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Abstract
Purpose of Review Hospital-acquired and ventilator-associated pneumonia (VAP) are frequent causes of infection among crit-
ically ill patients. VAP is the most common hospital-acquired bacterial infection among mechanically ventilated patients.
Unfortunately, many of the nosocomial Gram-negative bacteria that cause VAP are increasingly difficult to treat. Additionally,
the evolution and dissemination of multi- and pan-drug resistant strains leave clinicians with few treatment options. VAP patients
represent a dynamic population at risk for antibiotic failure and under-dosing due to altered antibiotic pharmacokinetic param-
eters. Since few antibiotic agents have been approved within the last 15 years, and no new agents specifically targeting VAP have
been approved to date, it is anticipated that this problem will worsen. Given the public health crisis posed by resistant Gram-
negative bacteria, it is essential to establish a firm understanding of the current epidemiology of VAP, the changing trends in
Gram-negative resistance in VAP, and the current issues in drug development for Gram-negative bacteria that cause VAP.
Recent Findings Rapid identification technologies and phenotypic methods, new therapeutic strategies, and novel treatment
paradigms have evolved in an attempt to improve treatment outcomes for VAP; however, clinical data supporting alternative
treatment strategies and adjunctive therapies remain sparse. Importantly, new classes of antimicrobials, novel virulence factor
inhibitors, and beta-lactam/beta-lactamase inhibitor combinations are currently in development. Conscientious stewardship of
new and emerging therapeutic agents will be needed to ensure they remain effective well into the future.

Keywords Ventilator-associated pneumonia . Gram-negative bacteria epidemiology . Rapid diagnostic technologies .

Antibacterial agents . Novel therapeutics . Drug development

Introduction: Gram-Negative Resistance
in VAP

Ventilator-associated pneumonia (VAP) is a devastating
nosocomial infection responsible for excessive morbidity
and mortality. Attributable mortality in VAP is roughly 9–
13%, but higher mortality rates in select populations have
been observed [1, 2]. VAP remains a common hospital-
acquired bacterial infection among mechanically ventilated
patients [3], with management complicated by increasing
Gram-negative resistance [4]. The evolution and dissemi-
nation of multidrug resistance [5] among Gram-negative
bacteria means that for some patients with VAP, no active
reliable treatments exist [4, 6]. In this review, we focus on
epidemiological trends in VAP, the evolving landscape of
Gram-negative resistance, and currently available and
emerging treatments options for patients with VAP caused
by Gram-negative bacteria.
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VAP Epidemiology: Definitions, Surveillance,
and Diagnostic Testing

Consensus guidelines define VAP as a pneumonia occurring
> 48 h after endotracheal intubation [7]. VAP occurs in be-
tween one tenth and one third of mechanically ventilated pa-
tients [7] with estimated incidence rates between 1.2 and 8.5
cases per 1000 ventilator days [8]. However, the frequency of
VAP has been challenging to measure. No widely accepted
diagnostic test for VAP is currently available [9], and reliable
definitions remain elusive [10].

Evolving Definitions

Decreasing VAP rates according to the National Healthcare
Safety Network (NHSN) were noted between 2006 and
2012 [11, 12]. However, a contemporaneous patient-level
analysis revealed stable VAP rates [13]. Correspondingly,
the updated VAP surveillance definition now classifies
ventilator-associated events using clinical and temporal
criteria [10].While this definitionwas initially felt to be highly
sensitive (93.5%, 95% CI 77.2–98.8%) and specific (100%,
95% CI 98.8–100%) for VAP [14], subsequent studies dem-
onstrated lower operating characteristics and susceptibility to
manipulation [15, 16]. Underreporting VAP within the surgi-
cal and trauma populations also remains problematic [15, 16].
Reliable VAP definitions applicable to multiple highly vari-
able ICU populations are necessary.

Diagnostic Testing

Improved definitions paired with cutting-edge diagnostics
may improve the accuracy of VAP identification. Standard
culture-based testing requires specimen inoculation and
growth in media, with identification and susceptibility results
occurring days later. Molecular methods (i.e., rapid diagnos-
tics) can identify Gram-negative species and detect resistance
minutes to hours after specimen collection. The revolution in
rapid diagnostics means that near real-time pathogen and re-
sistance identification is possible.

