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Introduction
Multiple sclerosis (MS) is the most common demyelinat-
ing disease of the central nervous system (CNS). It is
characterized by a chronic inflammatory process resulting
in oligodendrocyte and axonal damage and eventual
neuronal loss. Nitric oxide (NO), a versatile signaling
molecule, was implicated in the inflammatory process
soon after its discovery as an endogenously produced
signaling molecule, and the potential contribution of NO
to the development of MS has been extensively tested in
humans and in animal models.

Abundant evidence points to an important role for NO
in the pathogenesis of MS and to its contribution to the
various facets of the disorder: inflammation, oligodendro-
cyte injury, changes in synaptic transmission, axonal
degeneration, and neuronal death. Much of this evidence
is correlative, although a number of reports more directly
test the involvement of NO in the disease. However, there
are still many ambiguities in the picture of how NO
contributes to MS, and we are still far from developing an
NO-based therapy for preventing, stopping, or reversing
the damage inflicted by MS. Much of the difficulty is
related to the complex manifestation of the disorder;
however, much of it is also due to the multiplicity of func-
tions that NO subserves in the organism and to the unusu-
ally complex biochemistry of NO in normal and inflamed

tissue. Almost two decades after the discovery of endo-
genously produced NO, we are still learning about the
basic mechanisms regulating its production, chemistry,
storage, and transport; even the range of its cellular targets
is still being charted.

In this review, we describe recent developments in the
field of NO and MS research that may have direct implica-
tions for our understanding of MS-associated pathology and
for designing NO-based therapies for MS (for a comprehen-
sive review of the link between NO and MS see Smith and
Lassmann [1••]; also see Parkinson et al. [2], Smith et al. [3],
and Willenborg et al. [4] for reviews). However, we first
touch upon some recent developments relating to the
physiology of NO production in the organism.

Nitric Oxide Production and Targets
Although NO was discovered as a signaling molecule
regulating vasodilation, neuronal function, and immune
response under normal conditions, it also emerged as a
key player in several pathophysiologic processes, ranging
from hypertension and diabetes to neurodegeneration
and cancer [5–7]. Enzymatic synthesis of NO from
arginine is mediated by NO synthases (NOS), which in
mammals are encoded by three genes corresponding to
neuronal (nNOS), inducible (iNOS), and endothelial
(eNOS) isoforms [8].

The main focus of study on the role of NO in MS has
been the iNOS isoform because it is the high-output form
of NOS and can produce several orders of magnitude
more NO than eNOS or nNOS (micromolar vs nanomolar
local concentration) [8]. iNOS expression is mainly
controlled at the level of transcription and can be induced
by an appropriate combination of cytokines or by endo-
toxins in almost every cell type. The involvement of iNOS
in inflammation and the immune response has been
thoroughly documented [9] and is directly related to
the high levels of NO produced by the enzyme after
transcriptional induction.

The chemistry and biochemistry of NO are remarkably
complex. Given that various oxides of nitrogen can also
react with reactive oxygen species (ROS), the list of the
reactive nitrogen intermediates (RNI) and ROS with
demonstrated biologic activities continues to grow
[7,10,11]. This expanding catalog of derivatives of NO is
paralleled by an expanding list of proven and potential
cellular targets of NO. Reaction with the heme iron of the
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soluble guanylate cyclase remains the best characterized
example of NO action. Through generation of cyclic GMP,
this pathway mediates much of the physiologic response to
NO and underlies the action of several therapeutic drugs.
However, it is increasingly clear that other NO-dependent
modifications of cellular components are also employed
for transduction of the NO signal in cells and tissues.

Nitrosylation of the sulfhydryl groups in proteins
(ie, generating S-nitrosothiol [RSNO] compounds) has
been proposed as a major regulatory modification, and
there is an impressive list of examples where S-nitrosyla-
tion of cysteines acts to control protein activity [12]
or stability [12–14]. It has recently been proposed that
the true extent of the nitrosylation of the peptidyl sulfur
in proteins is currently underestimated. The survey of
various tissues estimates that the concentration of RSNO-
containing proteins is in the nanomolar range and is
comparable with the concentration of NO-heme–
containing proteins in those tissues [15••,16]. Remark-
ably, the same survey presents a challenging indication
that another modification, nitrosation of amines (gener-
ating N-nitrosamines [RNNO] compounds) may be as
widespread in proteins as S-nitrosylation. Furthermore,
N-nitrosylation is dependent on the activity of NOS and
is dynamically regulated (eg, by hypoxia). The impor-
tance of this discovery relates to the fact that nitrosamines
have been considered only as potential carcinogens and
that the physiologic role and relevance of N-nitrosylation
of proteins is virtually unexplored.

