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Abstract
Purpose of Review The global emergence of antifungal resistance among Candida spp. and Aspergillus spp. will disproportion-
ately affect transplantation recipients, who are prone to invasive fungal disease.
Recent Findings Invasive candidiasis is increasingly caused by non-albicans Candida species with reduced susceptibility to first-
line antifungals. Echinocandin resistance in Candida glabrata is increasing in some settings. Candida auris has rapidly emerged
as a global concern due to multidrug resistance and efficient nosocomial spread in healthcare settings. Azole-resistant Aspergillus
fumigatus is already an important concern in some European countries and is increasingly reported elsewhere, possibly driven by
agricultural use of triazole fungicides.
Summary Antifungal resistance is anticipated to expand among these and other common fungal pathogens. Culture-independent
detection methods will become more important for rapid diagnosis and to guide empiric therapy. Antifungal stewardship is of
critical importance to conserve our limited antifungal armamentarium for transplantation recipients and other vulnerable patients.

Keywords Candida .Aspergillus .Azole .Echinocandin .Antifungal susceptibility . Solidorgan transplant .Hematopoietic stem
cell transplant . Stewardship

Introduction

Invasive fungal diseases are important causes of morbidity
and mortality following solid organ and hematopoietic
stem cell transplantation. Progress in prevention and man-
agement of invasive fungal disease following transplanta-
tion has improved outcomes but may be threatened by the
emergence of antifungal resistance among common fungal
pathogens.

The incidence and microbiology of invasive fungal disease
are influenced by a number of factors, including geography,
type of transplantation, and use of prophylaxis [1]. In general,
the most common causes of invasive fungal disease following
solid organ transplantation are Candida spp. and Aspergillus

spp., responsible for 50–60 and ~ 20–25% of such infections,
respectively [1, 2]. Less common causes of invasive fungal
disease in this group are Cryptococcus spp., non-Aspergillus
molds, and the agents of the endemic mycoses [2]. Among
hematopoietic stem cell transplantation recipients, Aspergillus
spp. predominate, followed byCandida spp.; these fungi were
responsible for 43 and 28% of invasive fungal disease, respec-
tively, in a large multicenter study [3].

Survival of invasive fungal disease among transplant recip-
ients has dramatically improved thanks largely to effective
therapy [1]. Recently, however, an increasing number of re-
ports have raised concern about invasive fungal disease
caused by strains resistant or less susceptible to available an-
tifungals [4, 5•]. Given the risk of invasive fungal disease in
transplantation recipients and the selection of antifungal resis-
tant organisms by antifungal treatment and/or prophylaxis
routinely used following transplantation, clinicians should be
aware of emerging antifungal resistance and how this may
affect these patients. In this paper, we review the epidemiolo-
gy and mechanisms of antifungal resistance among
Aspergillus and Candida spp., the status of laboratory
methods for detection of antifungal resistant strains, and man-
agement of these complex cases. Finally, we highlight the

This article is part of the Topical Collection on Transplant and Oncology

* Ilan S. Schwartz
ilan.steven.schwartz@gmail.com

1 San Antonio Center for Medical Mycology, UT Health San Antonio,
San Antonio, TX, USA

2 South Texas Veterans Health Care System, San Antonio, TX, USA

Current Infectious Disease Reports (2018) 20: 2
https://doi.org/10.1007/s11908-018-0608-y

http://crossmark.crossref.org/dialog/?doi=10.1007/s11908-018-0608-y&domain=pdf
mailto:ilan.steven.schwartz@gmail.com


importance of antifungal stewardship to limit or reverse these
alarming trends.