Genotypic Methods

Genotypic tests, like automated real-time multiplex polymer-
ase chain reaction (PCR) and microarray platforms, are exam-
ples of emerging diagnostic methods [17, 18]. Curetis
Unyvero (Curetis AG) is a multiplex PCR hybridization sys-
tem designed to identify pneumonia pathogens and resistance
genes in respiratory samples [19]. A similar panel is under
development for the Biofire platform. Verigene is a
nanoparticle-based amplification method for identifying
Gram-negative species and resistance genes, but this panel is
only Food and Drug Administration (FDA)-approved for

positive blood cultures identified using conventional growth
detection methods [20]. Ribosomal amplification (e.g., 16S
ribosomal RNA gene PCR) has also been evaluated in
suspected VAP cases [21, 22].

Phenotypic Methods

Rapid phenotypic methods provide susceptibility or resistance
classification and may complement rapid identification
methods. The Carba NP test (Biomerieux) directly detects
carbapenem hydrolysis and can identify the presence of spe-
cific carbapenemases irrespective of species [23]. Automated
systems, like the Accelerate Pheno system (Accelerate
Diagnostics), provide identification and susceptibility data
1–2 days faster than traditional methods [24].

Other Emerging Methods

Emerging technologies are able to identify Gram-negative
bacteria directly from clinical specimens. T2Bacteria
(T2Biosystems) utilizes magnetic resonance to identify path-
ogens directly from blood, but this panel has not been FDA
cleared [25]. Deep sequencing technologies have also recently
been applied to clinical specimens.

Epidemiology of Gram-Negative VAP
Pathogens

Gram-negative VAP pathogens are increasingly antibiotic re-
sistant [4, 26]. National and international surveillance data-
bases (e.g., NHSN, INFORM, SENTRY) document the dis-
semination of Gram-negative resistance [26–28]. For exam-
ple, up to 40% of select Gram-negatives in the USA exhibit
multi-drug resistance (MDR) [5], suggesting that broad em-
piric therapy may be required. Recent trials also provide
Gram-negative recovery and susceptibility rates. In the fol-
lowing section, we review trends from surveillance databases
and clinical trials.

Recent Trends in Gram-Negative Rates

Gram-negative recovery in VAP varies globally; yet, specific
pathogens are consistently recovered. Pseudomonas
aeruginosa, Acinetobacter spp., and Enterobacteriaceae have
been frequently implicated [9, 26–28]. Surveillance recovery
rates are summarized in Table 1. Here, we review Gram-
negative rates in nosocomial pneumonia.

P. aeruginosa

P. aeruginosa is the preeminent and most common Gram-
negative nosocomial pneumonia and VAP pathogen in the
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USA, as confirmed in multiple studies (Table 1) [26–28,
30]. European clinical studies also support the prominent
role of P. aeruginosa in VAP (14–19% of cases) [31,
32].

Acinetobacter baumannii

A. baumannii ranks among the top five VAP pathogens world-
wide. NHSN surveillance identified A. baumannii as the fifth
most common VAP pathogen in the USA and Europe, ac-
counting for 6.1 to 7.5% of VAP cases (Table 1) [26, 27].
However, only 2.7 and 3.3% of US VAP isolates were
A. baumannii in the SENTRY and INFORM databases, re-
spectively [28, 30]. The prevalence of A. baumannii within
Asian countries was slightly higher than US and European
rates [33, 34].

Enterobacteriaceae

Members of the Enterobacteriaceae genus have also been
frequently recovered in VAP; four of the top ten Gram-
negative VAP pathogens are Enterobacteriaceae [27].
K. pneumoniae and Enterobacter spp. were identified in
10.2 and 8.3% of VAP cases by NHSN surveillance [27]
and contributed 10.0 and 7.7% of VAP cases, respectively,
within SENTRY [30]. INFORM found slightly higher
rates of K. pneumoniae and Enterobacter spp. among
Gram-negative VAP cases (Table 1) [28]. E. coli and
Serratia spp. are also among the top ten VAP pathogens
[26, 28, 30]. Within the European and Mediterranean re-
gions, Enterobacteriaceae were also common [26] and

increasing in frequency [35]. E. coli was the most com-
mon European pathogen. Klebsiella spp. were responsible
for a similar proportion of infections in Europe and the
USA (11.6 vs. 9.7%) (Table 1).