Another widely studied NO-induced protein modifica-
tion reflects the reaction of NO with the superoxide radical
O2

-, which generates highly reactive peroxynitrite (ONOO-).
The production of peroxynitrite leads to the nitration of
tyrosine residues in proteins; the appearance of nitro-
tyrosines is considered a hallmark of pathologic changes
caused by nitrosative stress in cells and tissues. Although
usually employed as a surrogate marker of inflammation,
tissue degradation, or a drastic shift of the redox balance,
tyrosine nitration may itself serve as a regulatory signal, a
possibility that has not yet been sufficiently investigated.

An exciting new discovery comes from the re-evalua-
tion of the biologic activity of lipids modified by nitrogen
oxides. Baker et al. [17••] have demonstrated the presence
of nitroderivatives of linoleic acid in healthy individuals
and found that the nitrated lipids are present in the
plasma in amounts surpassing any of the other bioactive
oxides of nitrogen (eg, more than 100 times the amount of
RSNO compounds). Thus, the nitrated lipids have the
potential to serve as a depot of nitrogen oxides (also note
that membranes may serve to increase the local concentra-
tion of NO by acting as a “molecular lens” [18]). Impor-
tantly, the nitrated lipids have demonstrated a profound
anti-inflammatory activity (eg, inhibiting platelet and
neutrophil activation), possibly due to their ability to
activate peroxisome proliferator activated receptor γ  [19].
Thus, nitrated lipids may represent a new class of anti-

inflammatory compounds. Furthermore, this finding is an
example of the convergence of anti-inflammatory and
proinflammatory (oxidized lipid-dependent) signaling
pathways [17••]. Note that a range of other lipids can
potentially be nitrated under acidic conditions (eg, in the
gastric system or upon acidification of endosomes), and
thus can be included into the metabolism of the biologi-
cally relevant nitrogen oxides. It remains to be determined
whether an enzymatic system participates in nitration/
denitration of lipids, how much of the action of nitrated
lipids is due to their release of NO, and what is the range of
signaling pathways activated by nitrated lipids.

The arginine-based enzymatic production of NO by
NO synthases is clearly an important source of biologically
active NO; remarkably, however, it is not the sole source of
NO in humans. Nonenzymatic production of NO and other
RNIs is mediated by nitrate-reducing commensal bacteria
and occurs in the acidic environment of the stomach (and
probably skin, oral cavity, and even acidified cell compart-
ments). Under this scenario, ingested nitrates are absorbed
into the bloodstream and, although most of them are
excreted in urine, a fraction accumulates in the saliva and
sweat. The oral cavity and skin are heavily colonized by
commensal bacteria, many of which are capable of effec-
tively reducing nitrates to nitrites. The entero-salivary circuit
should not be underestimated because the salivary gland
takes up nitrates very effectively: up to 25% of the plasma
nitrate is recovered in the saliva and the concentration of
nitrates in saliva (up to 1 mM) is more than 10 times higher
than that in plasma. The crucial transformation occurs when
the salivary nitrites enter the highly acidic environment of
the stomach and generate nitrous acid, dinitrogen trioxide,
nitrogen dioxide, and NO (see Lundberg et al. [20•] for a
comprehensive review describing the entero-salivary circula-
tion of nitrates and production of NO in humans). Highly
reactive RNI species have antimicrobial activity and serve to
kill enteric pathogens. These RNI may also be relevant for
inflammation (eg, in MS) because they can also modify
lipids and thus generate an important reservoir of anti-
inflammatory activity.

Together, these recent advances in the NO field serve as a
reminder that NO metabolites may have opposing activities
in inflamed tissue, that NO-dependent modifications of
biomolecules generate a wide variety of active compounds,
and that dietary sources of nitrate may, potentially, affect
NO-dependent processes in the organism.

