
Genetics of Brain Neoplasms
Joan Rankin Shapiro, PhD

Address
Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, 
350 West Thomas Road, Phoenix, AZ 85013, USA. 
E-mail: jshapiro@chw.edu

Current Neurology and Neuroscience Reports 2001, 1:217–224
Current Science Inc. ISSN 1528-4042
Copyright © 2001 by Current Science Inc.

Introduction
Malignant gliomas include a series of tumors originating
from the three different glial elements: astrocytes, oligoden-
droglia, and ependymal cells. The astrocytic tumors include
astrocytomas, anaplastic astrocytomas, and glioblastoma
multiforme (GBM); the oligodendroglial tumors develop as
oligodendrogliomas and anaplastic oligodendrogliomas or
mixed gliomas that include a mixture of oligoastrocytoma
cells. These two groups of gliomas are being diagnosed more
frequently and earlier, due to advances in imaging.  They
account for about half of the primary intracranial tumors in
the adult population. Whenever possible, they are treated
aggressively with surgery, radiation, and chemotherapy.
However, malignant gliomas recur, and for the most malig-
nant brain tumor, the GBM, median survival is approxi-
mately 58 weeks [1••]. Unfortunately, this prognostic figure
has not notably improved in the past 25 years, even though
the overall 5-year survival rate for all forms of cancer has
increased from 39% to 61% in that same period of time.

Genetic Aberrations Associated 
with Central Nervous System Tumors
Glioma pathways
One of the important concepts to emerge from these molec-
ular genetic investigations was the characterization of at least

two different pathways that can produce a glioblastoma [2].
These two pathways were each defined by specific genetic
lesions, especially when patient material was carefully
selected on the basis of clinical and histopathologic data
[3,4]. This is a significant observation because these tumors
cannot be distinguished histopathologically.

Type 1 or secondary glioblastoma
The Type I or secondary pathway is a progressive step-wise
evolution from a low-grade astrocytoma, to anaplastic
astrocytoma, to GBM. Patients diagnosed with this
progressive glioma are generally younger (mean age, 39
years) and have a history of a less malignant tumor at the
time of diagnosis [3,5]. The astrocytomas (grade II tumors)
tend to grow slowly, but are not benign because of their
invasive quality and location.

Cytogenetic analysis of astrocytomas reveals the gain of
chromosome 7 along with the loss of a single sex chromo-
some as the most common numerical aberrations.
Structural abnormalities are rare, but when they occur they
generally involve chromosomes 1p and 9p [1••]. Despite
the lack of karyotypic complexity of the astrocytoma,
genetic analysis of these low-grade tumors has defined
several specific aberrations (Fig. 1).

The most common finding involves a mutation or
allelic loss of chromosome 17p, the target gene is the TP53
(17p13.1) gene, in which more than 200 mutations have
been described in human tumors [6]. The genetic lesion is
a missense mutation that inactivates the TP53 gene. There
are several so-called "hot spots" in codons 175, 248, and
273 [7], a highly conserved region spanning exons 5, 7,
and 8. Before tumors were selected on the basis of their
clinical history, TP53 aberrations appeared to vary widely.
The range was as low as 25% in some studies, to a figure as
high as 60% in other investigations. With the separation of
patient material, a different concept began to emerge. TP53
mutations became the common mutation in patients
between 18 years of age and the mid-40s (44%), compared
with older patients who had a mean age of 60 years (9%).
The most current assessment of TP53 mutations in the
progressive glioma is now placed at greater than 65% [8,9].
A similar observation has been made with immuno-
histochemical analysis of the p53 protein. These investiga-
tions have shown that approximately three quarters of
these gliomas have an abnormal accumulation of p53
protein. This increase in accumulation of p53 protein is
expected because it can occur as a result from a mutation in
TP53, as well as aberrations on other genes controlling the
expression of the TP53 gene [9].