Recent Trends in Gram-Negative Resistance

Gram-negative resistance has become a global crisis.
Among Gram-negative VAP pathogens, multidrug resis-
tance and resistance to last-line agents (e.g., colistin) is
alarmingly common. Resistance among P. aeruginosa and
A. baumannii has become the norm, while carbapenem
resistance among Enterobacteriaceae has emerged as an
imminent threat to global health [4, 36]. In the following
section, we review Gram-negative VAP pathogen resis-
tance trends using Clinical and Laboratory Standards
Institute definitions (2010–present).

P. aeruginosa Resistance

P. aeruginosa has the capacity to develop resistance to all VAP
antibiotics. Carbapenem resistance has been documented in
16.1–28.4% of US nosocomial pneumonia isolates [26–28,
30]. Among VAP isolates, P. aeruginosa resistance to anti-
pseudomonal penicillins (e.g., piperacillin-tazobactam, 15.6–
19.1%) and anti-pseudomonal cephalosporins (e.g., ceftazi-
dime or cefepime, 9.5–29.4%) is increasingly common
[26–28, 30]. The aminoglycosides tobramycin and amikacin
appear to retain good individual activity against P. aeruginosa
in some studies (> 90% susceptible) [26, 28]. However, resis-
tance to ≥ 1 aminoglycoside (e.g., amikacin or gentamicin or

Table 1 Prevalence of Gram-negative VAP pathogens from nosocomial pneumonia surveillance studies

NHSN[27] INFORM[28] SENTRY

Year 2011–2012 2011–2015 2015 2012[29] 2009–2012[26] 2009–2012[26]
Gram-negative
groups

Location USA USA USA USA USA Europe and Mediterranean
region

Non-fermenting
bacteria

Pseudomonas
aeruginosa

16.50% 39.56%a 22.70% 29.20% 20.90%b 20.90%b

Acinetobacter spp. 6.10% 3.71% a 3.30% 2.70% 3.70%b 7.50%b

Stenotrophomonas
spp.

3.90% NR NR 4.70% 4.40%b 3.20%b

Enterobacteriaceae Citrobacter spp. 0.70% 1.81%a NR NR NR NR

Escherichia coli 5.40% 12.00%a 9.00% 5.50% 5.50%b 11.80%b

Enterobacter spp. 8.30% 13.82%a 6.80% 7.70% 5.90%b 5.50%b

Klebsiella spp. 10.20% 18.68%a 11.80% 10% 9.70%b 11.60%b

Serratia spp. 4.60% 8.10%a 4.40% 5.90% 3.80%b 4.00%b

NR not reported
a Percent of Gram-negatives in VAP
b Percent of patients hospitalized with pneumonia
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tobramycin) is increasingly common among VAP isolates
(18.2–23.3% resistant) [27]. Colistin remains active against
P. aeruginosa (98–99.6% susceptible) [26, 28]. Resistance
among European and Mediterranean isolates was also com-
mon. With the exception of colistin, European isolates were
more likely than US isolates to exhibit resistance [26]. Beta-
lactam resistance among P. aeruginosa respiratory isolates is
alarmingly common, while aminoglycosides and colistin re-
main fairly active.

A. baumannii Resistance

A. baumannii is frequently MDR and often carbapenem
resistant. Over 50% of US A. baumannii VAP isolates
were MDR, and up to 64% of isolates exhibited carbapen-
em resistance (55.5–63.5%) [26, 27]. With resistance rates
less than 5%, colistin appears active against A. baumannii
[26]. Resistance to minocycline was found in 14.8% of
isolates, and tigecycline MICs exceeding the FDA
Enterobacteriaceae breakpoint [37] were found in 1.6% of
isolates [26]. European and Mediterranean A. baumannii
pneumonia isolates demonstrated similar resistance patterns,
with slightly higher meropenem and minocycline resistance
(67.1 and 22.2%, respectively) [26]. Few VAP agents have
reliable activity against A. baumannii. Colistin, minocycline,
and tigecycline may retain activity, but susceptibility testing is
essential.

