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Abstract
Purpose of Review The COVID-19 pandemic has been responsible for more than 6.3 million deaths worldwide. During the 
pandemic, the indiscriminate use of antibiotics has increased, contributing to the spread of multidrug-resistant bacteria. In 
this review, we aim to determine the spread and impact of antibiotic treatments in patients with COVID-19, focusing on 
underdeveloped and developing countries.
Recent Findings Meta-analysis revealed that bacterial co-infections and secondary infections are relatively rare in COVID-
19 patients, corresponding to less than 20% of hospitalized patients. Even so, most of these patients have received antibiotic 
treatments.
Summary This review discusses how the COVID-19 pandemic could increase the emergence of multidrug-resistant strains 
to currently available antibiotics. Initially, we discussed the spread and impact of multidrug resistance of ESKAPE pathogens 
associated with nosocomial infections and analyzed their risk of secondary infections in patients with COVID-19. Then we 
highlight three factors related to the spread of resistant bacteria during the current pandemic: overprescription of antibiotics 
followed by self-medication. Finally, we discussed the lack of availability of diagnostic tests to discriminate the etiologic 
agent of a disease. All these factors lead to inappropriate use of antibiotics and, therefore, to an increase in the prevalence of 
resistance, which can have devastating consequences shortly. The data compiled in this study underscore the importance of 
epidemiological surveillance of hospital isolates to provide new strategies for preventing and controlling infections caused 
by multidrug-resistant bacteria. In addition, the bibliographic research also highlights the need for an improvement in anti-
biotic prescribing in the health system.
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Introduction

In 2020, the World Health Organization (WHO) declared 
that the outbreak of the newly identified severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2), a strain of cor-
onavirus and the etiological agent of the coronavirus disease 
(COVID-19). The disease constituted an international public 
health emergency [1]. The new coronavirus quickly spread 
worldwide, and outbreaks of COVID-19 have been reported 
by several countries and regions of the world. In mid-March 
2020, the WHO declared COVID-19 a pandemic. As of 
June 14, 2022, more than 532 million confirmed cases and 
more than 6.3 million deaths had been reported from the 
COVID-19 pandemic. In late 2020, the efforts of scientists 
around the world resulted in the development of safe and 
efficient vaccines against COVID-19. With the availability 
of these vaccines, the number of cases and deaths began to 
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progressively decrease, indicating that mass vaccination can 
contain outbreaks of COVID-19 [2, 3], also showing the 
possibility of the end of the COVID-19 pandemic.

Although we are probably close to the end, it is believed 
that in the future, we will have to deal with many problems 
arising from the COVID-19 pandemic. One of the possible 
problems that we will have to face is the increase in antimi-
crobial resistance [4•]. Resistance is currently the biggest 
problem with antimicrobials and one enormous burden on 
the public health system worldwide. A recent study ana-
lyzed the worldwide prevalence of antimicrobial resistance 
and estimated that 4.95 million deaths were associated with 
antimicrobial resistance in 2019, among which 1.27 million 
were directly attributable [5]. Treating patients with anti-
microbial resistance is associated with high economic costs 
due to prolonged hospitalizations, high cost of second-line 
antibiotics, additional detection testing to identify patho-
gens, and decreased productivity, representing a tremendous 
burden on the economy of countries. It is estimated that 
by 2050 antimicrobial resistance will be responsible for the 
death of approximately 10 million people worldwide [5, 6] 
at the cost of between $300 billion to $10 trillion [7]. Some 
authors estimate that the capital loss will be $100 trillion [6]. 
Therefore, antimicrobial resistance could increase poverty 
in countries, especially in underdeveloped or developing 
countries.

The discovery of antimicrobials in the nineteenth century 
revolutionized medicine and considerably increased half-life 
worldwide. Infectious diseases represented one of the lead-
ing causes of death in the early nineteenth century. However, 
this changed with the era of antibiotics [8], starting in 1943 
with the approval and commercialization of penicillin. After 
the commercialization of antibiotics, the half-life increased 
significantly, and the mortality rate associated with infec-
tious diseases decreased. For example, in 1920, the life 
expectancy in the USA was 56.4 years, and today it has risen 
to 80 years [9]. However, a few decades after the discovery 
of antimicrobials, the first antibiotic resistances began to be 
described, and even at least 3 years before the commerciali-
zation of penicillin, penicillin-resistant strains of Staphylo-
coccus aureus were reported in the literature [10]. In 1950 
resistance to beta-lactam penicillin was described. Later in 
1962, a methicillin-resistant strain of S. aureus was identi-
fied. Later strains resistant to tetracycline, gentamicin, eryth-
romycin, levofloxacin, and vancomycin were also reported 
[10]. Bacteria have now developed multiple resistances to 
most available antibiotics.