Nitric Oxide Synthase Expression and Nitric 
Oxide Production in Multiple Sclerosis
Because the iNOS isoform is the high-output producer of
NO and because its role in inflammation had been well
established, the main focus of studies of the potential role
of NO in MS was, early on, directed towards this isoform
and towards the signs of massive NO production. Indeed,
there is still no compelling evidence for the contribution of



234 Demyelinating Disorders
nNOS or eNOS activity to the disease (although this possi-
bility may not yet have been sufficiently investigated). The
possible association between iNOS and MS has been
addressed in several genetic linkage studies. Two broad
studies focusing on polymorphisms in the promoter
region of the iNOS gene failed to reveal any direct associa-
tion between variants of the iNOS gene and susceptibility
to MS [21,22]; a similar analysis did not find an association
between MS and the neuronal isoform of NOS [23]. How-
ever, a recent comprehensive analysis of single nucleotide
polymorphisms in 34 genes related to inflammatory
pathways revealed significant association between MS
susceptibility and changes in the iNOS gene (a silent
substitution in exon 10 or differences in the promoter
region) [24], thus providing the first genetic evidence
that variations within the iNOS gene may contribute to
disease susceptibility.

Although iNOS RNA and protein are present at very
low levels in the CNS under normal conditions, their
presence is well documented both in the CNS of patients
with MS and animals with experimental autoimmune
encephalomyelitis (EAE), a well-established model of MS.
In the EAE model, the level of expression of iNOS
correlates with the severity of clinical signs [1••], and a
drug combination that can reverse EAE also reduces the
NO production in the animals [25•]. In MS patients,
strong iNOS immunoreactivity has been found in active
lesions, and the signal is reported to be weaker in less
inflamed lesions [1••]. More recent reports confirm these
observations. iNOS was detected in postmortem magnetic
resonance imaging—guided biopsies from patients with
definite MS, both in the active lesions and in the white and
gray matter regions that appeared normal, with most of the
immunoreactivity detected in the reactive astrocytes [26].
Expression of iNOS was also observed in active plaques
from MS patients displaying both acute demyelination and
active inflammation, with most of the signal present in the
ependymal cells in periventricular lesions, in astrocytes,
and in macrophages/microglial cells [27].

Most of the endogenously produced NO is ultimately
converted to nitrates and nitrites, which accumulate in
the plasma and are excreted in the urine, saliva, and sweat.
The amount of secreted nitrates/nitrites and their concen-
tration in the plasma are increased during systemic inflam-
mation (the link between inflammation and nitrate/nitrite
production was one of the key observations leading to the
discovery of NOS). Thus, there had been a long history of
attempts to correlate the course of MS with changes in
nitrate concentration in plasma, cerebrospinal fluid (CSF),
and urine. Indeed, there have been several reports describ-
ing an increase in the nitrate and nitrite concentration in
the CSF of patients with MS. Other reports, however, were
unable to find such an increase [1••]. In new studies on
MS patients, a positive correlation between the levels of
nitrates/nitrites and clinical disease activity has been found
[28,29]. Furthermore, in a follow-up study of a cohort of

MS patients divided into groups with relapsing-remitting,
primary progressive, and secondary progressive MS, it was
found that the nitrate/nitrite levels were higher in the
CSF of patients with disability progression than in those
who were clinically more stable [30]. Thus, recent reports
support the idea that the increased nitrate/nitrite concen-
tration in the CSF correlates with disease progression and
may serve as a surrogate marker for disease activity. The
reports trying to correlate disease progression with the
concentration of nitrates/nitrites in the plasma produce
less convincing results [1••,28], perhaps because of the
dilution of the CSF nitrates in serum, the effects of diet, or
the potential peripheral inflammation.

Nitric Oxide-mediated Damage to 
Oligodendrocytes and Neurons
When exposed to reactive nitrogenous species (RNS),
oligodendrocytes are more susceptible to NO-mediated
toxicity than astrocytes or microglia [31]. Most of the
destructive action of NO is likely due to the formation of
peroxynitrite through reaction with superoxide. Among its
other activities, peroxynitrite leads to nitration of tyrosine
residues in proteins; conveniently, this NO-related protein
modification can be readily visualized by means of anti-
bodies against nitrotyrosine. Thus, the presence of nitro-
tyrosine is  often monitored as a footprint of  the
pathophysiologic activity of NO in the inflamed tissue.
Indeed, nitrotyrosine labeling was detected in hyper-
trophic astrocytes and activated microglia in MS lesions
[27,32–35]. The causative role of peroxynitrite in oligo-
dendrocytic damage is supported by findings that a peroxy-
nitrite scavenger, uric acid, can inhibit demyelination and
axonal damage (note that gout and MS are mutually exclu-
sive conditions) [36,37]. Peroxynitrite-mediated damage
to oligodendrocytes seems to be independent of
poly(ADP-ribose) polymerase (PARP) activation [38].
This finding stands in contrast to the important role that
PARP activation plays in neuronal toxicity, perhaps indicat-
ing that alternate cytotoxicity pathways are activated by
peroxynitrite in oligodendrocytes. The cytotoxic effect of
peroxynitrite on oligodendrocytes can be attenuated by
pretreatment with 17β-estradiol [39], but again, the signal-
ing pathways involved in protection are not clear.