Transformation of a normal cell into a malignant cell involves 
a series of events that damage the genome. Gliomas are the 
most common adult neoplasm of the central nervous system. 
To develop new therapeutic strategies requires an understand-
ing of the specific lesions that occur and contribute to this 
malignant process.  Initially, data reported from the analyses 
of human gliomas were quite variable. This has recently 
changed as more data have become available and the selection 
of tissue analyzed is coupled with clinical criteria. Specific 
genetic lesions are now defining different glioma pathways, and 
some aberrations may be indicative of therapeutic response. 
This review focuses on the specific genetic aberrations 
associated with astrocytic and oligodenroglial tumors.
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A second family of genes appears to be important to
astrocytoma evolution as well. These genes involve a growth
factor and its receptor. The platelet-derived growth factor
(PDGF) family consists of an A and B chain (PDGF-A and
PDGF-B) and it has two receptors, PDGFR-α and PDGFR-β
[10]. The PDGF-A and -B chains dimerize to form AA, BB, or
AB homo- or heterodimers. The receptor PDGFR-α binds
with AA and AB, whereas PDGFR-β binds with only the BB
homodimer. In astrocytomas, the A chain and α-receptor are
predominantly over-expressed [11]. This observation is inter-
es t ing  because  the  most  common chromosomal
abnormality identified in astrocytomas involves aneuploidy
of chromosome 7 [12], the chromosomal location of the
PDGF-A chain. This observation may also have some impor-
tance in therapy-related issues, because in vitro and in vivo
treatment with 1,3-bis(2-chloroethyl)-1-nitrosourea
(BCNU) selects for a minor subpopulation of cells contain-
ing amplified PDGF-A and -B chains [13]. Changes in the
expression of growth factors and their receptors may also
initiate local environmental changes that begin to stimulate
angiogenesis. Over-expression of PDGFR-α also correlates
with the loss of heterozygosity for 17p, although the exact
nature of these events is unknown [14••].

In about 30% of the astrocytomas, allelic loss (loss of
heterozygosity) has been identified on chromosome 22q,
and a likely candidate for this genetic loss was the NF-2

gene. However, extensive analysis of this gene in all grades
of gliomas has failed to detect a consistent abnormality
[15]. The allelic loss reported for chromosome 22q occurs
more telomeric to the NF-2 gene, and thus a candidate
gene or genes to explain this observation awaits further
genetic analysis. Other chromosomes exhibiting allelic loss
in astrocytomas include chromosomes 1, 3, and 13. Each
allelic loss identified in these studies represents a probable
site for tumor suppressor genes, but awaits further
confirmation [1••,14••].

Anaplastic astrocytomas
Anaplastic astrocytomas are generally thought to develop from
low-grade astrocytomas. They are found in both young and
old patients, with the peak incidence occurring in patients in
their mid-50s. Like astrocytomas, the gain of chromosome 7 is
the most frequent numerical aberration. Additional chromo-
some gains include 19 and 20, whereas chromosomes 10, 22,
and a single sex chromosome are frequently lost. The patterns
of gain and loss are more prominent for anaplastic astro-
cytomas, and structural abnormalities are also more frequent.
The majority of breakpoints occur on the p arms of chromo-
somes 1, 3, and 9 (1p32, 1p36, 3p21, 9p21 and 9p22), with
similar clusters in the q arms of chromosomes 6 and 7 (6q21
and 7q22), and occasionally in chromosomes 5p13, 15q11,
17p11, and 19q12.1 [16,17].

Approximately 30% to 40% of anaplastic astrocytomas
have a mutation of the TP53 gene in addition to allelic loss.
Over-expression of PDGF and PDGF receptors and allelic
loss on 22q are also similar in frequency to astrocytomas,
further supporting the concept of the progressive nature of
astrocytomas to a more malignant stage, defined as the
anaplastic astrocytoma [14••]. Changes that mark this
transition from astrocytoma to anaplastic astrocytoma
include additional allelic loss on chromosome arms 9p,
11p, 13q, and 19q [16].

Many of the genetic changes in the anaplastic astro-
cytoma are associated with critical steps in the cell cycle. A
key gene in this scenario is the retinoblastoma gene (RB),
which is located on chromosome 13q14. The Rb1 protein
inhibits the transition of the Go/G1 to S phase. When the
Rb1 protein is phosphorylated by any of cyclin dependent
kinases (CDKs), this protein is inactivated, allowing
elongation 2 factor (E2F) to function in promoting the cell
to progress from G1 to S in the cell cycle. The CDK (CDK4,
CDK6, and CDK2) genes are both controlled by positive
and negative regulators, and the deregulation of either of
these genes or genes upstream in the pathway can produce
a similar loss of control over the cell cycle.