Mechanisms of Antifungal Activity and Resistance

There are three major classes of antifungals, and their mech-
anisms of action are relevant for understanding resistance. The
azoles include fluconazole, itraconazole, voriconazole,
posaconazole, and isavuconazole. Azoles interfere with syn-
thesis of ergosterol, an essential component of fungal cell
membranes, via inhibition of lanosterol 14α-demethylase; this
target protein is encoded in yeasts by ERG11 and in molds by
cyp51 [6]. Azole resistance in Candida spp. can arise from
point mutations at ERG11, of which > 140 are described [6].
Upregulation of ERG11 gene expression can result from gain
of function mutations in the transcription gene UPC2 [7]. In
addition, drug efflux appears to be an important mechanism of
azole resistance in Candida albicans and Candida glabrata
[6]. In Aspergillus spp., mutations of the promoter region
cyp51A can lead to azole resistance by altering the target site
for these agents. A number of mutations have been reported
that lead to phenotypic resistance and clinical treatment failure
[8, 9]. The resistance mechanismmost frequently encountered
in clinical and environmental isolates of azole-resistant
Aspergillus fumigatus is a 34-base pair (b.p.) tandem repeat
(TR34) in cyp51A, in combination with an amino acid substi-
tution of leucine-to-histidine in position 98 (L98H). TR34/
L98H leads to pan-azole resistance [10•]. Other cyp51A mu-
tations leading to phenotypic resistance reported in environ-
mental and clinical isolates include a 46-b.p. tandem repeat
(TR46) combined with tyrosine-to-phenylalanine substitution
at codon 121 (Y121F) and threonine-to-alanine substitution at
codon 289 (T289A); TR46/Y121F/T289A leads to high level
in vitro resistance to voriconazole and isavuconazole [11, 12].
Additional less common mutations include a 53-b.p. tandem
repeat (TR53) and the point mutations G54, G138, and M220
[10•, 13]. Alternatively, mechanisms of azole-resistant
A. fumigatus not involving mutations to cyp51A appear im-
portant in some settings; for example, a study from the UK
reported that 43% of azole-resistant A. fumigatus isolates did
not have cyp51A mutations; the mechanisms in these isolates
were not proven [14].

The echinocandins include caspofungin, micafungin, and
anidulafungin; these inhibit synthesis of β-(1,3)-D-glucan, a
component of fungal cell walls, by non-competitively binding
to FKS subunits of β-(1,3)-D-glucan synthase [15].
Echinocandin resistance is conferred by target site alteration
[5•]. Some Candida spp., like Candida parapsilosis species
complex, have naturally occurring polymorphisms at FKS1
that increase echinocandin minimum inhibitory concentra-
tions (MICs) [16]. Resistance may also arise in Candida spp.
frommutations at highly conserved “hot spot” sites on theFKS1
gene and/or the FKS2 gene in C. glabrata [17]. Less is known

about mechanisms of echinocandin resistance in Aspergillus
spp. [18]. One recent report identified a mutation of FKS1 in a
clinical isolate of A. fumigatus from a patient with chronic pul-
monary aspergillosis [19]. However, the extent of this mecha-
nism among resistant isolates is unknown.

Amphotericin B, the sole agent in the polyene class of
antifungals, binds to ergosterol, leading to porous cell mem-
branes and cell death [6]. Mechanisms of resistance are less
clear than for other antifungals. In Candida spp., acquired
resistance is associated with mutations that affected sterol syn-
thesis [5•]. Resistance in Aspergillus flavus is associated with
a l t e r a t i o n s i n c e l l wa l l c ompo s i t i o n [ 20 ] . I n
Aspergillus terreus, reduced ergosterol wall content was re-
ported in one resistant isolate [21] but not in another, which
was noted to have increased catalase production, suggested to
reduce the oxidizing ability of amphotericin B [22].

Candida spp. and Invasive Candidiasis

Invasive candidiasis comprises candidemia and other deep-
seated infections caused by Candida spp. Antifungal resis-
tance among Candida spp. has become an important clinical
and public health concern [5•].

Antifungal resistance can be acquired by Candida spp.
while on therapy [23, 24]. In addition, some Candida spp.
are intrinsically resistant or less susceptible to specific antifun-
gals [25•]. Among C. albicans, antifungal resistance is un-
common: epidemiological surveillance studies have suggested
that resistance to fluconazole and echinocandins is generally
below 2 and 1%, respectively [26–28]. Alternatively, antifun-
gal resistance is more common in some non-albicans Candida
species [5•, 28]. For instance, the rates of fluconazole and
echinocandin resistance among C. glabrata isolates in epide-
miological surveys are 14 and 2–4%, respectively [28, 29],
although the latter figure underestimates the published expe-
riences of some US centers [30–32]. Candida krusei isolates
are intrinsically resistant to fluconazole [33]; C. parapsilosis
isolates are resistant to fluconazole in up to 7.5% [18] and may
have reduced susceptibility to echinocandins; fluconazole re-
sistance is reported in up to 9 and 22% ofC. tropicalis isolates
from the USA and Europe, respectively [18]; and among clin-
ical isolates of Candida auris, resistance to fluconazole,
amphotericin B, and echinocandins occurs in > 90, 40–50,
and ~ 5% of isolates, respectively [34].