Enterobacteriaceae Resistance

Resistance among Enterobacteriaceae is particularly
concerning and often varies by genera. In the USA, cefepime
or ceftazidime resistance varies widely (2.7–30%) [26, 27].
Carbapenem resistance in E. coli and Enterobacter spp. re-
mains relatively low (0.5–2.2% and 1–3.2%, respectively)
[26–28]. Klebsiella spp. have demonstrably higher
carbapenem-resistance rates (6.9–11.5%) [26–28]. European
and Mediterranean Enterobacteriaceae were more likely to
exhibit MDR and to carry genes encoding extended-
spectrum beta-lactamases (ESBLs) [26]. Similar to the
US, carbapenem resistance among Klebsiella spp. was
common [26]. Carbapenem-resistant Enterobacteriaceae
(CRE) were found in 58 centers in 18 European countries,
comprising 2% of all Enterobacteriaceae; however, large
inter-country variability exists [30]. Cases of colistin-
resistant mcr-1-carrying Enterobacteriaceae infections
have been documented in the USA, Europe, and Asia
[38–40]. The global dissemination of CRE and mcr-1-car-
rying isolates has significantly impacted the management
of VAP patients, leaving clinicians with few or no safe
and effective treatments.

Contemporary Treatment Strategies
for Gram-Negative VAP

While new therapeutic agents and novel treatment approaches
are currently being investigated, clinicians caring for patients
with Gram-negative VAP are caught between two opposing
forces: increasing resistance on one hand and a dwindling
antibiotic armamentarium on the other. In the following sec-
tion, we describe new antibiotics, new uses of older antibi-
otics, and novel strategies for Gram-negative VAP pathogens.

Agents for the Treatment of VAP Caused by MDR
Gram-Negative Bacteria

The increasing frequency with which MDR Gram-negative
bacteria cause VAP has forced clinicians and pharmaceutical
companies to becomemore creative. Old antibiotics have been
recycled, established antibiotics have been used in new ways,
new antibiotics have been developed, and entirely novel ther-
apeutic strategies are being investigated (Table 2).

Renaissance Antibiotics

Antimicrobial resistance has become so pervasive and ex-
treme that formerly discarded antibiotics are being recycled
in attempts to find agents that retain activity against MDR
bacteria. Some of these “renaissance antibiotics” now play
an important role in clinical practice.

Fosfomycin Fosfomycin is a derivative of phosphonic acid
that blocks an early stage in the synthesis of peptidoglycan,
a component of the bacterial cell wall [41]. First discovered in
1969 [42], fosfomycin has recently received renewed interest
for MDR Gram-negative bacteria. Approximately three
fourths of carbapenem-resistant K. pneumoniae isolates are
susceptible to fosfomycin [43]. However, fosfomycin mono-
therapy is less active against P. aeruginosa and A. baumannii,
with resistance emerging rapidly [44]. Although not currently
available in the USA, intravenous fosfomycin penetrates the
lungwell, and limited data suggest it may be efficacious in this
setting [45].

Polymyxins First used in the 1950s, systemic polymyxins [B
and E (i.e., colistin)] were abandoned by the early 1980s due
to toxicity and availability of safer alternatives. In recent
years, they have re-emerged for the treatment of MDR
Gram-negative bacteria, including P. aeruginosa ,
Acinetobacter spp., E. coli, andKlebsiella spp. However poly-
myxins lack activity against some other Gram-negatives, such
as Proteus and Serratia spp. Susceptibility notwithstanding,
polymyxins suffer from two disadvantages. High-dose sys-
temic polymyxin regimens that are necessary for serious in-
fections like VAP have been associated with renal toxicity
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rates of 20% or more [46], and cure rates with monotherapy
are low [47]. Thus, current VAP guidelines suggest avoiding
systemic polymyxins when alternatives exist [9].