Other genes involved in growth control, such as trans-
forming growth factor-β (TGF-β), or oncogenes such as ras or
myc, can be aberrant. The aberrant expression of these genes
will be reflected in the high and low expression of the Cip/
Kip proteins. Thus, the cascade of events leading to the inhi-
bition of Rb1 protein is under the control of multiple genes,
and the failure of any one of them to function normally will

Figure 1. Changes associated with the progressive evolution of Type 
1, secondary glioblastoma. (DCC—detected in colon cancer gene; 
LOH—loss of heterozygosity; PDGF—platelet-derived growth factor; 
PTEN—phosphate-tensin gene; RB—retinoblastoma gene.)
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permit the cell cycle to continue unchecked. In fact, the
evidence suggests that it is rare to find more than one DNA
lesion in the critical steps of the cell cycle pathway [18].

Not all deregulation is related to allelic loss of genetic
material. Several investigations have identified a region on
chromosome 12 (12q13-14) that is amplified in 15% of
World Health Organization (WHO) grade III (anaplastic
astrocytomas) and IV (glioblastomas multiforme) tumors
[19]. The over-representation of whole chromosomes or
structural rearrangements involving the duplication of parts
of chromosomes can contribute to the amplification of
proteins affecting the cell cycle. The best example is chromo-
some region 12q13. The genes MDM2, SAS, and CDK4 are
mapped to this chromosome region. This segment of
chromosome 12q is frequently over-represented in gliomas.
Therefore, aneuploidy of either whole or parts of chromo-
somes are considered to be another mechanism for deregu-
lating the cell cycle when mutations or allelic loss are not
present. The MDM2 gene codes for a cellular protein that
complexes with the p53 tumor suppressor gene product, and
this binding inhibits its function. This provides a mechanism
for a tumor cell to escape p53-mediated growth regulation
despite no mutation or allelic loss of TP53. A similar analogy
can explain deregulation when genetic material is lost. For
example, chromosome 9p21 is a map location for the
CDKN2A (P16 gene family), a chromosome region that has
been shown to have frequent allelic loss. Loss of this inhibi-
tor protein provides an alternative mechanism leading to the
same biologic endpoint (ie, amplification of CDK4 and
progression through the cell cycle) [19].

Another important site of allelic loss is on chromo-
some 19q13.2-13.3. The putative tumor suppressor gene
has not yet been identified. However, this gene appears to
be unique to glial tumors and is primarily limited to the
progressive type of glioma. When tissue is selected for Type
1 and Type 2 gliomas, the allelic loss reported was 54% for
Type 1 gliomas versus 6% for Type 2 gliomas [20].

Several other chromosome regions have been reported to
undergo allelic loss. The chromosome region spanning
1p36-p32 and chromosome regions 3p21 and 11p15→pter
are the most frequent sites of deletion [1••,17]. However, the
sampling of anaplastic astrocytomas has been small in these
investigations, and additional analyses will be required
before the importance of these findings can be determined.

Glioblastoma multiforme
Glioblastoma multiforme represents about 50% of all
intracranial neoplasms and is considered the most malig-
nant of the astrocytic tumors. This tumor is highly infiltra-
tive, producing undifferentiated elements as a dominant
feature, in addition to mitotic activity and necrosis. Vascu-
lar proliferation may also be evident, along with a high
bromodeoxyuridine/Ki-67 labeling index [14]. Although
the genetic instability of this tumor results in numerous
and varied genetic changes, this subset of glioblastomas
carries specific nonrandom chromosome changes [16,17].

The most frequent cytogenetic change involves the gain of
chromosomes 7 and 20. The loss of chromosomes include 10,
22, and a single sex chromosome, and less frequently
chromosomes 9, 13, and 14. In general, numerical changes
appear to include more loss of chromosomes rather than gain
[17]. Structural rearrangements are also common and highly
variable and frequently require fluorescent technologies or
spectral karyotyping for positive identification [17].