This antimicrobial resistance occurs due to genetic changes 
in bacteria. Although antibiotic resistance is a naturally occur-
ring event, it is often potentiated and caused by the overuse of 
antibiotics, causing them to lose their effectiveness [11]. As 
a result of this resistance, infections caused by these agents 
become challenging to treat. This, in turn, increases the risk 

of the disease spreading, resulting in more severe cases and 
deaths. In addition, the emergence and spread of resistant 
pathogens threaten our ability to treat previously common 
infections [2, 12•, 13•]. Based on this precept, the WHO has 
released a list of drug-resistant bacteria that pose the great-
est threat to human health [2], categorizing them as critical, 
high, and medium priority organisms in terms of antimicro-
bial resistance.

Studies show that the indecency of infections caused by 
multidrug-resistant microorganisms resistant to multiple 
antibiotics occurs worldwide regardless of income [14•]. 
However, the regions most affected by this problem are the 
poorest and most populous on the planet [14•, 15]. Accord-
ing to a study carried out by Wirtz et al. [16], in the 10 years, 
from 1997 to 2007, there was an increase in resistance to 
several classes of antimicrobials in Latin America, mainly 
quinolones, corroborating the data found in the 2020 sys-
tematic review [17] that demonstrated the existence of 9 
different genes related to the quinolone resistance plasmid 
in Latin America. In addition, Domínguez et al. [18] showed 
resistance to beta-lactams in aquatic environments also in 
Latin America.

In parallel with the emergence of antibiotic resistance, 
the development and approval of new antimicrobials have 
declined dramatically over the years [11, 19]. The WHO 
published in January 2020 a report on studies with new anti-
biotics at preclinical and clinical levels. The study showed 
that only 52 new antimicrobial compounds are being tested. 
Even more alarming data showed that only 32 of these were 
aimed at treating multidrug-resistant pathogens considered 
a priority by the organization [20•].

In addition, since the beginning of the COVID-19 pan-
demic, antibiotic consumption worldwide has increased, 
and researchers are warning of a possible rise in antibiotic-
resistant strains and an increase in multidrug-resistant strains 
of concern, globally, such as strains of the ESKAPE group 
(Enterococcus faecium, Staphylococcus aureus, Klebsiella 
pneumoniae, Acinetobacter baumannii, Pseudomonas aer-
uginosa, and Enterobacter species) [13•, 21]. Therefore, 
this review aims to describe recent data on the COVID-19 
pandemic and its impact on the appearance of multidrug-
resistant strains of the ESKAPE group, focusing mainly on 
underdeveloped and developing countries. This study uses 
PubMed, Web of Science, Science Direct, LILACS, and Sci-
ELO databases. To search for data regarding the impact of 
the COVID-19 pandemic on antibiotic resistance, “COVID-
19” and “antibiotic resistance” were used to search for data. 
The articles found were analyzed and the data described 
in this study. This review suggests strict surveillance and 
implementation of antimicrobial resistance control policies. 
It indicates the need for research focused on understand-
ing the impact of the COVID-19 pandemic on antimicrobial 
resistance in the coming years, especially in underdeveloped 
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and developing countries, as well as the implementation of 
molecular biology tools for diagnosing bacterial infections.

Spread and Impact of Diseases Caused 
by Multidrug‑Resistant Bacteria Around 
the World

According to Murray et al. [14•], approximately 5 million 
deaths associated with multidrug-resistant bacteria occurred 
worldwide in 2019. Also according to Murray et al. [14•], 
the most affected regions are Africa, where approximately 
400 deaths per 100,000 inhabitants are reported, followed 
by America, Asia, Europe, and Oceania. The regions with 
the highest deaths are, not coincidentally, the poorest regions 
on the planet [15]: sub-Saharan Africa, with 375 deaths per 
100,000 inhabitants, and South Asia, with 80 deaths per 
100,000 inhabitants [14•]. South America is the fourth sub-
region on the list, with about 75 deaths caused by multidrug-
resistant bacteria for every 100,000 inhabitants [14•].