Minocycline Minocycline, an FDA-approved semisynthetic
tetracycline derivative first developed in the 1960s [48], has
only recently been used for MDR Gram-negative VAP [49].
Like tigecycline, minocycline has Gram-negative activity [50]
but yields higher blood levels than tigecycline [51].
Minocycline is active against some Acinetobacter and
Stenotrophomonas spp. and some Enterobacteriaceae but
not Serratia spp., Proteus spp., or P. aeruginosa [50].
Minocycline has garnered interest for MDR A. baumannii
VAP, with a number of clinical responses reported across 23
cases [49]. Though controlled VAP trials are lacking,
minocycline exhibits good lung penetration [measured by
the epithelial lining fluid to serum (ELF/serum) AUC ratio
~2.5] and A. baumannii killing in a mouse model [52].

New Antibiotics

Approved Antibiotics

Tigecycline Tigecycline, a glycylcycline antibiotic approved
by the FDA in 2005, has broad Gram-negative activity includ-
ing some CRE [30] but not P. aeruginosa orProteus mirabilis.
In a randomized controlled trial of 945 people with HAP/VAP,
tigecycline was associated with lower response rates than
imipenem [53]. Tigecycline was also associated with excess
mortality in several studies [54–56], driven primarily by pa-
tients with nosocomial pneumonia. For these reasons, tigecyc-
line should primarily be used as a component of combination
therapy [9].

Doripenem Doripenem, a carbapenem approved by the FDA
in 2007, initially showed promise for treatment of patients
with Gram-negative VAP [57]. In vitro testing showed
slightly lower MICs against P. aeruginosa compared to
other carbapenems [58]. However, a subsequent study of
274 patients with Gram-negative VAP randomly assigned
to receive a 7-day course of doripenem or a 10-day course
of imipenem-cilastatin was stopped prematurely due to a
lower cure rate (45.6 vs. 56.8%; 95% CI, − 26.3 to 3.8%)
and higher all-cause 28-day mortality (21.5 vs. 14.8%;
95% CI, − 5.0 to 18.5) in the doripenem treatment arm
[59]. As a result, current VAP guidelines do not recom-
mend the use of doripenem [9].

Ceftazidime-AvibactamUnlike other approved beta-lactamase
inhibitors, avibactam is not a beta-lactam but does bind beta-
lactamases. Ceftazidime-avibactam has enhanced activity
against Enterobacteriaceae (including ceftazidime-resistant
strains) and P. aeruginosa. Arguably, the most useful aspect

of this antibiotic is its ability to inhibit ESBLs, AmpC beta-
lactamases, and serine carbapenemases [60]. However,
metallo-beta-lactamases (e.g., IMP, VIM, NDM) are not
inhibited by avibactam [60]. Accordingly, ceftazidime-
avibactam has good activity against Enterobacteriaceae and
P. aeruginosa, but not Acinetobacter and Stenotrophomonas
spp. A phase III non-inferiority nosocomial pneumonia trial
[61] found that ceftazidime-avibactam was non-inferior to
meropenem with respect to 28-day mortality [risk difference
(RD) 1.5%; 95% CI − 2.4-5.3] and cure [RD 1.9%; 95% CI −
8.1-4.3] without the emergence of resistance [62]. Of concern,
though, are numerous reports of resistance to this agent are
already appearing [63–65] including treatment-emergent re-
sistance [66].

Ceftolozane-Tazobactam Whereas ceftazidime-avibactam
combines an old cephalosporin with a novel beta-lactamase
inhibitor, ceftolozane-tazobactam combines an old beta-
lactamase inhibitor with a novel cephalosporin. Ceftolozane
has features of ceftazidime but has a bulkier side chain, which
prevents cleavage by AmpC beta-lactamases [67], enhancing
activity against P. aeruginosa. The combination also appears
to have activity against non-CRE ESBL-producing
Enterobacteriaceae [68, 69]. Like ceftazidime-avibactam,
ceftolozane-tazobactam has lit t le activity against
A. baumannii and Stenotrophomonas spp. [60]. The ELF/
serum AUC ratio for ceftolozane was approximately 50%
[70, 71•], indicating a potential role in VAP. The efficacy of
ceftolozane-tazobactam in VAP is currently being studied
(NCT02070757).