Besides activating the general mechanisms of cell
death, peroxynitrite may damage the myelin sheath
through lipid peroxidation, which affects both the lipid
and, indirectly, the protein components of the membrane.
Intriguingly, NO may also affect the structure of the
myelin sheath more directly (ie, not in a peroxynitrite-
dependent manner). Exposure to NO donors causes
myelin decompaction, accompanied by S-nitrosylation of
a cysteine-rich proteolipid protein (PLP) [40•]. This
abundant component of the CNS myelin is important
for the structural integrity of the sheath, and nitrosylation
of the cysteine residues may alter its structure and
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compromise its function. Interestingly, peripheral nervous
system myelin, whose stability depends on proteins other
than PLP, does not show decompaction upon incubation
with the NO donors. In agreement with these in vitro
observations, elevated levels of nitrosothiols were found
in the CSF of the patients with active MS [41], and an
increase in the levels of anti–S-nitrosocysteine antibodies
was observed in MS patients [42•] and animals with EAE
[43]. In the EAE animals, the serum levels of anti–S-
nitrosocysteine antibody peaked 1 week before the onset
of clinical signs and the antibody titer correlated with the
extent of subsequent demyelination [43]. In patients with
relapsing-remitting MS, elevated levels of anti–S-nitroso-
cysteine antibodies were found at times of relapse,
whereas the levels were normal in patients in remission
[42•]. The antibody titer was also elevated during acute
MS attacks and in progressive disease. Together, these
studies suggest that cysteine modifications by NO may
play a crucial role in the damage to the myelin sheath
induced by inflammation or nitrosative stress; they further
indicate that the appearance of anti-S-nitrosocysteine
antibodies in the blood may be used as a marker of
clinical activity [42•]. It will be important to follow these
observations with structural studies of the modified PLP
and other protein components of the myelin sheath after
exposure to NO and peroxynitrite.

Nitric oxide may also affect the integrity and survival of
oligodendrocytes by interfering with the glutamate release
and uptake. NO can augment glutamate release [5,6],
and this may potentially lead to glutamate receptor over-
activation in oligodendrocytes and neurons and may also
lead to excitotoxic cell damage and death. Oligodendro-
cytes are particularly vulnerable to the elevated concentra-
tions of glutamate [44–46]. Given that expression of
the main glutamate transporters in oligodendrocytes is
suppressed both in MS and in EAE [47], it is plausible that
NO helps to perpetuate the glutamate-mediated damage to
oligodendrocytes and neurons during inflammation by
both increasing the release of glutamate and suppressing
its reuptake.

Nitric oxide–mediated glutamate excitotoxicity may be
particularly damaging to the nervous system when com-
bined with hypoxic conditions. NO released from inflam-
matory-activated glial cells leads to a 10-fold increase in the
number of apoptotic and necrotic neurons when combined
with hypoxia [48•]. Importantly, this synergism between
NO and hypoxia is mediated by glutamate and can be pre-
vented by an N-methyl-D-aspartate–receptor blocker. Thus,
a combination of inflammatory and hypoxic condition may
sensitize the neurons, and, potentially, oligodendrocytes, to
NO- and glutamate-mediated damage. It is of note that in a
subset of MS patients, the pattern of lesions shows remark-
able similarity to the alterations found after white matter
stroke, leading to the suggestion that a hypoxia-like injury is
an essential component of the demyelinating inflammatory
lesions [49,50].

The mechanisms of NO- and glutamate-mediated
injury to the CNS may include interactions with zinc-
activated pathways, as has been recently demonstrated for
cortical neurons [51•]. In this model, overstimulation
of glutamate receptors and excessive influx of calcium
augments NO production and generation of peroxynitrite.
This liberates zinc from intracellular stores; free zinc leads
to mitochondrial dysfunction, including respiratory block,
release of cytochrome c, activation of the Apaf-1/caspase
apoptosis pathway, and further ROS production. Increased
production of superoxide, in turn, results in even larger
levels of peroxynitrite, which, through activation of the
p38 mitogen-activated protein kinase, leads to potassium
efflux and cell shrinkage, thus causing further progression
of the cell death program. A similar molecular cascade may
underlie the NO- and glutamate-mediated injury to oligo-
dendrocytes, and this idea should be explored in cultured
cells or in the EAE model.