Shifts in the Distribution of Candida Species Causing
Invasive Candidiasis

Invasive candidiasis is increasingly reported to be caused by
non-albicans Candida spp. that are intrinsically less suscepti-
ble or resistant to antifungals [25•, 35]. The relative attribution
of invasive candidiasis to different Candida species is
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influenced by geography [36]. Globally, C. albicans is the
most common cause of candidemia, causing between 36 and
70% of cases [35]. In North America and Northern Europe,
the next most common species is typically C. glabrata, ac-
counting for 18.1–40.7 and 8.5–31.0% of cases of
candidemia, respectively [18]. In Latin America, Spain, and
South Africa, C. parapsilosis is more common [35, 37, 38].
Alternatively, C. tropicalis is the second most common cause
of candidemia in Asia, causing 25.4% of cases [39]; there,
fluconazole-resistant C. tropicalis is a concern, comprising
15% of isolates from Taiwan, for example [40]. Perhaps most
concerning given the attributes of frequent multidrug resis-
tance, the ability to persist in environments, and efficient nos-
ocomial transmission, C. auris is increasing as a cause of
invasive candidiasis. For example, C. auris is reported to
cause up to 30% of cases of candidemia in some centers in
India [41].

The prevalence of invasive candidiasis caused by various
species is also affected by patient factors, such as age, co-
morbidities, hospitalization, and use of, class of, and duration
of antifungal prophylaxis [33, 42]. Fluconazole prophylaxis
leads to a decrease in invasive candidiasis due to C. albicans
and an increase due to C. glabrata and C. krusei [33, 43–45];
similarly, when echinocandins are used for prophylaxis, more
cases are attributable to C. parapsilosis [44]. In addition, one
report found that among patients with candidemia, being the
recipient of a solid organ or hematopoietic stem cell transplan-
tation is an independent risk factor for being infected with a
fluconazole non-susceptible isolate [46]. Among solid organ
transplantation recipients, a large prospective surveillance
study that included 17,000 solid organ transplantation recipi-
ents from 15 transplantation centers (representing 15% of sol-
id organ transplantations performed in the USA) found that
invasive candidiasis was caused by C. albicans in 46.3% of
cases, C. glabrata in 24.4% of cases, and C. parapsilosis in
8.1% [45]. In fact, 39% of invasive candidiasis episodes rep-
resented breakthrough disease (usually by non-albicans
Candida species) in patients receiving antifungal prophylaxis
[45].

Echinocandin Resistance in C. glabrata

Echinocandin resistance occurs most frequently in
C. glabrata, although it can also occur less frequently with
other Candida spp. [17]. Echinocandin resistance appears to
be increasing in some settings, including some transplantation
centers [30, 31]. A retrospective 10-year survey ofC. glabrata
isolates at the Duke University Medical Center reported that
echinocandin resistance increased from 4.9% in 2001 to
12.3% in 2010 [30]. Pittsburgh University Medical Center
reported 8% of C. glabrata isolates from cases of invasive
candidiasis were echinocandin-resistant; moreover, this figure
increased to 32% when considering only patients with prior

echinocandin exposure [31]. Another series, from the Texas
Medical Center in Houston, reported that 18% of bloodstream
C. glabrata isolates harboredFKS1 orFKS2mutations, which
were associated with prior echinocandin exposure [47].
Importantly, FKSmutations are associated with clinical failure
of echinocandin therapy [30, 31, 47]. In addition, fluconazole
resistance also occurs in over a third of echinocandin-resistant
C. glabrata isolates, limiting treatment options [29].