In underdeveloped or developing countries, factors such 
as (I) inadequate access to effective drugs, (II) unregulated 
administration and manufacturing of antimicrobials, and (III) 
truncated antimicrobial therapy due to cost are contributing 
to the development of multidrug-resistant organisms [15]. 
Furthermore, the causes of antimicrobial resistance in devel-
oping countries are complex and may be related to (I) the 
practices of health professionals, (II) the behavior of patients 
concerning the use of antimicrobials, and (III) the antimicro-
bial supply chain. These factors may include poor prescribing 
practices, inadequate patient education, limited diagnostic 
facilities, unauthorized sales of antimicrobials, lack of ade-
quate drug regulatory mechanisms, and non-human use of 
antimicrobials [22].

ESKAPE Pathogens Cause Most 
of the Hospital‑Acquired Infections 
in the World

In February 2017, to focus on and guide research and devel-
opment related to new antibiotics, the WHO published its 
list of pathogens for which antimicrobial development is 
urgently needed [2]. This comprehensive list has designated 
ESKAPE pathogens as “priority status” [23]. The ESKAPE 
group comprises multidrug-resistant strains that are the 
main causative agents of nosocomial infections worldwide 
[24].

ESKAPE pathogens have developed resistance mecha-
nisms against oxazolidinones, lipopeptides, macrolides, 
fluoroquinolones, tetracyclines, β-lactams, combinations 
of β-lactam inhibitors, and antibiotics that are the last line 
of defense, including carbapenems, glycopeptides, and 
polymyxins [25–27]. The acquisition of resistance occurs 
through random genetic mutations and/or the acquisition 
of mobile genetic elements such as transposons and plas-
mids (Table 1) [28, 29].

Before the pandemic, a study by Zhen et al. [64] eval-
uated the economic impact of antibiotic resistance in 
organisms of the ESKAPE group. The authors observed 
that the most studied organism is S. aureus, followed by 
Enterococcus spp., A. baumannii, K. pneumoniae, and 
P. aeruginosa. Approximately 85% of the studies eligi-
ble for analysis assessed the total hospital cost, 14% the 
cost of antibiotic treatment, and 5% the cost in intensive 
care units. Overall, the authors observed that multidrug-
resistant organisms are significantly associated with more 
economic burdens than susceptible organisms or those 
without infection or colonization. Indeed, Marturano and 
Lowery (2019) [65] determined that the total cost of care 

Table 1  Pathogen, virulence factor, and antibiotic resistance reported in patients with COVID-19 and secondary bacterial infections

Pathogen Virulence factor Antibiotic resistance reported Reference

E. faecium Cytolysins, gelatinase, aggregating substances, 
hyaluronidase, surface protein, membrane proteins

β-lactams, aminoglycosides, fluoroquinolones, 
glycopeptides

[30, 31]

S. aureus Biofilm, toxins (cytotoxins and enterotoxins), 
hemolysins, cytolysins, immune evasion factors

β-lactams, fluoroquinolones, glycopeptides [32–35]

K. pneumoniae Capsular polysaccharide, lipopolysaccharide (LPS), 
type 1 and type 3 fimbriae, outer membrane 
protein, biofilm

β-lactams, carbapenems [36, 37, 37–46]

A. baumannii Pilus, iron absorption and metabolism, 
quorum sensing, type IV secretion system, 
lipopolysaccharide, phospholipase D expression, 
capsular polysaccharide, biofilm

Aminoglycosides, β-lactams, fluoroquinolones, 
polymyxins

[47–58]

P. aeruginosa Biofilm, elastase production, phospholipase C, 
protease A, exotoxins, cytotoxins, flagella, quorum 
sensing

β-lactams, carbapenems, aminoglycosides [59–61]

Enterobacter spp. Somatic antigens, adhesins, serum resistance, 
enterotoxins, colicins, hydrophores, hemolysins

Penicillins, cephalosporins, carbapenems, 
fluoroquinolones

[62, 63]
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for patients with infections caused by pathogens in the 
ESKAPE group is higher than for those with non-ESKAPE 
pathogens by an average of $5500.

