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Introduction
Myotonic dystrophy (DM) is a complex multisystemic
disorder that was initially identified almost 100 years ago
[1•]. A mutation was identified on chromosome 19 in
1992 for the first genetically identified form of the disease
(DM1) [2,3]. In 1994, a similar disorder was identified
[4,5] and referred to as either proximal myotonic myo-
pathy (PROMM) [4,6], proximal myotonic dystrophy
(PDM) [7], or myotonic dystrophy type 2 (DM2) [8,9],
which led to a revised nomenclature [10]. DM1 now refers
to the chromosome 19 form of the disease and DM2 refers
to the new genetically distinct disorder.

Clinical Features of Myotonic Dystrophy
The clinical features of the two diseases are shown in Table 1,
which compares the findings in 234 genetically confirmed
cases of DM2 to the recognized DM1 phenotype.

The skeletal muscle features in both genetic forms of
myotonic dystrophy include progressive weakness, stereo-
typed changes on biopsy [1•,11••,12,13], and myotonia.
At onset, both forms of the disease affect neck flexors and

distal upper extremity muscles (specifically deep flexors
of the thumb and deep flexors of the lateral digits more
than medial digits) [14]. Although DM1 patients often
complain of finger weakness, DM2 patients often come to
medical attention because of hip girdle muscle weakness,
which led to the name PROMM [15], despite the fact that
the finger flexor weakness is often an earlier finding on
clinical examination [11••]. In later stages of both diseases,
diffuse weakness can become marked, although bulbar
and ventilatory weakness is more notable in DM1 than in
DM2 [1•,11••]. DM1 also results in greater muscle atrophy
than does DM2, which is occasionally associated with the
hypertrophy typical of myotonia congenita [11••].
Although electrical myotonia is seen in almost all adults
with both forms of DM (Table 1) [11••], myotonia is
notably absent in infants with congenital onset DM1; in
neither form of the disease is the myotonia as severe as
occurs in chloride channelopathies [1•].

In addition to skeletal muscle involvement, both forms
of DM affect the heart, eye, endocrine system, and central
nervous system. Atrioventricular and intraventricular con-
duction abnormalities, as well as sudden death, occur in
both diseases [11••,16,17]. The cataracts that are common
in both diseases are unusual and indistinguishable between
DM1 and DM2, with iridescent posterior subcapsular
opacities on slit lamp examination [1•,11••]. Various other
features are common to both diseases, including testicular
failure (both hypotestosteronism and oligospermia),
hypogammaglobulinemia (serum levels of both IgG and
IgM are reduced), and insulin resistance [1•,11••,18•,19•].
Mental retardation is seen in early-onset DM1 patients [1•]
but has not been associated with DM2. Both DM1 and
DM2 patients develop central nervous system white matter
abnormalities [20]. Central hypersomnia is a recognized
feature of DM1 that has not yet been specifically
investigated in DM2, although daytime sleepiness has
been reported [9].

Genetics of DM1
The DM1 mutation was identified in 1992 as a (CTG)n
repeat in the 3’-untranslated region of the dystrophia
myotonica protein kinase gene (DMPK) [2,3,21–23].
This location of the DM1 mutation meant that DM1 was
the first dominantly inherited disease found to be caused
by an untranslated repeat expansion. In 1995, the DM1

Pathogenic repeat expansions were initially identified as 
causing either a loss of gene product, such as in fragile X 
mental retardation, or an expansion of a polyglutamine 
region of a protein, as was first shown in spinobulbar 
muscular atrophy (Kennedy’s disease). The pathogenic 
effect of the repeat expansion in myotonic dystrophy 
type 1, however, has been controversial because it does 
not encode a protein but nonetheless results in a highly 
penetrant dominant disease. Clinical and molecular charac-
terization of myotonic dystrophy types 1 and 2 have now 
demonstrated a novel disease mechanism involving patho-
genic effects of repeat expansions that are expressed in 
RNA but are not translated into protein.
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mutation was also found to be in the promoter region of
the immediately adjacent homeodomain gene SIX5 [24].
The CTG expansion in DM1 patients can vary from 80
to more than 4000 repeats in affected individuals,
with clinically unaffected individuals having 50 to 100
CTG repeats. Intergenerational and somatic instability are
observed in which repeat size can increase by approxi-
mately 50 to 80 repeats per year [25]. There is a rough
correlation of DM1 repeat size and age of onset for CTGs
less than 400 repeats [26].

