing study of 21 patients 
aged 6 months to 3.5 years at the start of therapy. Five 
deaths were reported by the end of the 104-week study; 
one additional death has occurred during the extension 
phase (Kishnani, Personal communication).

Clinical trials have demonstrated that the stron-
gest and most consistent effect of ERT was on cardiac 
pathology: all patients showed remarkable decreases 
in the left ventricular mass index, left ventricular pos-
terior wall thickness, and improvements in cardiac 
function regardless of disease severity. The reduction 
in cardiac size has been observed in patients who do 
not show a decrease in the amount of accumulated 
skeletal muscle glycogen or improvement in muscle 
function. Abnormal ECG parameters, which reflect 
conduction abnormalities and hypertrophic cardiomy-
opathy, such as shortened PR interval, increased QT 
dispersion, and large left ventricular voltages, have also 
been significantly improved on ERT [23]. However, 
recent data suggest that Pompe patients may be at risk 
for arrhythmias despite the significant improvement in 
cardiomyopathy and conduction on ERT [24]. 

Thus, it is very clear that it is the dramatic effect 
on cardiac function that results in longer survival of all 
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patients when compared with the age at death in untreated 
Pompe patients. However, mortality from disease compli-
cations was very high, and only a small subset of patients 
achieved significant gains in physical performance.  The 
reasons for the variability in skeletal muscle response to 
therapy remain unclear.

So far, only one study has attempted to correlate 
the morphology of skeletal muscle and the outcome of 
therapy. Winkel et al. [25] have examined the morpho-
logic changes in muscle tissues in the first four infantile 
patients who received the trGAA. The authors came to 
the conclusion that at each time point muscle pathol-
ogy correlated with the severity of clinical symptoms, 
and that the degree of the impairment of muscle func-
tion plays the decisive role in the outcome. In the best 
responder, skeletal muscle striation and architecture 
were relatively well preserved at start of therapy, and 
this patient had the least glycogen accumulation [25]. 
Thus, the important lesson here is that the effect on 
motor performance is highly dependent on the condi-
tion of the patient at start of treatment. Although this 
study is informative, more details are needed regarding 
the skeletal muscle pathology and how it correlates with 
response to therapy. Since this review was submitted, a 
second study has been published analyzing the morphol-
ogy of skeletal muscle before and after ERT [26]. 

Pathogenesis
A lysosomal rupture hypothesis has long been proposed 
to account for skeletal muscle destruction in Pompe 
disease [27,28]. The hypothesis, based on electron micros-
copy observation, suggests that muscle contraction causes 
enlarged glycogen-filled lysosomes to rupture, result-
ing in the release of free glycogen and potentially toxic 
components into the cytosol.  Skeletal muscle differs from 
other cells in that the expanded lysosomes are located in 
a limited inter-myofibrillar space, thus creating a condi-
tion for the physical rupture of the lysosomal membrane. 
Ruptured lysosomes eventually lead to loss of myofibril-
lar material and complete fiber destruction [27,28]. If this 
hypothesis is true, the fibers at the later stages of disease 
progression would be beyond repair with the current 
therapeutic approach.  

Another pathologic finding in skeletal muscle in 
Pompe disease has been the presence of areas with large 
numbers of autophagic vacuoles (AV). This observation 
was made by Engel [29] as early as 1970; glycogen accu-
mulation was found not only in the lysosomes, but also 
in AVs with cytoplasmic degradation products. Exces-
sive accumulation of AVs in skeletal muscle was later 
confirmed by electron microscopy of muscle biopsies 
from a number of Pompe patients [30–32]. Surprisingly, 
however, the extent of autophagy, its role in the patho-
genesis of disease, and its implications for therapy have 
been largely ignored.  

Autophagy is a highly conserved process of degrada-
tion of most long-lived proteins and damaged organelles 
[33••]. The process starts with the formation of double-
membrane vesicles, called autophagosomes, which 
sequester various constituents of cytoplasm, including 
glycogen. Autophagosomes fuse with and discharge their 
content into late endosomes and lysosomes; the autopha-
gosomal membrane and cytoplasmic components are 
degraded within the lysosomes.

Apart from the increase in the number of AVs, other 
vesicular compartments linked to lysosomes were found 
to be affected in Pompe skeletal muscle [34]. Analysis 
of muscle biopsies from several patients with late-onset 
disease indicated proliferation of multiple vesicles of the 
endocytic pathway, such as early and recycling endosomes.  
Thus, these clinical studies suggest that the abnormalities 
in Pompe disease go beyond the expansion of the lyso-
somes.  Studies in animal models give insight to the role 
of these secondary events in the progressive nature of the 
disease and their effect on the outcome of therapy. 