ESKAPE group pathogens constitute a significant health-
care burden, and recent studies suggest upward trends in 
prevalence [66], economic cost [67], and resistance [68] in 
the coming years.

A bibliometric study by Ayobami et al. [69•] evaluated 
antibiotic resistance in nosocomial infections caused by bac-
teria from the ESKAPE group in low- and middle-income 
countries between 2010 and 2020. The authors observed that 
the proportion of methicillin resistance pooled in S. aureus 
was 48.4%. In addition, the pooled proportions of carbap-
enem resistance were higher in Gram-negative pathogens: K. 
pneumoniae (34.9%), A. baumannii (72.4%), P. aeruginosa 
(37.1%), and Enterobacter spp. (51.2%). Furthermore, third-
generation cephalosporins were observed with higher pro-
portions of resistance in K. pneumoniae (78.7%) and Entero-
bacter spp. (83.5%). In summary, the combined resistance 
ratios for Gram-negative pathogens were higher in low- and 
middle-income countries than regional and national esti-
mates from high-income countries. This study demonstrated 
that patients in resource-limited regions are particularly 
affected by antimicrobial resistance, which has been previ-
ously reported [15]. The authors further suggested that to 

combat high antibiotic resistance in low- and middle-income 
countries and reduce health disparities, strengthening local 
surveillance and health systems, in general, is crucial.

Patients with COVID‑19 Are at Risk 
of Secondary Infections by ESKAPE 
Pathogens

Bacterial infections are commonly identified in patients with 
viral respiratory infections and are important causes of mor-
bidity and mortality in patients infected with SARS-CoV-2 
[70•]. Therefore, it is essential to differentiate between co-
infection and secondary infection. Co-infections are present 
in the patient at admission, while secondary infections are 
acquired during hospitalization. Patients with COVID-19 are 
more likely to develop secondary infections during hospi-
talizations [71]. However, in clinical practice, it is not very 
common to differentiate whether a patient with COVID-19 
has a co-infection or has acquired a secondary infection due 
to the lack of initial diagnostic tests (this topic will be dis-
cussed later). In any cases of bacterial infection in patients 
with COVID-19 (secondary infection or co-infection), the 
patients need to be treated with antibiotics (Table 2) [70•].

Table 2  Meta-analysis summary of ESPAKE group bacteria isolated in COVID-19 patients

Patients evaluated 
for bacterial 
infection (%)

Patients that 
received 
antibiotics (%)

Patients with 
bacterial 
infection (%)

Patients 
with co- 
infection (%)

Patients with 
secondary 
infection (%)

Microorganisms of 
the identified SKAPE 
group

Reported 
treatments

Reference

3338 71.9% 7.7% 3.8% 14.3% P. aeruginosa Fluoroquinolones 
and 3rd cephalo-
sporins

[72•]

3834  > 90% 7% NR NR P. aeruginosa Moxifloxacin, 
Cephalosporins, 
quinolones, 
carbapenems, 
tigecycline, 
linezolid, 
ceftriaxone, 
amoxicillin, 
beta-lactams 
levofloxacin, 
azithromycin

[73]

558 28–79% 33% (by 
BioFire 
PNplus)

18% (culture-
based 
detections)

NR NR Enterobacterales, 
S. aureus, P. 
aeruginosa, A. 
calcoaceticus-
baumannii complex

3rd-generation  
cephalosporin

[77]

8.249 NR 25,6% NR NR S. aureus NR [78]
NR 98% NR 8% 20% K. pneumoniae, S.  

aureus, Acinetobacter  
spp., Pseudomonas  
(10,8%)

NR [79]
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A study by Langford et al. [72•] evaluated 3338 patients 
with COVID-19. Among these, 3.5% had acute bacterial 
co-infections, and 14.3% had secondary bacterial infections. 
The overall proportion of COVID-19 patients with bacterial 
infection was 6.9%. The authors also observed that bacte-
rial co-infection was more common in critically ill patients, 
accounting for 8.1%; however, most COVID-19 patients 
received antibiotic treatment.