Genetics of DM2
We began studying DM2 in 1992 as an independent
approach to defining the underlying pathogenesis of the
myotonic dystrophies. We linked the DM2 mutation to
chromosome 3q21 in 1998 [8,9], and subsequently showed
that DM2 is caused by an untranslated CCTG repeat
expansion in intron 1 of the zinc finger protein 9 (ZNF9)
gene [27••]. The DM2 repeat tract contains the complex
motif (TG)n(TCTG)n(CCTG)n; the TG, TCTG, and CCTG
tracts are all polymorphic in the general population, but
only the CCTG portion expands in affected individuals. The
CCTG portion of the repeat tract is usually interrupted on
normal alleles, but the interruptions are lost on affected
alleles (and in an unaffected individual who possibly carries
a premutation) [28]. DM2 CCTG expansions can be much

larger than the DM1 CTG expansions, with alleles ranging
in size from approximately 75 to 11,000 CCTG repeats
(mean of 5000 CCTGs). The smallest pathogenic size is not
clear because uncommon shorter expansions are found in
individuals with multiple allele sizes in lymphocyte DNA
[11••,27••]. The lack of correlation between repeat size and
disease severity, and the recent observation that individuals
homozygous for large DM2 repeats do not have a more
severe disease [29], indicate that larger repeats do not result
in increasingly severe pathogenic effects.

On Southern analysis of DNA from peripheral blood
samples, 20% of DM2 expansions are not detectable
because the mutation size heterogeneity caused by somatic
instability results in a broad smear without any definable
bands. Consequently, DM2 molecular diagnosis requires
a polymerase chain reaction–based assay of the repeat
that is not necessary for diagnosis of DM1 or other repeat
expansion disorders [11••]. Although intergenerational
decreases in age of onset have been reported in DM2
families based on clinical criteria [11••,30], the expected
trend of longer repeat expansions in patients with earlier
disease was not observed, although the somatic instability
of the repeat clearly complicated this analysis [11••].

The Common Denominator in Pathogenesis 
of Myotonic Dystrophy
The DM2 CCTG expansion within intron 1 of ZNF9 and
the DM1 CTG expansion in DMPK are transcribed into
RNA but do not alter the protein coding portion of any
gene. ZNF9 is a nucleic acid binding protein [31,32] with
effects that are unrelated to any of the proteins encoded in
the DM1 region on chromosome 19. Similarly, genes
in the DM2 region (KIAA1160, Rab 11B, glycoprotein IX,
FLJ11631, and FLJ12057) bear no obvious relationship to
the genes at the DM1 locus (DMPK, SIX5, DMWD, and
FCGRT). It is hard to imagine how dysregulation of the
different sets of genes at the DM1 and DM2 loci would
result in diseases with such strikingly similar multisystemic
features. The molecular and clinical parallels between DM1
and DM2 thus indicate that the clinical features common
to both diseases, including myotonia, muscular dystrophy,
cataracts, cardiac arrhythmias, insulin insensitivity and
diabetes, hypogammaglobulinemia, and testicular failure,
are caused by the pathogenic effects of RNA containing the
CUG and CCUG expansions (Fig. 1) [11••].

Mechanisms of RNA Toxicity
After RNA inclusions were identified in DM1 muscle nuclei
[33], investigators tried to identify RNA binding proteins
that might be dysregulated by the CUG repeat motifs
[34,35]. Recent suggestions that ribonuclear inclusions
in DM1 and DM2 sequester transcription factors [36]
have not yet been confirmed in tissues from affected
patients. Direct evidence that the repeat expansions in RNA

Table 1. Comparison of clinical features in 
myotonic dystrophy types 1 and 2

Clinical feature DM2 DM1

Skeletal muscle features (n = 234 for DM2)
Myotonia on EMG 90 +++
Weakness

Any weakness on exam 82 +++
Neck flexors 75 +++
Thumb or deep finger flexors 55 +++
Hip flexors 64 +
Deep knee bend 54 +

Multisystemic features (n = 234)
Cardiac: conduction defect on ECG 20 ++
Cataracts: history or 

bedside examination
60 ++

Additional laboratory findings (n given for 
each test)
Elevated creatine count (90) 90 ++
Low IgG (20) 65 ++
Low IgM (20) 11 +/-
Low testosterone (22) 29 ++
High FSH (26) 65 ++
Insulin insensitivity (16) 75 ++