Meropenem-Vaborbactam Meropenem-vaborbactam was ap-
proved by the FDA in 2017. Vaborbactam is a boronic acid
serine β-lactamase inhibitor with activity against ESBLs,
AmpCs, and serine carbapenemases but not metallo-beta-
lactamases. Meropenem-vaborbactam has broad activity
against E. coli,K. pneumoniae, and Enterobacter spp., includ-
ing ESBL and CRE isolates, but activity against non-
fermenting Gram-negatives is similar to meropenem alone
[72]. The TANGO-2 phase III clinical trial of meropenem-
vaborbactam for the treatment of infections of the lung, blood,
urinary tract, and abdomen was stopped prematurely follow-
ing enrollment of 72 patients (43 had confirmed CRE), be-
cause the interim analysis showed a statistically significant
difference in clinical cure favoring meropenem-vaborbactam
over best available therapy for patients with CRE [73].
Mortality rates were also lower in patients treated with
meropenem-vaborbactam. Both meropenem and vaborbactam
achieve ≥ 65% ELF/serum AUC ratios in healthy adults, sug-
gestive of activity in HAP and VAP [74]. However, pharma-
cokinetic data from patients with VAP indicate that
meropenem ELF/serum AUC ratios may be lower (median
< 30%) and highly variable [75]. The efficacy of
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meropenem-vaborbactam in HAP and VAP is currently being
studied (NCT03006679).

Ceftobiprole Ceftobiprole, a cephalosporin broadly active
against Gram-positives and Gram-negatives including
P. aeruginosa, is approved in several European countries but
not the USA. A recent phase III trial of 781 patients found
ceftobiprole to be equivalent to linezolid plus ceftazidime in
the clinical cure of HAP but perhaps inferior among VAP
patients [76]. Additional studies are necessary to evaluate
the effectiveness of ceftobiprole in VAP.

Antibiotics in Clinical Trials

Imipenem-Cilastatin/Relebactam Relebactam is a non-β-
lactam inhibitor of β-lactamases with structural similarity to
avibactam. It too has good activity against ESBLs, AmpCs,
and serine carbapenemases but not metallo-beta-lactamases
[77, 78]. Relebactam extends imipenem’s spectrum to include
otherwise resistant E. coli, K. pneumoniae, and Enterobacter
spp. strains. Relebactam’s activity against non-fermenting
Gram-nega t ive bac te r ia such as P. aeruginosa ,
A. baumannii, and S. maltophilia appears more limited [78].
Both imipenem and relebactam showed good lung penetra-
tion, suggesting potential efficacy in VAP [79]. Phase III clin-
ical trials of imipenem-cilastatin/relebactam vs. imipenem-
cilastatin or piperacillin/tazobactam in HAP and VAP are un-
derway [80, 81].

Plazomicin Plazomicin, an aminoglycoside derivative, avoids
modification and inactivation by many of the enzymes that
typically cause aminoglycoside resistance [82]. Plazomicin
does not inhibit bacteria that express ribosomal methyltrans-
ferases (e.g., 16s rRNA methylases) [83]. Plazomicin has
good activity against MDR Enterobacteriaceae, including
ESBL and serine carbapenemase producers. Against
P. aeruginosa and A. baumannii, plazomicin may be more
active than amikacin [84]. In a phase III trial (CARE) studying
nosocomial pneumonia caused by CRE, plazomicin exhibited
a mortality benefit relative to colistin when both agents were
used with either meropenem or tigecycline [85]. The efficacy
of plazomicin for the treatment of VAP is unknown, and the
ELF/serum AUC ratio was ~ 13% [83]. Of note, plazomicin’s
renal toxicity profile appeared favorable compared with colis-
tin [86, 87].

Eravacycline Eravacycline has structural similarity to tigecyc-
line and also acts by binding the ribosome to inhibit protein
synthesis [88]. It has broad activity against aerobic and faculta-
tive Gram-positive and Gram-negative bacteria. Eravacycline
has potent activity against Enterobacteriaceae, including
ESBL-, KPC-, and NDM-producing isolates [89, 90].
Compared to tigecycline, eravacycline exhibited modestly

lower MICs against A. baumannii and S. maltophilia but no
enhanced activity against P. aeruginosa [89, 90]. One potential
advantage of eravacycline is the availability of an oral formu-
lation. In the phase III IGNITE1 and IGNITE4 clinical trials
twice daily IV eravacycline was non-inferior to ertapenem or
meropenem among patients with complicated intra-abdominal
infections [91, 92]. In a phase III (IGNITE2) clinical trial of
hospitalized patients with complicated urinary tract infections,
eravacycline was inferior to levofloxacin [93]; however, pa-
tients receiving IV eravacycline responded better than those
receiving oral eravacycline. The role of eravacycline in VAP
is currently unclear.