The frequency of TP53 mutations and allelic loss is
approximately the same in GBM as in anaplastic astrocyto-
mas and astrocytomas. However, there is a substantial
increase in the loss of heterozygosity reported for 10p,
10q23.3, and 10q25.3-26 [4,21,22]. The tumor suppressor
gene phosphate-tensin (PTEN), also called the mutated in
multiple advanced cancers 1 gene (MMAC1) [23] or telom-
erase-associated protein 1 (TEP1), was identified on
chromosome 10q23.3. The PTEN gene encodes a dual-
specificity phosphatase that has been demonstrated to
function in the regulation of cell growth, apoptosis, cell
migration, and interactions with the extracellular matrix.
Initially, it was thought that the loss of heterozygosity
(LOH) of PTEN was a late event that initiated the progres-
sion of an anaplastic astrocytoma to become a GBM [10].
When GBMs were selected on the basis of their being Type
I or Type 2, it was determined that only a small number of
the progressive Type I gliomas had a mutation in this gene,
whereas the majority of LOH was identified with the Type
2 GBM [22,24]. When allelic loss was detected in Type 1
gliomas, it was primarily confined to 10q. 

A second gene, the deleted in malignant brain tumors 1
gene (DMBT1), may be the important change on chromo-
some 10q in the Type 1 gliomas. Aberrations in this gene
are thought to contribute to genetic instability. DMBT1 is
located at 10q25.3-26 and is considered the candidate
tumor suppressor gene found deleted in some 38% of Type
1 GBMs [25,26].

Platelet-derived growth factor and its receptors have few
mutations; however, most GBMs over-express at least one
PDGF chain and its respective receptor, with the most
common form of over-expression being PDGF-A chain and
PDGF-α receptor [27,28]. The PDGF-α receptor is capable of
binding all three isoforms, and this suggests an autocrine
mechanism for this growth factor similar to the autocrine
behavior of epidermal growth factor-receptor (EGFR).
Immunohistochemistry and in situ hybridization supported
the data that the PDGF-A chain and the PDGF-α receptor
were preferentially expressed in tumor cells, in contrast to the
PDGF-B chain and the PDGF-β receptor, which were highly
expressed in proliferating endothelial cells within the tumor
[29–31]. Normal brain tissue also expresses the PDGF-β
receptor and the PDGF-A chain; however, the PDGF-β
receptor will bind only the PDGF-B chain, so this receptor is
not active in normal brain tissue [29]. This suggests that the
preferential expression of the PDGF-β receptor in the endo-
thelial component of gliomas is related to the angiogenesis
observed in these high-grade tumors.
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Other genes found to be aberrant in GBM that might
contribute to their malignant and invasive phenotype have
been described. For example, the deleted in colon cancer
gene (DCC) is mapped to chromosome 18q21. This is a
transmembrane cell adhesion molecule of the neural cell
adhesion nerve cell adhesion molecule (NCAM) family. As
the name implies, it was discovered in colon cancer patients.
High-grade gliomas have abnormalities of chromosome 18,
and several molecular studies have indicated that it is deleted
in GBM [32–34] and in some grade II tumors [34]. This has
led some investigators to speculate that cell guidance mole-
cules can be involved in tumorigenesis.

The initial molecular studies did not consider the
possibility of multiple progressive pathways, and the
reported frequency for allelic loss on chromosome 19 was
lower for GBM than for anaplastic astrocytomas.  When the
tissues were selected for possible different evolutionary
pathways, the frequency of allelic loss in Type I GBMs was
similar to anaplastic astrocytomas.

Type 2 or primary glioblastomas
In contrast to Type I gliomas, the second pathway for GBM
appears to arise de novo or very rapidly from a pre-existing
tumor cell(s), although they cannot be distinguished from
Type 1 glioblastomas histopathologically. Type II GBMs or
primary glioblastomas appear to have no evolutionary
component.  This tumor is usually associated with older
patients (mean age, 55 years) who have not had a previous
history of a lower grade of tumor [14••,35].

