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Introduction
Cardiac and pulmonary dysfunction occur frequently
following acute neurologic injury and are a significant
cause of morbidity and mortality in this population [1–3].
Cardiopulmonary sequelae include hypertension, arrhyth-
mias, ventricular dysfunction, pulmonary edema, shock,
and sudden death. Neurogenic cardiac and pulmonary dys-
function from stroke, subarachnoid hemorrhage (SAH),
traumatic brain injury, epilepsy, and encephalitis [4–6]
have all been implicated. Given the high frequency of
these conditions, it is important for physicians to become
familiar with their pathophysiology, allowing for more
prompt and appropriate treatment.

The concept that the brain exerts influence over distant
organs has been appreciated for over a century. In 1903,
Cushing [7] noted the presence of arrhythmias and blood
pressure abnormalities in patients with intracranial hemor-
rhage. Pulmonary edema following seizure activity was
described by Shanahan [8] in 1908. In 1938, Aschenbrenner
and Bodechtel demonstrated that electrocardiogram (ECG)
changes were associated with SAH [9•]. Subsequent works
have identified a pattern of neurogenic myocardial injury
associated with cardiac enzyme release and normal myo-
cardial perfusion [10–13], as well as neurogenic pulmonary
edema in the setting of normal wedge pressures [14].

This review focuses on the manifestations of neuro-
genic influences on heart and lung function after acute
brain injury and the mechanisms by which they occur.
Recommendations for appropriate management of these
complications are addressed.

Review of Autonomic Centers Within 
the Brain
The autonomic centers in the brainstem are of primary
importance with regard to central nervous system (CNS)
modulation of the cardiovascular and pulmonary systems.
These centers have been studied extensively. Neocortical
areas such as the orbitofrontal cortex, temporal pole, and
cingulate gyrus also likely play a role [15]. More recently,
the insular cortex, which is thought to have widespread
connections to other autonomic structures throughout the
brain, has been recognized as having a major influence on
autonomic function [16–18]. The paleocortex (amygdala)
is thought to influence the autonomic nervous system in
response to different emotional states. In fact, myocardial
stunning, as described in subsequent sections, has been
reported following emotional stress [19•]. In 1963,
Melville et al. [20] postulated a role of the diencephalon in
autonomic control of the heart. It has since been accepted
that the anterior hypothalamus shows parasympathetic
activity whereas the posterior hypothalamus involves
sympathetic outflow [20]. Subsequent research has shown
various dysrhythmias associated with stimulation or
lesions of the hypothalamus [20–23]. The mediodorsal
nucleus of the thalamus has also been implicated in the
modulation of autonomic functions. Brainstem medullary
and supramedullary centers are involved in the afferent
and efferent limbs of the autonomic nervous system as well
as with integration of autonomic information from
multiple levels. Afferent information from the peripheral
reflex receptors (eg, baroreceptors, mechanoreceptors, and
chemoreceptors) enter the medulla and terminate in the
nucleus tractus solitarii (NTS). Some fibers from the NTS
then project to the nucleus ambiguous, dorsal motor
nucleus of the vagus, and intermediolateral column of
the spinal cord (sympathetic preganglionic cells). Thus,
reflex pathways affect the parasympathetic output from the
brainstem and sympathetic outflow from the spinal cord to
the sympathetic ganglion (eg, stellate ganglion) [24,25].
Efferent autonomic outflow from the CNS will have local
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action within other organ systems (eg, intrinsic cardiac
ganglion and cardiac beta and muscarinic receptors).
Other fibers from the NTS will project to the parabrachial
nucleus in the pons, which serves as a relay nucleus in the
autonomic nervous system, with widespread projections to
other areas [24,25].

The Neurogenic Heart
Cardiac dysfunction following brain injury is a common
occurrence and includes ECG changes, arrhythmias,
cardiac enzyme leaks, left ventricular dysfunction, and
occasionally sudden death.