Studies in Knockout Mouse Models 
Preclinical studies with ERT in a mouse model of the dis-
ease were very consistent with the results of the clinical 
trials. rhGAA reduced cardiac glycogen to undetectable 
levels but the reduction of glycogen in skeletal muscle 
was modest, and some fibers, in particular glycolytic fast 
twitch type II fibers, showed little or no glycogen clear-
ance [35,36]. The rhGAA was taken up more efficiently 
by cardiac muscle than by skeletal muscle, but most of the 
administered enzyme was targeted to the liver.  

Analysis of vesicular compartments in myoblasts iso-
lated from the KO mice demonstrated that the cellular 
pathology in Pompe disease spreads to affect both the endo-
cytic and autophagic pathways as shown by staining with 
specific markers. Expansion of endocytic and autophagic 
vesicles profoundly affected the mobility and fusion of these 
vesicles in Pompe myoblasts [37••,38]. The autophagic 
vacuoles were easily identified in isolated single myofibers 
of the KO mice by staining with a specific autophagosomal 
marker. Furthermore, the entire core of the fibers was filled 
with multiple vesicular structures of the autophagic and 
endocytic pathways, and often contained autofluorescent 
material. This autophagic buildup was limited to therapy-
resistant type II fibers [36,37••] and was found in virtually 
every type II KO fiber, even in young animals.  The extent 
of autophagic buildup was enormous; in some fibers, the 
volume occupied by the autophagic area reached approxi-
mately 40% of the total volume of a particular segment 
[38]. The large autophagic mass interrupted the contractile 
proteins in myofibers.  Thus, it appears that it is not the 
primary defect (ie, intralysosomal glycogen accumulation) 
that is responsible for muscle damage and wasting, but 
rather the secondary accumulation of what is sometimes 
referred to as “biologic garbage” [39].  
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Similar morphologic changes in skeletal muscle 
fibers were observed in another mouse model of Pompe 
disease. Hesselink et al. [40,41•] found enhanced depo-
sition of lipofuscin and large areas of centrally localized 
debris in muscle of the KO mouse. Additionally, our own 
studies with labeled rhGAA have demonstrated that the 
bulk of the endocytosed therapeutic enzyme ends up in 
the autophagic areas within the fibers [42]. Thus, exces-
sive autophagy sets up the conditions for the disruptive 
buildup and diversion of the therapeutic enzyme away 
from the lysosomes. 

The cause of the excessive autophagy in Pompe muscle 
is still unclear. Nutritional deprivation is a well-known 
trigger of autophagy. A hypothetical cascade may involve 
local glucose starvation (a result of the failure of lysosomal 
glycogen break-down to glucose) followed by induction 
of autophagy, which then leads to buildup because of the 
inability of the lysosomes to fuse with or digest the con-
tents of the autophagosomes.

Excessive and early accumulation of lipofuscin, which 
normally accumulates in aging post-mitotic cells [43], 
points to another potential trigger of autophagy: oxida-
tive stress. Oxidative damage in the KO fibers may affect 
the permeability of the lysosomal membrane, resulting in 
the leakage of lysosomal components even before the lyso-
somes become enlarged.  

The Diagnosis of Pompe Disease: 
Latest Advancements
Currently, GAA assay in skin fibroblasts or muscle biopsy 
remain the standard and most reliable diagnostic methods.  
GAA has an optimum activity at pH of 3.75 to 4.5, and 
the enzyme activity is measured using natural substrate, 
glycogen, or the fluorescent synthetic substrate 4-methy-
lumbelliferyl-alpha-D-glucosidase (4-MU). However, 
culturing fibroblasts takes weeks and significantly delays 
the diagnosis.  Muscle biopsy is a direct and rapid way 
of measuring GAA activity and provides a valuable his-
tologic material. However, the risk of anesthesia should 
be considered in infantile patients. In late-onset cases, 
the site of muscle biopsy may greatly affect the results of 
histologic analysis, and some samples may show little or 
no glycogen accumulation. Mutation detection is still not 
a trivial procedure, and as such is not suitable for routine 
diagnostic purposes. 

None of these techniques can be used for the mass 
screening of newborns, which is the most promising 
strategy for diagnosis of asymptomatic individuals and 
early therapeutic intervention. Early diagnosis in clini-
cally affected individuals is equally important, because 
the degree of skeletal muscle involvement at the start of 
ERT has a major impact on the outcome of therapy. An 
ideal source of the enzyme for diagnostic purposes would 
be leukocytes. However, in addition to GAA, leukocytes 
contain several homologous isoenzymes encoded by dif-

ferent genes: glucosidase II and neutral alpha-glucosidase 
(with pH optimum of 7.5), and maltase-glucoamylase 
(with pH optimum of 5 to 5.5). Maltase-glucoamylase 
poses the greatest problem because it contributes signifi-
cantly to the total GAA activity measured at acidic pH. 
Maltase-glucoamylase is expressed in neutrophils but 
not in lymphocytes [44]. Thus, purified lymphocytes are 
a better diagnostic material, but potential contamination 
with neutrophils may result in false-negative results.  