+—Well recognized and common late in the course of disease.
++—Common among all patients.
+++—Expected in all patients.
+/-—Recognized but not common.
DM—myotonic dystrophy; ECG—electrocardiogram; 
EMG—electromyogram; FSH—follicle-stimulating hormone.
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are responsible for DM pathogenesis includes 1) a CTG
expansion in the 3’ UTR of DMPK  mRNA inhibits
myoblast differentiation [37]; 2) transgenic models with
CTG expansions expressed at the RNA level cause myo-
tonia and muscular dystrophy [38••,39]; 3) CUG- and
CCUG-containing transcripts accumulate as RNA foci
[27••,33,40,41]; 4) CUG-containing transcripts alter the
regulation or localization of RNA binding proteins, includ-
ing CUG-BP [42] and muscleblind (MBNL1, MBLL and
MBXL) [41,43]; and 5) altered RNA binding protein
activity [44] caused by the CUG and CCUG RNA
expansions results in abnormal splicing and function of
several gene products, including cardiac troponin T
(cTNT), the insulin receptor (IR), and the muscle chloride
channel (ClC-1).

In a landmark discovery [45], increased CUG-BP
activity in DM1 muscle was shown to alter splicing of cTNT
by binding intronic CUG-containing splicing signals in
pre-mRNA. In adult DM1 cardiac and skeletal muscle,
cTNT transcripts abnormally include exon 5, resulting in a
fetal isoform of the protein. This was the first demonstra-
tion that elongated CUG repeat expansions in RNA lead to
trans alterations in gene splicing. The cTNT discovery was
followed by the demonstration that IR alternative splicing
is also aberrantly regulated in DM1 skeletal muscle. Exon
11 is preferentially excluded from IR in DM1 muscle,
which results in predominant expression of the insulin-
insensitive splice form, IR-A [18•]. These results have now
also been duplicated in DM2 [19•], further demonstrating
the common pathogenic mechanism responsible for
both diseases, and supporting a model in which altered
activity of RNA-binding proteins leads to abnormal
splicing of the IR, insulin resistance, and diabetes in DM1
and DM2. Another gene now shown to be abnormally
spliced is the muscle chloride channel ClC-1, resulting in
the myotonia; abnormal isoforms and overall reduction in
ClC-1 protein in the sarcolemma have been demonstrated
in transgenic mice as well as in muscle from DM1 and
DM2 patients [46••,47••]. Splicing alterations of the
microtubule-associated tau mRNA have been observed in
central nervous system tissue from DM1 patients [48] and
in a murine model [39], which may underlie various
central nervous system alterations in DM1 and DM2. Also,
altered splicing of myotubularin-related 1 (MTMR1) gene
has been reported in congenital DM1 muscle cells in
culture and in skeletal muscle samples from congenital
DM1 patients, suggesting a role for MTMR1 in myotonic
dystrophy, possibly in the profound muscle atrophy of
congenital DM1 [49].

Role of Muscleblind in Splicing Changes
The role of different RNA binding proteins (CUG-BP and
MBNL) in DM pathogenesis has been unclear. Although
increased CUG-BP activity in DM1 results in a trans domi-
nant effect on gene splicing, CUG-BP does not co-localize

with the ribonuclear inclusions.  In contrast ,  the
muscleblind RNA binding proteins do co-localize with the
ribonuclear inclusions, but were not initially associated
with any specific molecular pathogenic effects. Direct
evidence of muscleblind involvement in disease pathogen-
esis comes from the recently developed MBNL1 knockout
mice, which model the myotonia, myopathy, cataracts, and
RNA splicing abnormalities of DM1 and DM2 [50••].
More recently, MBNL was shown to have a direct effect on
gene splicing that is opposite to that of CUG-BP [44].
Interestingly, overexpression of CUG-BP causes many of
the same specific alternative splicing changes that occur
with depletion of MBNL1. In general, CUG-BP appears to
promote splice forms normally involved in fetal develop-
ment, whereas MBNL1 preferentially leads to adult splice
forms. These data predict that over-expression of CUG or
CCUG repeat expansions, over-expression of CUG-BP,
or depletion of MBNL1 would all result in a similar set
of splicing alterations, the downstream effects of which
would lead to characteristic molecular and physiologic
features of the myotonic dystrophies.