Another study by Lansbury et al. [73], including 3834 
patients, observed that 7% of hospitalized patients with 
COVID-19 had a bacterial co-infection and/or secondary 
infection. As Langford et al. [72•] and Lansbury et al. [73] 
observed, a more significant proportion of patients in inten-
sive care units (ICU) had bacterial infections (14%) than 
patients in mixed ward/ICU settings (4%).

Also, Gaspari et al. [74] evaluated 173 patients in the 
COVID-19 period and 132 in the pre-COVID-19 period. Co-
infections and/or secondary infections with pathogens from 
the ESKAPE group were documented in 23 (13.3%) and 35 
(26.5%) patients in the pandemic and pre-pandemic periods, 
respectively. Poyil [75•] also assessed the prevalence of bac-
terial infections with ESKAPE pathogens in patients with 
COVID-19. Finally, the author observed several studies that 
reported bacterial infections with COVID-19 at various lev-
els. The causative agents included multidrug-resistant strains 
from high-priority categories such as vancomycin-resistant 
Enterococcus, intermediate/vancomycin-resistant Entero-
coccus faecium, vancomycin- and methicillin-resistant S. 
aureus, extended-spectrum beta-lactamases-producing K. 
pneumoniae, A baumannii resistant to carbapenems, and P. 
aeruginosa producing extended-spectrum beta-lactamases.

Bacterial infections are relatively infrequent in hospital-
ized patients with COVID-19, less so than in previous flu 

pandemics. Thus, most of these patients may not require 
empirical antibacterial treatment, which does not support the 
routine use of antibiotics in managing confirmed COVID-
19 infection. Most bacterial infections, whether or not they 
belong to the ESKAPE group, are more frequently associ-
ated with more severe disease cases (Table 3). Thus, there 
has been concern about the worsening of antimicrobial 
resistance in patients with COVID-19, as the choice of anti-
biotics in patients with the disease is often empirical [76].

Factors Associated with the Appearance 
and Spread of Antibiotic‑Resistant Bacteria 
During the COVID‑19 Pandemic

Excessive and Reckless Medical Prescription 
in the COVID‑19 Pandemic

One of the strategies implemented to combat COVID-19 is 
using antibiotics in some severe cases, but inappropriately 
prescribing antibiotics to patients with COVID-19 could 
generate antibiotic resistance and compromise efforts in the 
fight against antimicrobial resistance, which could have dev-
astating consequences shortly. For example, patients with 
respiratory infections other than COVID-19 and who had 
symptoms similar to COVID-19, as well as efforts to pre-
vent the spread of COVID-19, have led to the empirical use 
of antibiotics in hospitals [99]. Given the empirical use of 
antibiotics, the WHO recommends administering antibiot-
ics only for severe cases of COVID-19 or when there are 
signs and symptoms of bacterial infection. However, many 
patients with mild COVID-19 without pneumonia or moder-
ate COVID-19 with pneumonia receive antibiotics [21, 72•]. 

Table 3  Summary of resistance and complications associated with secondary infections caused by MDR ESKAPE pathogens in COVID-19 
patients from underdeveloped and developing countries

NR not reported

MDR pathogen Resistance Complication Reference

E. faecium Gentamicin, erythromycin, kanamycin, tetracycline, 
tobramycin, and vancomycin

Pleural effusion, bloodstream infection [80–82]

S. aureus Ciprofloxacin, gentamicin, methicillin, oxacillin, 
penicillin, tetracycline, vancomycin

Cervical abscess, bloodstream infection [83–86]

K. pneumoniae Amikacin, ampicillin, aztreonam, cefepime, 
cefotaxime, cefuroxime, ciprofloxacin, gentamycin, 
imipenem, polymyxin b, tobramycin

Pulmonary infection, urinary tract infection, 
bloodstream infection

[84, 87–90]

A. baumannii Ampicillin, ertapenem, gentamicin, imipenem, 
meropenem, polymyxin B

Pulmonary infection, urinary tract infection, wound 
infection, gastrointestinal colonization, bloodstream 
infection

[84, 91–94]