Recently, a major effort has been directed toward the 
development of methods for measuring GAA activity using 
dry blood spots (DBS), with the idea that these methods 
can be utilized for newborn screening. Blood spots can be 
collected by the standard heel-stick procedure or the drop-
wise addition of whole blood onto filter paper or Guthrie 
cards, which can be stored for a long period of time and 
easily transported. Two approaches show promise for the 
use of DBS for newborn screening.

The first approach is immuno-quantification of GAA 
protein in DBS [45]. The assay takes advantage of the fact 
that in Pompe disease, like in most LSDs, the amount of 
the mutant enzyme is reduced; the exception is a subset 
of patients who produce a significant amount of protein 
with reduced activity [46]. A two-tiered screening strat-
egy involving an initial protein determination followed 
by an immuno-capture enzyme activity assay would 
address the issue [47]. 

Another strategy is competitive inhibition of maltase-
glucoamylase activity using maltose [48] or acarbose [49].  
Maltose has been shown to have much higher affinity to 
maltase-glucoamylase than to GAA [50]. Direct compari-
son of the two inhibitors (maltose and acarbose) in DBS 
extracts using 4-MU showed that acarbose was superior 
to maltose because there was no overlap in the level of 
GAA activity between heterozygous and infantile Pompe 
patients [51]. Acarbose has been successfully used for 
GAA activity measurement in mixed leukocytes [52] and 
in lymphocytes [53]. In mixed leukocytes [52], acarbose 
completely inhibited the maltase-glucoamylase at pH of 
4.0 but inhibited the GAA by less than 5%, and there 
was a clear separation between the Pompe patients and 
the control group when glycogen was used as a substrate. 
The two groups were less well separated when 4-MU 
was used, and the separation was significantly improved 
by taking the ratio of inhibited over uninhibited activity. 
Using 4-MU over glycogen is justified to exclude GAA 
pseudo-deficiency caused by a polymorphism that lowers 
the activity for glycogen but not for 4-MU [54]. 

Considering that Pompe disease is a rare disorder, a 
practical approach would be a multiplex assay for new-
born screening of multiple LSDs, especially those for 
which ERT is available or in development. A multiplex 
immuno-quantification assay was used in a retrospec-
tive study to simultaneously quantify individual proteins 
for 11 LSDs using DBS [55]. For Pompe disease, the 
sensitivity was 90% and the specificity was 99%. As 
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mentioned previously, a subset of Pompe patients with 
near-normal level of GAA protein would be missed by 
this method.  These patients would, however, be accu-
rately diagnosed by activity assays; multiplex activity 
assay from a single blood spot has been reported for 
five LSDs (Fabry, Gaucher, Krabbe, Nieman-Pick A/B, 
and Pompe disease) [49].  

As expected, each of the methods has its shortcom-
ings. The immuno-capture assay is more expensive than 
the others and the GAA antibodies are not commercially 
available. The use of inhibitors is very attractive because 
they are inexpensive and readily available, but for each 
condition the optimum dosage of inhibitor should be 
determined so that the right balance between nonspecific 
and specific inhibition is achieved. 

One of the major limitations with screening methods 
is that they are unable to clearly discriminate between the 
infantile and late-onset forms [51,52]. Therefore, addi-
tional methods (eg, mutation analysis) are necessary for 
identification of late-onset patients. However, even if the 
diagnosis is unequivocally late onset, there is no consen-
sus regarding the timing of ERT initiation.

Conclusions   
The first clinical trials with rhGAA clearly demon-
strated the benefits of ERT in Pompe patients. In all 
infantile patients studied, the therapy had a dramatic 
effect on cardiac function, prevented or delayed inva-
sive ventilation, and extended survival. However, the 
therapy is not yet a cure because only some patients 
showed significant improvement in motor function. 
ERT addresses the problem of accumulation of glyco-
gen in lysosomes and it appears to address the problem 
successfully. Yet, it is increasingly evident that other 
processes beyond the expansion of the lysosomes (eg, 
autophagy) affect the outcome of therapy. Better control 
over secondary events is critical for the success of ther-
apy. Considering the limitations of the current therapy, 
other therapeutic options, such as enzyme enhancement 
therapy or gene therapy, should be explored. Regardless 
of the approach, efforts should be directed toward early 
diagnosis and intervention before irreversible muscle 
damage occurs. 
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