In contrast to Type 1 GBMs, the most common genetic
aberration in the primary Type 2 GBM is the amplification of
the EGFR mapped to chromosome 7p13-p11 (Fig. 2). This
gene is amplified or over-expressed in the majority of these
tumors [14••].  More than half of these GBMs with amplifi-
cation of the EGFR also have a rearrangement of the gene
[36], generally in the form of an internal deletion. This
mutated form of the EGFR has a high level of tyrosine kinase
activity in the absence of the EGF ligand, which essentially
keeps this receptor in a "turned on" autocrine mode. Thus,
the amplification of EGFR can potentially override the
normal negative regulation of the PTEN gene product [37].

In addition to EGFR aberrations, the allelic loss on
chromosome 10 was almost entirely restricted to the primary,
Type 2 glioma [24]. It has been suggested that the loss of
chromosome 10 is a major factor in the evolution of the
highly malignant GBM. In some tumors, two different grades
of tumor can coexist side by side. Chromosome 10 loss is not
a feature associated with the diffuse astroctyoma.  It is
postulated that it is the loss of chromosome 10 that permits
the abrupt change from a low-grade to high-grade malignant
mass. Thus, the major difference between the primary, Type 2
GBM and the secondary, Type I GBM is that the former tends
to lose the entire chromosome 10 as opposed to the latter,
which demonstrates only a loss of 10q [38].

The MDM2 gene product also appears to be restricted
to the primary de novo pathway [39]. As discussed

previously, amplification of MDM2 protein by virtue of
binding to p53 will essentially inactivate this protein.
Thus, this is an alternative mechanism that allows a tumor
cell to be removed from the control of normal p53 expres-
sion. Furthermore, most of the tumors that over-express
MDM2 lack a mutation or allelic loss in TP53 gene [39].

Genes important in the cell cycle also appear to be
associated with the primary Type 2 GBM. The loss of genes
such as CDKN2 locus that codes for p16INK4A and
p14ARF, the amplification or over-expression of the CDKs,
or the amplification, allelic loss, or mutation of Rb1 are all
capable of deregulating the cell cycle that contributes to
the uncontrolled proliferation associated with GBM.

Platelet-derived growth factor A is also over-expressed
in GBM, as are many other growth factors [40]. PDGF-A
over-expression may be less frequent in GBMs, but its auto-
crine regulation suggests that like EGFR, it could provide a
selective growth advantage to tumor cells that are identi-
fied in the highly proliferative masses.

Oligodendrogliomas
Oligodendrogliomas are tumors that occur primarily in
adults, with a peak incidence in the fifth and sixth decades
of life. Oligodendrogliomas account for 10% of the
gliomas diagnosed and are generally considered a slow-
growing tumor. The location of oligodendrogliomas is

Figure 2. Changes associated with the evolution of Type 2, 
primary glioblastoma. (CDK— cyclin dependent kinase; 
EGFR—endothelial growth factor receptor; LOH—loss of heterozy-
gosity; PTEN— phosphate-tensin gene; RB— retinoblastoma gene.)
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roughly related to the amount of white matter in the differ-
ent lobes of the brain. Although these tumors arise in
white matter, they tend to infiltrate the cerebral cortex
more than do astrocytomas of a similar grade. Histologi-
cally, oligodendroglial tumors comprise a continuous
spectrum, ranging from very well-differentiated neoplasms
to malignant invasive tumors. Similar features (ie, high cell
density, mitotic activity, and necrosis) are used to grade
these tumors. With increasing anaplasia these tumors
begin to become more astrocytic in appearance, and they
can develop areas of necrosis [41••]. However, unlike
astrocytomas, the histopathology does not always correlate
with survival. This situation has created the need for
diagnostic and prognostic markers important to the
evolution of this tumor.

Normal G-banded karyotypes are the most frequent
descriptions used to describe untreated oligodendroglio-
mas. When loss or gain of chromosomes is observed, the
most common loss is that of a single sex chromosome
(25% of the cases), and the most common gain is chromo-
some 7 (5% of the cases). Structural abnormalities are rare,
although several have been localized to chromosome 1p
and chromosome 22q [17].