P. aeruginosa Cefazolin, cefroxadine, ceftazidime, imipenem, 
piperacillin/tazobactam

Pulmonary infection, urinary tract infection, 
spondylodiscitis, bloodstream infection

[93–97]

Enterobacter spp. Amikacin, ciprofloxacin, colistin, ertapenem, 
imipenem, meropenem, penicillin, sulfamethoxazole-
trimethoprim

Urinary tract infection, bloodstream infection [38, 94, 98]
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Previous studies have associated higher mortality in patients 
due to bacterial co-infections in influenza [100]. In addition, 
death cases of patients with COVID-19 along with bacterial 
co-infections have also been frequently reported [101]. How-
ever, the available evidence suggests that in both influenza 
and COVID-19 cases, rates of bacterial co-infection are low 
(less than 20%).

In three studies conducted in Wuhan of hospitalized 
patients with COVID-19, it was reported that most patients 
received antibacterial therapy. In the first study of 191 
patients, 95% received antibiotics. In the second study, 72% 
of the patients were treated with antibiotics. Still, only 8% 
showed bacterial or fungal co-infections. In the third study, 
all patients in a hospital received antibacterial therapy with 
an antibiotic or a combination of antibiotics [101–103]. 
Similarly, a study that analyzed 925 patients from four 
Dutch hospitals found that 556 patients (60.1%) received 
antibiotic therapy, but only 12 patients (1.2%) had bacte-
rial co-infection [99]. These data suggest that bacterial co-
infections in COVID-19 patients are rare, and often these 
patients undergo antibiotic therapy even in the absence of 
bacterial infections. Consequently, antibiotics are empiri-
cally unnecessary and over-prescribed.

Antibiotics prescribed to COVID-19 patients are often 
broad-spectrum to ensure sensitivity to a wide range of sus-
pect organisms. Among the most prescribed antibiotics are 
β-lactamases inhibitors, cephalosporins, fluoroquinolones, 
and macrolides [21, 104]. Azithromycin macrolide was the 
second most prescribed treatment for COVID-19 [12•]. 
Misinformation, in combination with the lack of treatment 
against COVID-19, has led many doctors to overprescribe 
antibiotics. In addition, educating physicians who treat 
COVID-19 patients with principles of antibiotic adminis-
tration could decrease unnecessary antibiotic use.

The other reason for prescribing antibiotics in COVID-19 
patients is the close similarity between COVID-19 pneu-
monia and bacterial pneumonia [72•]. The symptomatology 
described in patients with COVID-19 often overlaps with 
bacterial infections [105]. However, there are many difficul-
ties differentiating pneumonia from bacterial or COVID-19 
infection. Common biomarkers such as C-reactive protein or 
procalcitonin used to distinguish viral from bacterial pneu-
monia are often ineffective in patients with COVID-19. They 
require hours or days to obtain a result, making immediate 
treatment difficult [106]. C-reactive protein quantification 
is a rapid test to distinguish bacterial from viral pneumo-
nia. C-reactive protein is a biomarker elevated in bacterial 
infections but not generally in viral infections. Before the 
COVID-19 pandemic, 90% of C-reactive protein elevations 
were attributed to infections whose etiologic agents were 
bacterial pathogens [107]. However, studies have shown that 

this biomarker can be increased in patients with COVID-19 
[108], leading many clinicians to prescribe empiric antibi-
otics to patients with COVID-19 without a microbiological 
confirmation of bacterial infection. The research focused on 
the predictive value of diagnostic tools could considerably 
help in making clinical decisions when prescribing.

Lack of Availability of Diagnostic Tests

At a general level, the health system is lacking in identi-
fying pathogens [109]. Antibiotics are often prescribed in 
medical care centers without a positive result of bacterial 
infection, contributing to the indiscriminate use of antibiot-
ics and, therefore, the appearance of multidrug-resistant bac-
teria [109]. Antibiotics are also prescribed without knowing 
the pathogen causing the infection and the resistance pro-
file, leading to the administration of ineffective treatments. 
Requesting diagnostic tests could resolve these issues. How-
ever, the most accepted diagnostic tests for microorganisms 
are based on microscopy, culture, and sensitivity. They need 
24–48 h to show the result, which can discourage healthcare 
professionals from ordering laboratory tests [110]. There-
fore, doctors often do not order antimicrobial tests before 
prescribing antibiotics, contributing to the indiscriminate 
use of antibiotics.