Candida auris

In 2009, a new species of Candidawas identified from the ear
of a Japanese patient [48]; since then, C. auris has rapidly
emerged in at least 17 countries on five continents as a serious
threat to public health [49]. In addition to a propensity for
otomycosis [50, 51], C. auris causes invasive candidiasis
[52], and its virulence approaches that of C. albicans [53].
Antifungal resistance in C. auris is a major concern: flucona-
zole resistance is nearly universal, amphotericin B resistance
occurs in nearly half of all isolates, and echinocandin resis-
tance is documented in 5–7% of isolates [54]. A striking de-
gree of clonality within geographically clustered isolates hints
at efficient horizontal transmission [41, 54]. Indeed, C. auris
has been implicated in large outbreaks in healthcare settings,
including in the UK and the USA [55, 56]. The nosocomial
potential of C. auris may partly be because of the ability of
this organism to persist on patients and environmental sur-
faces for prolonged periods [55, 57, 58]; moreover, C. auris
can be misidentified using phenotypic identification methods
[59], which may delay implementation of appropriate infec-
tion prevention and control measures [49].

Identification of Candida Species

Because of differences in patterns of antifungal suscepti-
bilities, correct fungal identification to species level can be
imperative for guiding clinical decisions in patients with
invasive fungal disease. This concept has been highlighted
most dramatically by the recent emergence of C. auris,
which is managed differently because of inherent antifun-
gal resistance and potential for nosocomial transmission
[60]. C. auris is frequently misidentified (most often as
Candida haemulonii or Rhodotorula glutinis) by automat-
ed identification systems in wide use in clinical microbi-
ology laboratories [59]. Correct identification of C. auris
can be made using research use-only databases of matrix-
assisted laser desorption ionization-time of flight mass
spectrometry instruments (MALDI-TOF MS) and by ge-
netic sequencing, usually of the internal transcribed spacer
(ITS) region of the fungal rRNA gene or D1-D2 regions
of the 28S rDNA [61].
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Detection of Antifungal Resistance in Candida spp.

Clinical practice guidelines for candidiasis from the Infectious
Diseases Society of America (IDSA) recommend azole sus-
ceptibility testing for all clinically relevant Candida isolates
and echinocandin susceptibility testing for clinically relevant
isolates of C. glabrata, C. parapsilosis, and other Candida
spp. where patients have been recently exposed to
echinocandins [62]. The latter caveat underscores the impor-
tance of dialogue between clinicians and the clinical microbi-
ology laboratory.

Currently recommended antifungal susceptibility testing
practices are based on phenotypic response of cultured fungi
to selected antifungals [63]. Standardized methods have been
prescribed by the Clinical Laboratory Standard Institute
(CLSI) and European Union Committee on Antimicrobial
Susceptibility Testing (EUCAST) using broth microdilution.
In addition, commercial assays widely used in clinical micro-
biology laboratories include E-test (Biomerieux, Hazelwood,
MO), automated test ing platforms (e.g. , Vitek-2
[Biomerieux]), and colorimetric tests like YeastOne
Sensititre (Thermo Fisher Scientific, Waltham, MA) [5•].
Clinical breakpoints associated with treatment outcome have
been defined for someCandida spp., but these are imperfect at
predicting patient response [64].

Phenotypic antifungal susceptibility testing does have
some important limitations. Firstly, isolation of the pathogen
is required, but cultures are negative in up to half of patients
with invasive candidiasis [65]. Secondly, phenotypic methods
are limited by delays in turnaround, dictated by the growth
rate of the organism [63]. Consequently, interest has turned to
culture-independent methods of predicting antifungal suscep-
tibility, including molecular detection of genetic mutations
associated with resistance [63, 64]. Such assays are most fea-
sible when there are few mechanisms of resistance associated
with few mutations. Azole resistance in Candida spp., for
example, is governed by several mechanisms (i.e.,
target alteration, target overexpression, efflux) associated with
a vast array of mutations, which likely make molecular or
proteomic determination of susceptibility challenging.

On the other hand, echinocandin resistance inCandida spp.
may be a good candidate for culture-independent detection
methods because resistance is driven by a dominant mecha-
nism (target site alteration) caused by few mutations (at FKS1
and/or FKS2) that reliably lead to phenotypic resistance asso-
ciated with poor outcomes [64]. Molecular and proteomic
assays have been evaluated for the detection ofFKSmutations
in order to predict echinocandin susceptibility [66, 67].
Further validation is required before such assays are commer-
cially available and can be recommended.