New Tactics: Unconventional Uses of Existing Agents

Another approach to treating patients with VAP caused by
MDR bacteria is to use currently approved antibiotics in
new ways to enhance efficacy.

Inhaled Antibiotics Aerosolized administration of antibiotics
has the theoretical advantage of achieving high local concen-
trations of antimicrobial agents in the lungs, perhaps even
exceeding the MICs of resistant Gram-negative bacteria. A
meta-analysis of a randomized controlled trial and observa-
tional studies (437 total patients) examined the use of adjunc-
tive nebulized antibiotics in MDR VAP and showed signifi-
cantly higher clinical resolution among patients receiving neb-
ulization (OR 1.96; 95% CI 1.30–2.96) [94]. Nebulization has
been used with the following Gram-negative antibiotics: gen-
tamicin, tobramycin, amikacin, aztreonam, ceftazidime, and
colistin [95]. Current guidelines recommend adjunctive in-
haled antibiotics for the treatment of VAP caused by Gram-
negative bacteria susceptible to only aminoglycosides or
polymyxins.

Macrolides Macrolides do not exhibit in vitro activity against
most Gram-negative VAP pathogens. Yet, these agents can
produce potentially beneficial immunomodulatory changes
in pneumonia. A multicenter, double-blinded study of 200
ICU patients with sepsis and VAP found that adjunctive
clarithromycin led to earlier VAP resolution and faster me-
chanical ventilation weaning [96, 97].

Prolonged Infusions of Beta-Lactams Prolonged infusion (PI)
dosing of beta-lactams includes extended infusion (3–4 h; EI)
and continuous infusion (24 h; CI) dosing. VAP clinical cure
was greater [98, 99], but mortality was similar with PI
piperacillin-tazobactam versus standard infusion [98–100].
VAP clinical cure was also higher with PI ceftazidime (89
vs. 52%: P < 0.001) and PI meropenem (90 vs. 60%: P <
0.001) versus standard infusion [101, 102]. Randomized trials
have evaluated CI vs. standard infusion [103–105]. CI-treated
patients had a lower risk of mortality (RR 0.74; 95% CI 0.56–
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1.00; P = 0.045) and a greater chance of clinical cure (RR 1.2;
95% CI 1.03–1.40; P = 0.021) in a patient-level meta-analysis
of three trials [106••]. The majority of patients had a respira-
tory source of infection (55%) [106••]. Until high-quality trials
evaluating VAP outcomes are available, PI dosing appears
reasonable [9].

Standard Versus Long Treatment Durations Several studies
have compared the clinical efficacy of standard (≤ 8 days)
versus long (> 8 days) treatment durations [59, 107, 108•,
109–111]. A systematic review and meta-analysis failed to
identify a benefit of long durations on 28-day mortality (n =
3 studies; OR = 1.18, 95% CI 0.77–1.8), 28-day mortality
among patients with non-fermenting Gram-negatives (n = 2
studies; OR = 0.95, 95% CI 0.39–2.27), or overall pneumonia
recurrence (n = 19 studies; OR = 1.41, 95% CI 0.94–2.12)
[112]. In the subset of patients with non-fermenting Gram-
negatives, the risk of recurrence favored a long duration
(n = 2 studies; OR = 2.18. 95% CI 1.14–4.16) [112]. A ran-
domized, open-label, non-inferiority study (iDIAPASON)
will compare 8 versus 15 days for P. aeruginosa VAP specif-
ically [113]. The shortest effective duration of VAP treatment
a l s o r ema in s unc l e a r. Recen t (NCT00410527 ,
NCT01554657) and ongoing (NCT01994980) trials will eval-
uate short (i.e., 3–5 days) durations. Currently, 7- to 8-day
durations are reasonable for improving patients [9].

Novel Strategies

Perhaps predictably, the pressures on the conventional antibi-
otic pipeline have led to efforts to use unconventional ap-
proaches to treat MDR Gram-negatives. Here, we briefly dis-
cuss several examples.