One option to combat this problem would be imple-
menting diagnostic approaches based on molecular biol-
ogy, which detect the pathogen’s DNA. These tests could 
ensure an early, accurate diagnosis and efficient antibacterial 
therapy for bacterial infections, thus avoiding fatal conse-
quences such as the ineffectiveness of empirical treatments 
and increased multidrug-resistant strains [111]. However, 
implementing tests based on molecular biology still has 
some limitations, such as the high cost of the equipment 
used and the lack of availability in health centers in low- and 
middle-income countries [112]. This leads to the conclusion 
that we have the biotechnological tools available to make an 
adequate diagnosis, which helps to avoid the indiscriminate 
use of antibiotics. However, the economic deficiencies of 
the health system are still an obstacle. Greater investment 
is needed in the health system and antibiotic administration 
programs.

In this context, the implementation of molecular biological-
based tests for the detection of bacteria during the COVID-19 
pandemic could considerably help the easy and rapid identifi-
cation of co-infections or secondary infections, leading to the 
administration of antibiotics only when necessary. The pri-
mary test for the diagnosis of COVID-19 is PCR (polymerase 
chain reaction). PCR is a susceptible and efficient molecular 
biology-based test that detects SARS-CoV-2 [113] or even 
Nanopore sequencing [114].
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Despite the high costs of this test, during the COVID-19 
pandemic, PCR was widely implemented in many countries, 
which considerably helped to diagnose many patients. How-
ever, the same patients were not analyzed for the presence 
of bacterial infections. Still, these same patients have often 
been prescribed antibiotics, which clearly shows the indis-
criminate use of antibiotics during the COVID-19 pandemic. 
In addition, the accessibility and availability of these diag-
nostic tests will lead to a substantial decrease in the empiri-
cal administration of antibiotics.

Self‑Medication and the COVID‑19 Pandemic

Self-medication with antibiotics can lead to several public 
health problems, for example, the significant increase in 
antibiotic resistance. Self-medication is characterized by the 
inappropriate use of antibiotics by people who treat their ill-
nesses without a prescription or medical supervision [115].

Since the beginning of the COVID-19 pandemic, prelimi-
nary studies in cell culture have suggested several drugs as 
promising candidates against SAR-CoV-2 [116]. For exam-
ple, hydroxychloroquine, combined with azithromycin, 
has shown favorable results in cell culture trials and small, 
uncontrolled studies [117]. Many countries quickly spread 
news encouraging the use of hydroxychloroquine and azithro-
mycin as a prophylactic or curative treatment against the new 
coronavirus [118], leading many people to self-medicate with 
various drugs, mainly antibiotics (azithromycin, ceftriaxone, 
and penicillins), and antiparasitics (chloroquine, hydroxy-
chloroquine, nitazoxanide, ivermectin) during the COVID-19 
pandemic [119]. However, evidence in hospitalized patients 
has shown that these drugs, as prophylactics or curatives, are 
ineffective against COVID-19 and can even be harmful [120, 
121]. During the pandemic, the lack of knowledge and the 
massive spread of false news on social networks led many 
people to self-medicate with different medications, including 
antibiotics [121].

Self-medication with antibiotics is more frequent in low- 
and middle-income countries, where many antibiotics are 
freely sold, and counterfeiting antibiotics are more frequent 
[9, 12•]. Recently, a study reported that self-medication 
with antibiotics is more frequent in young people from low- 
and middle-income countries [9]. In another review study 
including 7676 participants, it was reported that all partici-
pants self-medicated with antibiotics in the last 3 months to 
1 year before the study [122]. According to Ferdiana et al.  
[123], in Indonesia, participants reported using antibiot-
ics without a doctor’s prescription because it was more 
convenient and cost-effective than looking for public 
healthcare or pay for a private consultation, mostly  to 
treat common symptoms, as muscle relaxant and energy 
booster. There were reports of antibiotics that had already 

been prescribed by doctors, or by suggestions, even phar-
macists. In India, the indiscriminate use of antibiotics is 
reported by the administration of different doses in public 
and private sectors [124]. In Sri Lanka, 77% of participants 
who reported self-medication with antibiotics had respira-
tory symptoms as a complaint [125].