Although not specific for antifungal resistant strains,
T2Candida (T2 Biosystems, Lexington, MA) is another
culture-independent diagnostic assay that may be useful in

rapid diagnosis of candidemia and guiding appropriateness
of early antifungal therapy. This assay uses nuclear magnetic
resonance spectroscopy combined with PCR for rapid detec-
tion of five dominant Candida species, grouped by typical
patterns of susceptibility: C. albicans/C. tropicalis,
C. glabrata/C. parapsilosis, and C. krusei [68]. In a clinical
trial, the assay detected and identified these Candida spp. in
whole blood in 4.4 ± 1.0 h, with a sensitivity of 91.1% and a
specificity of 99.4% compared to culture as the gold standard
[69]. While not supplanting culture and susceptibility testing,
this commercially available test may help in the selection of
empiric antifungal therapy—based on local patterns of resis-
tance—while susceptibility testing is pending.

Management

Management of invasive candidiasis often necessitates empir-
ic treatment, in part because a significant portion of cases are
not microbiologically proven [65], and because of the delays
inherent to culture and susceptibility testing [64]. Current clin-
ical practice guidelines recommend echinocandins as first-line
therapy for candidemia. Fluconazole is considered an accept-
able alternative in patients who are stable and not considered
to be at risk of infection due to fluconazole-resistant Candida
spp. [62]. Consequently, an echinocandin would be the appro-
priate first-line agent in transplant recipients or other patients
with breakthrough invasive candidiasis in the setting of flu-
conazole prophylaxis, whereas empiric treatment with a lipid
formulation of amphotericin B would be reasonable in pa-
tients taking echinocandin prophylaxis. In non-neutropenic
patients treated with echinocandins, transition to fluconazole
or voriconazole should be considered if the patient is clinically
stable, repeat blood cultures document clearance of infection,
and if the pathogen is susceptible to the desired azole [62].
There are no clinical practice guidelines available for the man-
agement of C. auris, although empiric treatment with an
echinocandin would be appropriate given reported suscepti-
bility patterns [54].

Aspergillus spp. and Aspergillosis

Aspergillus spp. are ubiquitous environmental molds.
Infection is acquired by inhalation of environmental conidia
by susceptible hosts and can lead to a spectrum of disease
which includes allergic bronchopulmonary aspergillosis,
aspergilloma, chronic pulmonary aspergillosis, and invasive
aspergillosis, the most devastating form, and of main concern
for immunocompromised hosts [2].

Reduced antifungal susceptibility among Aspergillus spp.
is a growing concern [70]. Methodologies for antifungal sus-
ceptibility testing suggested by CLSI and EUCAST differ.
Clinically validated breakpoints have not been established
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by CLSI for molds. Instead, epidemiological cutoff values
(ECVs) are used to distinguish wild-type isolates from those
that demonstrate higher MICs or mean effective concentra-
tions (which are used for quantifying in vitro effect of
echinocandins on molds) [71]. ECVs do not incorporate clin-
ical outcome data in their determination, so the extrapolation
of treatment success or failure based on these should be done
with caution. Nonetheless, isolates with MIC/mean effective
concentrations greater than ECVs will be referred to here as
“resistant.” Clinical breakpoints for itraconazole,
voriconazole, and posaconazole against Aspergillus spp. have
been suggested by CLSI and EUCAST [72]. ECVs have been
reported for isavuconazole [73, 74] and echinocandins [75].
Breakpoints for amphotericin B against Aspergillus spp. were
suggested by EUCAST, but clinical outcome data to support
them is limited [76].

Azole Resistance

Triazoles are the first-line therapy for most patients with as-
pergillosis, including invasive aspergillosis [77]. However,
azole-resistant A. fumigatus isolates have been reported with
increasing frequency in some centers. A large global survey
reported 3.2% of clinical A. fumigatus isolates to be azole
resistant [78]; however, in some European countries, resis-
tance rates are even higher. For instance, a multicenter survey
from the Netherlands reported itraconazole resistance in up to
6.0% of clinical A. fumigatus isolates [79]. While in-host re-
sistance mutations have been observed in patients receiving
azole treatment for chronic aspergillosis syndromes [80], over
90% of clinical azole-resistant A. fumigatus isolates are
thought to have gained resistance mutations in the environ-
ment as a consequence of fungicidal use of azoles in agricul-
ture [81–83].