Repolarization abnormalities
Studies of patients with SAH have revealed rates of ECG
changes ranging from 50% to 100% [26–28]. The most
common abnormalities include ST changes, T wave
inversion, and prolongation of the QT interval, although
peaked T waves and U waves may also occur [29–32].
Although these findings have typically indicated myo-
cardial ischemia, there is accumulating evidence from
clinical and experimental studies that in the setting of
brain injury these changes are due to diffuse myocardial
damage secondary to sympathetic activation rather than
cardiac hypoperfusion [33–35]. As will be discussed in the
following text, there is much evidence that ECG abnormal-
ities resulting from neurologic causes are accompanied by
cardiac enzyme leaks [36], although one recent study
in patients with SAH found that serum troponin I was
elevated in patients with prolongation of QT interval but
not ST segment changes, T wave inversion, or abnormal U
waves [37]. Neurogenic ECG changes tend to be asymp-
tomatic and normalization of repolarization occurs in
association with resolution of the neurologic insult.
However, more extensive neurologic injury resulting in a
sustained sympathetic discharge may result in permanent
ECG changes, including the development of Q waves [38].

Arrhythmia
The concept that neural activity exerts a potent influence
on arrhythmogenesis has been accepted since the 1970s
[39]. For example, the baroreceptor mechanism is thought
to have a protective, antifibrillatory role in myocardial
ischemia by maintaining a low heart rate. This is mediated
through vagal nerve afferents, eventually leading to inhibi-
tion of presynaptic norepinephrine release [40,41].

Recent evidence suggests sympathetic nerve terminal
sprouting and redistribution may occur after myocardial
injury (eg, ischemia) or with age, predisposing to arrhyth-
mias associated with dysautonomia [24]. Spectral analysis
of respiratory variability has detected disorders of auto-
nomic cardiac control in patients with epilepsy, more
frequently in patients with a right hemisphere focus [42].
It is possible that sudden unexplained death in epilepsy
is related to arrhythmias provoked by CNS dysfunction.

Animal and human models both have suggested right insu-
lar region dominance of sympathetic innervation to the
heart whereas the left insular cortex is primarily concerned
with parasympathetic tone [43–46]. It has, therefore, been
suggested that damage to the left insular cortex predisposes
to increased cardiac sympathetic dominance and sudden
cardiac death secondary to arrhythmia [47,48].

The most frequent arrhythmias following brain injury
are premature ventricular complexes, sinus arrhythmia,
and atrial fibrillation. Other arrhythmias including atrial
flutter, ventricular tachycardia, torsades de pointe, ventric-
ular fibrillation, and asystole have been documented
[27,49–51]. In patients with SAH, rhythm disturbances
were recorded in 35%, of which 5% were considered life-
threatening. The majority of arrhythmias occurred within
7 days of the neurologic insult, with most occurring in the
first 48 hours [52].

Neurogenic stunned myocardium
The term “neurogenic stunned myocardium” refers to
neurologically mediated cardiac injury that is reversible in
nature; results in myocyte enzyme release, ECG changes,
and in some cases arrhythmias and left ventricular
dysfunction; and that is unrelated to cardiac hypoper-
fusion secondary to coronary artery disease. The degree
of myocardial injury as measured by creatine kinase–
MB and cardiac troponins has been shown to correlate
with the severity of neurologic insult [53]. Studies of
SAH patients have reported the presence of elevated
cardiac troponin I (> 1.0 µg/L) in up to 28% [54,55].
Examination of the hearts of animal models of stunned
myocardium and those of patients at autopsy has revealed
characteristic patterns of random petechial subendo-
cardial hemorrhage and myocardial cytoplasm typified by
dense eosinophilic transverse bands termed “contraction
band necrosis” [10,11,32].

In 1987, Samuels [38] introduced a unifying hypo-
thesis to explain the clinical, physiologic, biochemical,
and pathologic findings that had been described in
association with myocardial stunning. He proposed that
excessive sympathetic discharge and catecholamine excess
secondary to neurologic injury lead to prolonged opening
of receptor-operated calcium channels, resulting in
intense contraction of cardiac muscle, which when
sustained leads to myofibrillar degeneration, reperfusion
injury, and cardiac cell death [38]. This concept is
boosted by the findings that similar pathologic states
exist in the setting of catecholamine excess caused by
non-neurological dysfunction such as pheochromo-
cytoma [56], extreme states of emotional stress [19•],
scorpion envenomation [57], and after excessive cardiac
sympathetic stimulation in animals [58,59]. Furthermore,
disruption of the sympathetic pathways at the level of the
cervical cord [60,61] and use of catecholamine-blocking
agents [23,62,63] has been found to abolish the effect of
neurogenic cardiac and pulmonary injury.
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Recent studies have confirmed the presence of elevated
plasma levels of catecholamines and neuropeptide Y (stored
and released with catecholamines in post-ganglionic sympa-
thetic nerves) in the setting of cardiac dysfunction following
sudden emotional stress [19•]. Animal models of neuro-
genic cardiac injury suggest that contraction band necrosis
is mediated by direct release of catecholamines into the
myocardium at the level of the cardiac sympathetic nerve
terminals rather than from adrenal release of catechola-
mines into the systemic circulation [64]. Interestingly,
studies of patients with SAH have revealed higher rates of
myocardial injury in women [19•,65], suggesting the possi-
bility of differences in neurogenic sympathetic activation
and/or catecholamine vulnerability based on sex. Other
theories attempting to explain the mechanism behind
myocardial stunning include coronary spasm secondary to
increased sympathetic tone [66] and sympathetically
mediated microcirculatory dysfunction [67].