Differences Between DM1 and DM2
Although DM1 and DM2 phenotypes are strikingly similar,
they are not identical. DM2 does not show a congenital
form, with the attendant craniofacial and musculoskeletal
abnormalities, and does not manifest the severe central
nervous system involvement sometimes encountered in
DM1 [11••]. The clinical distinctions between these diseases
could result from differences in temporal or spatial expres-
sion patterns of the genes containing the expanded repeats
(DMPK and ZNF9) and the genes for the various RNA
binding proteins, or could be caused by differences in the
downstream effects of CUG as opposed to CCUG expan-
sions. Alternatively, the differences between DM1 and DM2
could involve locus-specific genes such as DMPK, SIX5, or
DMWD for DM1, and ZNF9 for DM2. A possible mecha-
nism for congenital DM1 is the demonstrated methylation
of a genetic insulator at the DM1 locus in congenital cases
[51•], which results in higher DMPK expression in the more
severe congenital phenotype. Further clinical and molecular
comparisons of DM1 and DM2 are needed to clarify the
differences between the two disorders, which will help
determine whether there are distinct pathogenic mecha-
nisms responsible for the phenotypic differences, or, alterna-
tively, to what extent the clinical distinctions simply reflect
disease-specific differences in severity of the CUG
and CCUG repeat expansions in RNA.

Possibility of DM3
Linkage disequilibrium and haplotype analysis indicate
that single founder mutations led to both the CTG expan-
sion in DM1 [52,53] and the CCTG expansion in DM2
[28,55]. All previously reported families with dominant
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multisystemic myotonic disorders other than DM1,
whether reported as having PROMM, PDM, or DM2, or
previously reported not to be linked to the DM2 locus,
have now been shown to carry DM2 expansions [11••].

A family recently suggested to have DM3 [55] has
features typical of the myotonic dystrophies, including
cataracts and electrical myotonia, but also has several
clinical features that have not been reported in DM1 or
DM2, including spongioform encephalopathy, motor
neuron degeneration, and dementia. No investigations of
ribonuclear inclusions or splicing abnormalities were
reported, and it is unclear whether the spontaneous
electrical activity is an intrinsic feature of muscle, as in
DM1 and DM2 myotonia, or is secondary to the observed
motor neuron disorder. Additional genetic and clinical
testing will be needed to determine whether the patho-
genic pathway involved in this family is related to DM1
and DM2, or is more consistent with the molecular patho-
genesis of the tauopathies. Additional families recently
reported as possibly having DM3 [56] have characteristic

features of myotonic dystrophy, although complete clinical
and genetic characterization is pending.

Conclusions
The molecular and clinical similarities of DM1 and DM2
have now substantiated a disease mechanism in which
RNA containing CUG and CCUG repeat expansions alters
processing of multiple transcripts, leading to abnormal
splicing of the chloride channel, insulin receptor, and
other genes that underlie the multisystemic phenotype
characteristic of these diseases. Other molecular mecha-
nisms may be involved in aspects of myotonic dystrophy,
such as the features that are seen in DM1 but not DM2, but
we now have a primary pathophysiologic target against
which to direct possible therapeutic regimens. Pharmaco-
logic approaches can be developed to correct specific
features of the disease (eg, myotonia, insulin resistance),
and genetic approaches to a definitive treatment are also
being developed [57].

Figure 1. Pathogenic RNA model of myotonic dystrophy type 1 (DM1) and type 2 (DM2). The model of DM1 and DM2 reflects the pathogenic 
effects of the untranslated expansions in each disease. Genes encoding both expansions are transcribed. The DM1 dystrophia myotonica protein 
kinase (DMPK) mRNA containing the CUG expansion is incorporated into ribonuclear inclusions, as is RNA containing the CCUG expansion 
from the DM2 transcript (although it remains unclear how much of the zinc finger protein 9 [ZNF9] transcript is in the inclusions). Muscleblind 
protein (MBNL) binds to the ribonuclear inclusions. CUG-BP activity is increased by unclear mechanisms, which, along with the decrease in 
MBNL, alters splicing of transcripts involved in DM pathogenesis (eg, transcripts encoding the chloride channel and insulin receptor). Although 
the genes responsible for some clinical features have not yet been identified (eg, testicular failure and hypogammaglobulinemia), the occurrence 
of these abnormalities in both DM1 and DM2 indicates that they are likely to be caused by the same mechanism. (CNS—central nervous system.)
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