Molecular analyses of the tumor have been more infor-
mative (Fig. 3). Allelic loss on chromosomes 1p and 19q
appear to be preferential for oligodendrogliomas [42–46].
The most frequent allelic loss occurs on chromosome 19q.
It has been observed in 50% to 80% of the tumors
analyzed [45,47,48], despite their being little evidence of
numerical or structural abnormalities of chromosome 19
[17]. A putative tumor suppressor gene has been mapped
to 19q13.2-13.3 [46]. Although this loss is most notable in
oligodendrogliomas, the actual target gene for the allelic
loss remains undefined.

Chromosome 1 contains the second most frequent
allelic loss. Reports describing allelic loss on chromosome
1p range from 40% to 97%. These disparate results
frequently relate to different methods of analysis or probes
used [44,48,49]. Generally, tumors carrying 1p deletions
also carry 19q allelic loss [44,48]. The location of this
potential tumor suppressor gene(s) is not well character-
ized for chromosome 1p. Several potential sites have been
localized. They include 1p35-p36, with a second site closer
to the centromere, 1p36.3 and 1p34-p35 [41••]. Located
on chromosome 1p32 is a negative regulator of the cell
cycle CDKN2C (P18INK4C), although several investiga-
tions determined that it was rare for oligodendrogliomas
to contain an aberration in this gene, as the aberrations
were identified in a single recurrent tumor, and this was an
anaplastic oligodendroglioma [50,51]. A homologue of
p53, called p73, is located within the 1p36 region. In one
study of 20 oligodendrogliomas, no mutation within this
gene was observed, suggesting that this is not the gene
critical to this deletion [52].

Additional genetic lesions have been reported on
chromosomes 9p and 10q. These genetic changes have been

associated with the transition of the well-differentiated oligo-
dendroglioma to anaplastic oligodendroglioma [53••]. A
potential target gene on 9p21 is the cell cycle inhibitor,
CDKN2A (P16INK4A). In studies that assessed the involve-
ment of this gene, no allelic loss or mutations were observed
for the CDKN2A gene in well-differentiated oligodendroglio-
mas. This is in contrast to the findings for anaplastic oligo-
dendrogliomas, in which 42% of the cases had an allelic loss
or mutation [53••].  For chromosome 10 involvement, both
the well-differentiated oligodendrogliomas and the anaplas-
tic oligodendrogliomas (Grade III) showed a loss of het-
erozygosity on 10p, 10q23, and 10q25. However, none of
these tumors had a mutation of PTEN, suggesting this is not
the targeted gene [54]. Other chromosomes reported to have
occasional LOH include chromosomes 4q, 14, 15, 11p, 18,
and 22q [41••,44,53••], but additional cases are needed for
study to determine the relative importance of these findings.

Occasionally, oligodendrogliomas have mutations in
the TP53 gene, but with far less frequency than that
observed in astrocytic tumors [16,41••,53••]. This is in
contrast to the immunohistochemistry studies for p53 pro-
tein. A much higher percentage of oligodendrogliomas
express the p53 protein, yet only a few of the tumors have
either allelic loss or a mutation of the TP53 gene [53••,55].
This observation is similar to that for the astrocytic tumors
and is explained in part by the aberrant expression of other
genes that can directly affect the expression of TP53.

Figure 3. Changes that have been identified with the 
progressive evolution of the oligodendroglioma into an 
anaplastic oligiodendroglioma. (CDK—cyclin dependent kinase; 
LOH—loss of heterozygosity.)



222 Neoplasms
Although these tumors are considered to be slow grow-
ing, many will develop anaplasia in the form of increased
cellularity, nuclear atypia, cellular pleomorphism, and
high mitotic activity. This can be accompanied by angio-
genesis and the formation of vessel proliferation and
necrosis [41••]. Growth factors and their receptors most
likely play an important role in oligodendrogliomas, as
evidenced by the increasing number of reports describing
the aberrant expression of growth factors or their receptors
in this neoplasm. PDGF-A and -B, as well as their receptors
PDGF-α and -β, are expressed in all the reported cases of
oligodendrogliomas [56,57]. Despite the aberrant expres-
sion of this growth factor and its receptor, gene amplifica-
tion was only detected in the anaplastic oligodendroma
and anaplastic oligoastrocytoma [56]. The aberrant expres-
sion of EGFR has also been identified in both oligodendro-
gliomas and anaplastic oligodendrogliomas, but does not
appear to be the result of gene amplification [58,59].
Several reports have been able to detect the aberrant
expression of vascular endothelial growth factor and its
receptor [60], although other studies were unable to detect
this protein [61,62]. The discrepancy in results has been
attributed to the antibodies used in these studies.