A survey from the Netherlands reported the proportion of
A. fumigatus isolates resistant to itraconazole ranged from 1.7
to 6.0% since 2000 [79]; for > 90% of these isolates, the
mechanism was TR34/L98H. Some infected patients had been
azole-naïve, and since A. fumigatus is not communicable be-
tween people, this finding raised the possibility that a resistant
strain was acquired from the environment [13, 79]. Indeed, the
investigators soon reported the detection of environmental
A. fumigatus strains harboring TR34/L98H [81]. The authors
hypothesized that cross-resistance to medically important
azole antifungals was occurring in the environment in re-
sponse to widespread agricultural use of azole fungicides
[82]. In retrospect, the first known azole-resistant
A. fumigatus isolate with TR34/L98H from the Netherlands
appeared within a few years of the approval of triazoles for
agricultural use [13]. TR34/L98H mutation has since been
identified in clinical and environmental A. fumigatus isolates
from six continents [12, 78, 84–89]. In addition to de novo
mutations, intercountry spread of azole-resistant A. fumigatus

isolates can occur unintentionally from the transfer of agricul-
tural products. For instance, azole-resistant A. fumigatus were
identified among tulip bulbs transferred from the Netherlands
to Ireland [90].

van der Linden et al. first reported voriconazole-resistant
A. fumigatus isolates harboring TR46/Y121F/T289A among
clinical and environmental samples from the Netherlands.
These isolates retained susceptibility to itraconazole and
posaconazole [11]. Clinical or environmental A. fumigatus
isolates harboring TR46/Y121F/T289A have since been re-
ported from five continents [18].

Invasive aspergillosis caused by azole-resistant
A. fumigatus is associated with high mortality. At least five
case series of patients with invasive aspergillosis due to azole-
resistant A. fumigatus have evaluated outcomes: four from
Europe and one from the USA. Three European series each
included eight patients: deaths occurred in seven (88%), seven
(88%), and four (50%) patients, respectively [8, 11, 91]. In a
fourth study of patients in an intensive care unit in the
Netherlands diagnosed with invasive aspergillosis, death oc-
curred in 10/10 (100%) patients in whom disease was caused
by azole-resistant A. fumigatus compared to 23/28 (82%) in
whom disease was caused by azole-susceptible strains [92]. A
retrospective case-control study of patients with hematologi-
cal malignancies or hematopoietic stem cell transplantations
with invasive aspergillosis reported no difference in outcome
per triazole susceptibility of A. fumigatus isolates, although
the numbers were small (n = 19 resistant isolates) [32].

Echinocandin and Polyene Resistance
Among Aspergillus spp.

Although ECVs been suggested for echinocandins against
Aspergillus spp. [75], testing suffers from problems with re-
producibility and lack of clinical validation [93].
Consequently, the prevalence of echinocandin resistance is
unclear.

Intrinsic amphotericin B resistance is uncommon among
A. fumigatus. However, elevated MICs are observed more
frequently with some other Aspergillus spp., including
A. terreus [94], A. f lavus [95], A. lentulus [96],
A. calidoustus [97], A. alliaceus, and A. nidulans [98].

Identification

Antifungal susceptibility profiles of some cryptic species of
Aspergillus may differ from sibling species within species
complex [99]. Consequently, identification to species level
may be helpful in some cases. However, routine species-
level identification of Aspergillus spp. is not currently practi-
cal in most clinical laboratory settings and is not recommend-
ed in current clinical practice guidelines from IDSA [77].
Species identification using molecular methods should be
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considered if isolates demonstrate atypical growth or if there is
concern for resistance [77].

Detection of Antifungal Resistance in Aspergillus spp.