Antibiotic access in developed countries is well regu-
lated, and a prescription is required to dispense antibi-
otics [109]. However, in developing countries, the real-
ity is different. In these countries, the policies to control 
and regulate antibiotic access are deficient [126, 127]. 
Antibiotics can be purchased over-the-counter, without a 
prescription at any pharmacy, or even when needed, they 
are sold freely due to lack of supervision [10, 123, 126, 
128]. In the review carried out by Ocan et al. [129], most 
self-medication drugs are antibiotics and antimalarials, 
including chloroquine. In addition to using these drugs 
without a prescription, there are reports of shorter treat-
ment times, wrong dosages, and misuse. The prevalence 
of self-medication found by Ocan et al. [129] was 38.8% 
in low- and middle-income countries, which corroborates 
the data found by Do et al. [126], where self-medication 
in these countries is 35%.

In 2020 in Peru, a study showed that 33.9% of hospi-
talized patients with COVID-19 self-medicated before 
entering the hospital, with the most frequent drugs being 
antibiotics (mainly azithromycin and ceftriaxone) and iver-
mectin [130]. On the other hand, a study conducted in Aus-
tralia with 2217 participants revealed that during the first 
wave of the COVID-19 pandemic, approximately 20% of 
study participants self-medicated with antibiotics to protect 
themselves against COVID-19 [131]. In addition, a sys-
tematic review of eight cross-sectional studies found that 
the prevalence of self-medication with antibiotics ranged 
from 4 to 88.3% [121]. Therefore, implementing policies 
to educate the public about the problems associated with 
the indiscriminate use of antibiotics could help reduce 
self-medication. Consequently, it is crucial to use antibi-
otics appropriately, even during the pandemic, to avoid the 
appearance of multidrug-resistant strains.

A recent study in Mexico that evaluated changes in the 
resistance profile of critical and high-priority microorgan-
isms collected before and during the COVID-19 pandemic 
showed an increase in antimicrobial resistance. This same 
study found a rise in oxacillin resistance by S. aureus and 
carbapenems by K. pneumoniae, as well as an increase 
in erythromycin macrolide resistance in S. aureus. The 
latter may be associated with excessive use of azithromy-
cin [4•]. These results indicate that the COVID-19 pan-
demic strongly influenced the emergence of multidrug-
resistant strains. However, we still do not have enough 
data to know the real impact of the COVID-19 pandemic 
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on antimicrobial resistance. Therefore, more studies are 
needed to discover the real impact of the pandemic on 
antimicrobial resistance.

Conclusion

As analyzed in this review, bacterial pathogens from the 
ESKAPE group play a crucial role in turning bacterial 
infection into a fatal disease and being a deadly factor for 
COVID-19 patients. Even in the current pandemic scenario, 
bacterial co-infections with Gram-negative bacteria from the 
ESKAPE group are more common in patients with severe 
cases of COVID-19 than in patients with milder symptoms 
of the disease. Species in this group are commonly associ-
ated with highly virulent and antibiotic-resistant strains. As 
mentioned earlier, treating nosocomial infections caused by 
bacteria is still empirical, which may even contribute to the 
emergence of multidrug-resistant bacteria. In addition, the 
empirical prescription of antibiotics, self-medication, and 
the lack of availability of rapid diagnostic tests evidence 
the lack of control, government surveillance, and invest-
ment in the public health system, leading to the emergence 
of multidrug-resistant and the worsening of resistance of 
strains already known. More studies are still needed to know 
the actual damage of the COVID-19 pandemic. However, 
the data compiled in this study underscore the importance 
of epidemiological surveillance and analysis of the genetic 
evolution of hospital isolates to provide new strategies for 
preventing and controlling infections caused by multidrug-
resistant bacteria. Furthermore, the bibliographic study also 
suggests that it is possible to mitigate this problem with 
coordinated efforts to implement new health policies based 
on the appropriate use of antibiotics, as well as the surveil-
lance of the proper use of antibiotics, the training of medical 
personnel, and more significant investment in the health sys-
tem and in research, which is undoubtedly a critical factor in 
the fight against antibiotic resistance and the development 
of new antibacterial agents.
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