Nitric Oxide-based Therapy
Overall, several lines of research present compelling
evidence that NO has an important role in MS. However,
attempts to achieve clinical gain by blocking NOS produc-
tion have had limited success and, in some cases, led to
contradictory results [1••,4]. Treatment of EAE animals with
NOS inhibitors has been reported to have both beneficial
and deleterious effects, and has even made strains that are
normally resistant to EAE susceptible to the disease
[1••,4,52•,53]. Furthermore, deletion of the iNOS gene,
rather unexpectedly, increased the severity of EAE [52•]. The
most probable explanation of this diverse array of results is
related to the immunomodulatory activity of NO, which is
compromised in the iNOS knockout animals or after expo-
sure to NOS inhibitors. The beneficial effect of NO may be
related to its ability to inhibit antigen presentation, T-cell
proliferation, and recruitment of T cells and macrophages
into the lesion; furthermore, it may be related to the anti-
inflammatory activity of nitrated lipids [17••]. Indeed, the
iNOS knockout mice with EAE show significantly increased
proliferation of spleen and lymph node cells and increased
production of T-helper cytokines [35], supporting the
notion that immunomodulatory effects of NO contribute to
the resistance to the EAE. Furthermore, the overall effect of
NO may be related to the disease phase, because the out-
come of exposure to NOS inhibitors seems to be highly
dependent on the timing of treatment [54–56]. Together,
the results from the experiments with genetically or pharma-
cologically suppressed NO production indicate that it is
important to further dissect the signaling cascades activated
by NO to be able to block its deleterious activities while
allowing its beneficial effects. In particular, it will be impor-
tant to explore the possibility of reducing the production or
action of peroxynitrite (eg, using superoxide or peroxynitrite
scavengers) without compromising the anti-inflammatory
branch of the NO signaling pathways.
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Nitric Oxide and Stem Cell Therapy
Although the basic causes of MS remain unknown, there is a
range of approved therapies that provide statistically proven
benefits by slowing down the course of the disease. How-
ever, there are no treatments to restore the loss of neurologic
function when the demyelination becomes irreversible or
when the axon or neuron is lost to the disease. Although
EAE for restoration often undergoes spontaneous reversion
and responds to prospective therapies, there is only anec-
dotal evidence of neurologic function in MS patients. Mean-
while, the recovery of neurologic damage is, of course, as
desirable as the prevention of progression. The action of NO
may also be relevant for a therapeutic strategy that is now
actively considered: the use of exogenous, or recruitment of
endogenous, stem/progenitor cells for the treatment of MS
[57•]. The aspect of NO function that may be important for
such approaches relates to its activity as a negative regulator
of cell division in the adult CNS. NO and nNOS emerge as
important contributors to the control of adult neurogenesis,
such that exposure to pharmacologic inhibitors of NO
production or genetic inactivation of nNOS results in an
increased production of new neurons in the neurogenic
areas of the adult brain [58–61]. Moreover, suppression of
NOS activity affects the production of progenitor cells,
including those that can give rise to oligodendrocytes
(Packer, Encinas, and Enikolopov, Unpublished data). It will
be important to explore the potential of NOS inhibitors or
NO scavengers to help recruit progenitor cells in the CNS, in
order to direct them towards oligodendrocytic differentia-
tion, to instruct transplanted stem/progenitor cells to
survive and acquire the fate of cells damaged by MS, and,
even more challenging, to relocate to sites of damage.

Conclusions
Nitric oxide has a multifaceted role in MS and EAE. Its
action may have both positive and negative effects on the
development of the disease. It will be important to dissect
the molecular mechanisms of the action of NO in the CNS
to be able to retain the advantageous aspects of NO activity
while blocking the detrimental aspects (eg, by only reducing
the levels of peroxynitrite). Recent discoveries highlight the
need to investigate the protein targets of the NO action
in cells; likewise, the discovery of the endogenous nitrated
lipids with anti-inflammatory activity opens an unexplored
signaling realm with great potential for therapy. Further-
more, the possibility of nonenzymatic production of RNI
may renew interest in the dietary contribution to the control
of the disorder. Finally, the role of NO as a regulator of
cell proliferation in the adult CNS should be explored in
relation to prospects for stem cell therapy.
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