Decreases in left ventricular contractility leading to
hypokinesia and low ejection fractions have been reported
as a consequence of myocardial stunning. The character-
istic pattern of abnormal wall motion (involvement of the
cardiac apex and mid-portion with relative sparing of the
base, termed “apical ballooning”) may reflect the differen-
tial distribution of myocardial sympathetic nerve terminals
[68]. In patients with SAH, left ventricular dysfunction
occurs in approximately 10% of patients [65]. Decreased
cardiac output from left ventricular dysfunction in the
face of cerebral vasospasm may lead to increased cerebral
ischemia and mortality [34]. For survivors, the wall motion
abnormalities are transient and normal cardiac function
usually returns [69].

Neurogenic Pulmonary Edema
Pulmonary complications such as pneumonia and pulmo-
nary edema frequently follow acute neurologic injury [52].
The majority of clinically evident pulmonary edema is
thought to be secondary to volume overload or of cardiogenic
origin. However, neurogenic pulmonary edema (NPE) result-
ing from acute brain injury is not uncommon but remains
under-diagnosed. Post-mortem studies in the 1950s and
1960s recognized pulmonary edema in approximately 50%
of patients dying of acute intracranial pathology [70,71]. In
1969, a series of Vietnam casualties killed from head wounds
showed most had evidence of pulmonary edema, including
soldiers killed almost instantaneously [72].

The definition of NPE is generally accepted as bilateral
pulmonary edema following acute brain dysfunction
without associated heart failure, significant volume
overload, or other obvious cause of hypoxemia. NPE has
been associated with virtually any acute neurologic injury,
including seizure, traumatic brain injury, intracranial
hemorrhages, ischemic strokes, multiple sclerosis, tumors,

and infections [73]. Recently, NPE has been described in
acute, severe hypoglycemia and enterovirus encephalitis
[5,74]. Onset is frequently acute (within minutes or hours
of ictus) but may develop over days. A mortality rate
approaching 10% has been described, although, as is the
case with neurogenic stunned myocardium, if the patient
survives NPE tends to resolve rapidly (commonly within
24 hours) [75].

The mechanism by which NPE occurs is controversial.
In the Vietnam study, soldiers with cervical cord trans-
action had normal lungs, implicating sympathetic dis-
charge as part of the pathophysiology. In 1976 Theodore
and Robin [76] proposed a unifying hypothesis for NPE
that is similar to the mechanism thought to underlie the
neurogenic stunned myocardium. They hypothesized that
the neurologic insult causes a massive sympathetic dis-
charge, resulting in systemic vasoconstriction, hyperten-
sion, and a relative shift of intravascular volume to the
lower resistance pulmonary beds. Rapid onset of transient
pulmonary hypervolemia and sympathetically mediated
pulmonary vasoconstriction leads to increased hydrostatic
forces, causing hydrostatic pulmonary edema. They also
postulated that this sudden “blast” injures pulmonary
blood vessels, leading to increased pulmonary capillary
permeability that persists after restoration of normal
hemodynamics and cardiac function. This unifying
hypothesis suggests that sampling of pulmonary edema
might show fluid low in protein content (indicating a
primary hydrostatic mechanism), high in protein content
(indicating increased capillary permeability), or fluid with
a variable amount of protein depending on when the fluid
is sampled and which mechanism is predominant at the
time of sampling. In fact, some subsequent studies have
shown protein-rich pulmonary fluid indicating primary
endothelial damage [77–79]. In recent years, it has been
postulated that capillary endothelial damage is a direct
consequence of local sympathetic activity.