Mixed Tumors
Mixed tumors are composed of oligodendroglial and astro-
cytic cells. The proportion of cells in this mixture can vary
considerably and is, therefore, a frequent point of disagree-
ment among neuropathologists. The combination of glial
cells most frequently observed in a mixed tumor are fibril-
lary astrocytes and oligodendrocytes. Mixtures of astrocytes
and ependymal cells can occur, but this is thought to be a
very rare tumor and difficult to separate from ependymal
tumors that have begun to acquire astrocytic phenotypes.
The cytogenetic literature is reviewed elsewhere [17]. A
summary of those findings demonstrates that oligoastrocy-
tomas have a similar pattern of gain and loss to oligoden-
drogliomas without an astrocytic component.

Molecular studies have also not been able to identify a
consistent genetic lesion that would indicate oligoastrocy-
tomas are genetically distinct from either oligodendroglio-
mas or astrocytomas [44]. Approximately 30% of the
oligoastrocytomas carry genetic lesions that are frequently
found in astrocytic gliomas, especially TP53 mutations and
LOH on 17p [63,64]. However, if a 17p loss or TP53
mutation was identified in the sample, no allelic loss on
1p and 19q could be detected. The reverse was also true.
Oligoastrocytomas with a 1p and 19q deletion had no 17p
deletions or TP53 mutations. An extensive study compar-
ing allelic loss between astrocytic tumors and oligodendro-
gliomas for chromosomes 1p, 17p, and 19q suggested two
genetic subsets in mixed tumors [58]. One subset is geneti-
cally related to astrocytomas, and the other is genetically
related to oligodendrogliomas.

When these tumors acquire anaplastic features they are
also thought to acquire changes in 9p, 10, and 11p, with

occasional amplification of the PDGF genes and EGFR gene
or changes similar to the progressive changes of the anaplastic
oligodendroglioma and astrocytoma [44,53••,57].

Defining the genetic aberrations associated with the pro-
gression of a low-grade oligodendroglioma to the more malig-
nant anaplastic astrocytoma or anaplastic oligoastrocytoma is
extremely important because it provides markers that are help-
ful in diagnosis. The most important information to evolve
from the allelic loss of chromosome 1p is that this loss of 1p is
an important predictor of tumor response to chemotherapeu-
tic drugs for the anaplastic oligodendroglioma [14••,65].
Patients with high-grade anaplastic oligodendrogliomas that
demonstrated a chromosome 1p loss responded to procarba-
zine (PCV) chemotherapy and had a median survival of more
than 10 years compared with patients that had no allelic loss.
Patients with no allelic loss generally failed to respond to PCV
treatment, and the median survival for this group of patients
was 2 years [14••].  A second study tested seven additional
patients with a diagnosis of GBM or anaplastic oligoastrocy-
toma that had allelic loss of 1p to determine if this marker
would also predict response [65]. Although the results were
not as dramatic as the initial study, the results did suggest a
similar trend. Larger studies will have to be undertaken to
resolve the issue of treatment response in high-grade gliomas
that do not have oligodendroglial components. It is important
to ascertain that it is the allelic loss on 1p that is responsible
for the therapeutic response and long-term survival, not other
genetic alterations that have not been evaluated.

Conclusions
The initiation and progression of human malignant gliomas
continues to be an area of intense investigation. Initially, the
cytogenetics, allelic loss, and gene amplification reported for
a specific tumor type and grade were quite variable. As more
data were acquired, patterns of specific abnormalities identi-
fied with tumor type and tumor grade became evident. Thus,
specific genetic markers are now beginning to define
pathways of evolution and potentially, at least in the case of
anaplastic astrocytomas, therapeutic response.
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