CefiderocolCefiderocol is a siderophore-cephalosporin conju-
gate that works as a “Trojan horse.” It binds iron and then uses
the bacterium’s iron uptake system to penetrate the outer
membrane [114]. In so doing, it overcomes multiple resistance
mechanisms (e.g., porin channel deletion, efflux pump over-
expression) while localizing the cephalosporin within the peri-
plasm, adjacent to PBPs. Cefiderocol has in vitro activity
against many Gram-negative bacteria, including CRE,
P. aeruginosa, A. baumannii, and S. maltophilia. In a study
of 753 MDR clinical isolates, including carbapenemase- and
ESBL-producing bacteria, cefiderocol had superior in vitro
activity to meropenem, ceftazidime, and ceftazidime-
avibactam and equivalent activity to colistin and tigecycline
[115]. A clinical trial for the treatment of nosocomial pneu-
monias comparing cefiderocol to meropenem, each in combi-
nation with linezolid, is underway (NCT03032380).

Anti-Virulence Therapies Disabling a bacterium’s virulence
factors may prevent it from damaging tissues and make

it vulnerable to clearance by the host immune system.
Such approaches are not new; antibody-containing serum
that bound and inactivated diphtheria toxin was used in
the 1800s [116]. Advanced agents currently under devel-
opment are inhibitors of type III secretion systems [117],
complex multi-protein needle-like apparatuses used by
some Gram-negative bacteria to intoxicate human cells.
MEDI3902 (AstraZeneca) is a chimeric bispecific mono-
clonal antibody that recognizes both the tip of the
P. aeruginosa type III secretion needle and surface poly-
saccharide Psl [118]. The presence of both antigen-
binding sites confers synergistic protection against
P. aeruginosa in animal models [118]. A phase II clini-
cal trial examining the efficacy of MEDI3902 in
preventing P. aeruginosa pneumonia among mechanical-
ly ventilated patients is currently enrolling patients.
Additional antibody therapeutics (e.g., Aerubumab,
Adiris Pharmaceuticals) are in development and entering
clinical trials (NCT03027609).

Quorum-Sensing Inhibition Quorum sensing (QS) is a cell
density-dependent communication system that utilizes
signaling molecules (auto-inducers) to regulate virulence
in many bacteria. Several natural and engineered com-
pounds block quorum-sensing by preventing the synthe-
sis of auto-inducers or by blocking auto-inducer receptor
binding [119] and have shown efficacy in mouse models
[120, 121].

Biofilm Prevention Endotracheal tube biofilms are thought to
play an important role in VAP. Biofilm eradication can be
difficult, in part, because biofilm-forming bacteria can persist
in the presence of antibiotics and a robust immune response
[122, 123]. Endotracheal tubes coated with silver may prevent
or delay development of biofilms and VAP [124].

Phage Therapy Phages (viruses that infect bacteria) specifical-
ly target an individual bacterial species or strain, do not infect
human cells, and have little or no effect on normal microbial
flora. However, the development of resistance, neutralizing
host immune responses, and formulation and stability issues
are concerns [125]. Phages are exquisitely specific, so phage
cocktails are required to target multiple species or strains
within a species. Such cocktails showed promise in phase
I/II clinical studies against P. aeruginosa-mediated chronic
otitis [126]. Recent anecdotal reports suggest efficacy in
humans against MDR P. aeruginosa and A. baumannii
[127, 128].

Other Strategies Host-directed therapies [129], microbiome
alterations (e.g., probiotics) [130], nanotechnology [131],
endolysins [132], and bacteriocins [133] have all been inves-
tigated as novel treatments for bacterial infections.
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Summary

Gram-negative bacteria appear poised to win the antibiotic
resistance war. The pace of the development and spread of
MDR strains has outstripped the medical community’s ability
to develop novel antimicrobial agents. However, the number
and breadth of new and exciting approaches currently being
explored is reason for hope that the balance will soon shift.
The results of preclinical, clinical, and epidemiological studies
over the coming years will demonstrate whether these new
approaches will indeed fulfill their promise and provide clini-
cians with effective treatments for VAP patients.
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