Conversely, some recent studies have confirmed low-
protein content in pulmonary fluid in the majority of
patients, indicating a primarily hydrostatic mechanism.
Pulmonary venoconstriction has been implicated as the
main cause of increased hydrostatic pressure [80–82].
Additionally, it is thought by some researchers that tran-
sient cardiac dysfunction causing increased pulmonary
artery occlusion pressure cannot be ruled out. However, it
is important to note that when invasive measurements
are made (eg, right heart catheterization), pulmonary
artery occlusion pressure and cardiac index are normal
shortly after the insult. Hence, neurogenic stunned myo-
cardium is not the cause of the NPE, and in fact must be
excluded when making the definitive diagnosis. Lastly,
some have implicated abnormal lymphatic drainage. It is
likely that NPE is multifactorial, with more than one
mechanism involved.
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Treatment
Cardiac and pulmonary complications following acute brain
injury increase morbidity and mortality [1,52,83,84,]. There-
fore, all patients presenting with intracranial pathology
should have a 12-lead ECG and cardiac enzyme measure-
ments on admission and telemetry until their neurologic
condition has stabilized. There are no data to guide whether
treatment of mild ECG changes improves outcome; however,
treatment of the underlying neurologic insult is the most
effective way of correcting the ECG abnormalities. Premature
ventricular complexes do not require treatment, but if they
occur with increasing frequency may signify elevated intra-
cranial pressure and herald more serious ventricular arrhyth-
mias. If control of intracranial pressure is difficult to obtain
in a timely manner, antiarrhythmic agents may be necessary
to forestall progression to life threatening arrhythmias. In
the event that ventricular tachyarrhythmias or hemodynami-
cally unstable supraventricular arrhythmias do occur, treat-
ment with standard antiarrhythmic agents should be
instituted immediately.

It is important to differentiate neurogenic stunned
myocardium from cardiac ischemic injury, especially in the
setting of SAH. Whereas the former is a reversible condi-
tion that will resolve with treatment of the neurologic
insult, the latter may cause irreversible cardiac dysfunction
and may delay crucial surgery for aneurysmal repair.
Based on a retrospective study of 350 patients with SAH,
Bulsara et al. [9•], proposed the following criteria to differ-
entiate neurogenic stunned myocardium from ischemic
cardiac dysfunction: 1) no history of cardiac problems;
2) new-onset left ventricular dysfunction (ie, ejection frac-
tion less than 40%); 3) cardiac wall motion abnormalities
on echocardiogram that do not correlate with the coronary
vascular distribution performance on ECG; and 4) cardiac
troponin levels less than 2.8 ng/mL. If doubt still exists
regarding the etiology of the cardiac dysfunction, coronary
angiography may be necessary.

Neurogenic pulmonary edema should be treated
symptomatically, and early intubation is recommended.
Treatment in general is similar to the management of
cardiogenic pulmonary edema; however, the use of diuret-
ics in SAH patients should be exercised with extreme
caution, as this population requires a hypervolemic state to
prevent vasospasm.

In patients who display autonomic instability, some
have advocated the use of catecholamine blockers based
on the observations in animal models of neurogenic sym-
pathetic excess that they can be protective [83]. Further-
more, it has been recommended that the use of pressors
and β-agonists be minimized whenever possible in the
setting of stress cardiomyopathy, and to rely on mechani-
cal circulatory support instead [19•].

Conclusions
There is substantial evidence that acute brain injury such as
stroke, SAH, infection, epilepsy, and traumatic brain injury
causes dysfunction of the cardiovascular and pulmonary
systems. These effects can range from asymptomatic ECG
changes to arrhythmias, left ventricular dysfunction, NPE,
and even sudden death. The mechanism of neurogenic
injury is likely mediated through excessive sympathetic dis-
charge secondary to disruption of autonomic centers in the
cerebral cortex and brainstem. Physician awareness of this
phenomenon is important because early monitoring and
management of end-organ dysfunction is likely to improve
outcomes. Further studies are required to better elucidate
mechanisms of injury and test proposed interventions,
such as sympatholytics and free radical scavengers.
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