In contrast to the recommendations for candidiasis, IDSA
clinical practice guidelines for the diagnosis and management
of aspergillosis do not recommend routine antifungal suscep-
tibility testing of Aspergillus spp. Rather, antifungal suscepti-
bility testing is recommended when azole-resistant
A. fumigatus is suspected or in patients who fail to response
to triazole therapy [77]. Partly, this is because antifungal sus-
ceptibility testing is not universally available in the USA
[100]. Alternatively, an international group of experts on the
diagnosis and management of aspergillosis caused by azole-
resistant A. fumigatus recommended that antifungal suscepti-
bility be routinely performed on clinical isolates from patients
who require antifungal therapy [101•]. Moreover, it was rec-
ommended that up to five colonies be tested because of the
possibility of heterogeneous A. fumigatus populations in a
sample [101•]. The group further recommended that molecu-
lar determination of resistance mechanism be undertaken for
epidemiological purposes if azole-resistant A. fumigatus is
detected [101•].

An important limitation in the most widely used detection
methods for azole-resistant A. fumigatus is the need for path-
ogen recovery. In some high-risk patients, the yield of culture
from non-invasive specimens is low and reduced further by
pre-emptive treatment with antifungals. In addition to culture-
based techniques for determining antifungal resistance, sever-
al PCR assays have been developed for the culture-
independent detection of cyp51Amutations in clinical samples
[102]; in fact, some assays, such as AsperGenius PCR
(Pathognostic, Maastrich, the Netherlands) [103] and
MycoGENIE A. fumigatus real-time PCR kit (Ademtech,
Pessac, France) [104], are already commercially available in
Europe. Prospective studies evaluating the impact of these are
pending [102].

Management

Clinical practice guidelines recommend voriconazole as first-
line therapy for most patients with aspergillosis [77]. The in-
ternational expert group for aspergillosis caused by azole-
resistant A. fumigatus has recommended that voriconazole
be reconsidered as first-line monotherapy when ≥ 10% of en-
vironmental A. fumigatus isolates are azole-resistant; in this
case, voriconazole should be combined with an echinocandin
or replaced with a lipid formulation of amphotericin B alone
until antifungal susceptible testing is available for clinical iso-
lates [101•]. When environmental resistance rates were be-
tween 5 and < 10%, there was no consensus on optimal em-
piric management. A practical limitation to this approach is

the fact that data regarding prevalence of resistance among
environmental A. fumigatus isolates is rarely available for
most areas.

Conclusion

Tracking the emergence and spread of antifungal resistance
requires that some challenges be overcome. Firstly, access to
antifungal susceptibility testing should be improved. A recent
survey of US infectious diseases physicians found that 21% of
respondents lacked access to antifungal susceptibility testing
[100]. Secondly, there should be consensus on how to enu-
merate cases and define prevalence of antifungal resistance
[105]. For instance, repeated culture of resistant A. fumigatus
from a patient with chronic aspergillosis could, in the absence
of standardized reporting, be counted by a laboratory many
times more than a single isolate from a patient with a hema-
tological malignancy [105]. Additionally, although a group of
international experts recommended clinical decisions regard-
ing empiric management of aspergillosis be guided by the
prevalence of resistance among environmental isolates of
Aspergillus spp. [101•], such data are rarely available to clini-
cians. Thirdly, there should be standardization in the detection
techniques. Fourthly, antifungal resistance should ideally be
tracked by active surveillance to minimize the problem of
referral bias; although, national-level programs [106] are un-
common and in many areas (including the USA), only passive
surveillance is performed [107]. Even where resistance is in-
frequently encountered, robust international surveillance data
can help guide patient-level decisions regarding treatment
and—in the case of C. auris—infection control measures in
an age of increasing global travel and medical tourism [51].

The observed increase in invasive fungal disease caused by
antifungal resistant pathogens can be expected to continue
unless human behaviors are modified to reduce selective pres-
sures favoring resistant strains of clinical and environmental
fungi. While the value of antibiotic stewardship for antibacte-
rial therapy is widely appreciated, there has been less empha-
sis on the need for systematic efforts to ensure conservation of
medically useful antifungals. In addition to judicious antifun-
gal use by clinicians, a multifaceted approach is required that
includes the critical appraisal of the use and selection of agri-
cultural fungicides. These measures will be essential for en-
suring that effective antifungals are available when needed for
the prevention and treatment of fungal disease in the most
vulnerable patients.
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