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The human intestine provides an expansive interface for
interactions with the microflora. Increasing data support
the hypothesis that host–microflora relationships are
markedly dynamic, contributing to host health and dis-
ease pathogenesis. Despite outnumbering human cells
10-fold, the microflora most often assist the host through
symbiotic relationships. The microflora are involved in
maximizing host utilization of nutrients, induction of 
host immune responses, and promotion of intestinal
cell and mucosal development. However, evolving data
suggest that disturbances in this symbiotic relationship
can lead the microflora to be pathogenic in diverse
conditions such as inflammatory bowel disease, irritable
bowel disease, obesity, graft-versus-host disease, HIV
immunopathogenesis, and possibly cancer. Defining
those microflora attributes that result in health and those
that trigger disease is key to harnessing the microflora to
promote human health.

Introduction
One of the largest interfaces for host–microbe interactions
is the human intestinal mucosa. Among all organs, the
human gut (especially the colon) harbors the largest and
most diverse microflora, primarily bacteria. Pasteur postu-
lated that host–microbe relationships are critical for human
health and life [1]. Within days of birth, infants are colo-
nized by a diverse collection of microorganisms that soon
outnumber their somatic and germ cells [2•]. The microbi-
ome (collective genome of indigenous microbes) eventually
contains 100-fold more genes than the human genome

and approximately 10-fold more cells than the total of 
all human cells [3]. In this summary, we present evidence 
indicating that the microbiome affects host homeostasis 
through host–microbe relationships that can be beneficial 
or pathogenic for the host. Accumulating evidence thus 
supports Pasteur’s postulate that microorganisms are criti-
cal to human life.

The Basic Facts
As many as 80% of the 500 to 1000 bacterial species found 
in the human gut cannot be cultured [3,4]. The number of 
bacteria increases, moving distally in the gastrointestinal
tract from less than 103 colony-forming units per gram of 
contents in the stomach and duodenum, to 104 in the jeju-
num, to 107 in the terminal ileum, and 107 12–14 in the colon 
[5]. The assembly of the gut microbiome is poorly under-
stood, but more light has been shed on this topic of late using 
molecular methods. Within 1 day of birth, infants are colo-
nized with a relatively simple flora. The earliest colonizers 
are often seemingly opportunistic facultative aerobes includ-
ing streptococci and Escherichia coli with later acquisition i
of anaerobes that will dominant for life [2•]. Throughout the
first year of life, infants, like adults, have distinct and vari-
able microbial communities that appear to be influenced by 
their environment. In infants, three bacterial phyla dominate
(Proteobacteria, Firmicutes [comprising mostly Clostridium 
spp] and Bacteroidetes [comprising mostly Bacteroides spp]), 
whereas in adults, more than 99% of bacteria belong to only 
two bacterial divisions, the Firmicutes and the Bacteroidetes 
[2•,4]. By 1 year of age, the fecal microbial communities of 
infants, though still individually distinct, now resemble the 
profiles of the adult gastrointestinal tract, with anaerobes 
predominating and near universal acquisition of Bacteroides
spp [2•]. Bacteroides spp are thought to comprise up to 30% 
of the total gut flora and consist of at least 10 species. The 
roles of distinct Bacteroides spp—or any other gut microbe 
for that matter—in health or disease are not understood, 
with most studies to date focusing on either Bacteroides
thetaiotaomicron or Bacteroides fragilis. By contrast, the 
intestinal responses to specific Clostridium spp have received 
little attention. Given their preeminence in the microflora, 
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Firmicutes and Bacteroidetes phyla appear to be the critical
anaerobe groups involved in the host–microbe interactions
relating to health and disease.

The host–microbe relationship can be divided into a
continuum of symbiosis, commensalism, and pathogenicity
[3]. Symbiosis and commensalism can further be considered
to be types of mutualism. Specifically, symbiosis relates to
the relationship between two organisms in which one or
both benefit without harm to the other. A prime example
is the utilization of indigestible food matter by human
hosts, which requires the digestive capabilities of coloniz-
ing microflora; alone the host can not access these vital 
nutrient resources [6,7]. On the other hand, commensal-
ism is derived from the Latin commensalis, which means
“at the table together,” referring to coexistence without 
harm or obvious benefit to either organism. Pathogenicity
must involve damage to the host. With adaptive responses
by the host (eg, intestinal immunoglobulin [Ig] A secretion
[8]), microbe–host relationships may lead to peaceful coex-
istence as seen in symbiosis or commensalism. However, 
pathogenicity can easily develop if the mutualistic balance 
is disrupted, perhaps, by changes in the microflora through
acquisition of a new bacterial species or specific host factors
such as immunodeficiency or host genetic polymorphisms.

Symbiosis
The microflora have seemingly important metabolic, tro-
phic, and protective functions in the host gut (Table 1) [3,5].
An understanding of these functions of the microflora has

largely been derived from studies in animal models, espe-
cially those bred in germ-free conditions, where a single 
bacterial species or communities of bacteria can be evalu-
ated for their impact on host physiology, such as gut mucosal
and immune development [1]. More recently, metagenomic
analyses based on whole genome shotgun sequencing of 
the colonic microbiome has led to a theoretical framework 
for understanding the functional roles of the microflora in
human health [9].

Metabolic functions
Colonic microflora ferment indigestible dietary residue
and endogenous mucus using enzymes and biochemical 
pathways distinct to the colonizing bacteria [6,7,9–11]. 
The human host then benefits by energy recovery from
these indigestible dietary substrates. These bacterial
digestive processes release absorbable substrates for the
host in the form of short-chain fatty acids and a fertile 
supply of substrates providing the energy and nutrition
for bacterial proliferation. This mutually beneficial rela-
tionship is considered a classic example of host–microbial
symbiosis. However, recent studies have provided more
detailed insights into the mechanisms of this symbiotic
relationship. Namely, germ-free mouse experiments
show that colonization with a single bacterial species,
B. thetaiotaomicron, induces expression of sodium/glu-
cose transporters in the intestinal epithelium, promoting
absorption of glucose released by bacterial digestion of 
non-absorbed polysaccharides [6,10]. Whether this trait
is specific for B. thetaiotaomicron or is replicated by

Table 1. The role of microflora in host

Metabolic

Metabolize indigestible dietary residue into short-chain fatty acids

Induce expression of the sodium/glucose transporters in intestinal epithelium, promoting absorption of glucose

Enhance fat storage

Possibly produce DNA-damaging molecules

Synthesize vitamins

Trophic

Contribute to proliferation and differentiation of intestinal epithelium

Induce villous capillary formation in the intestinal mucosa

Assist in development of host immune system and oral tolerance

Drive production of mucosal immunoglobulin A

Develop systemic T cells via polysaccharide A

Protective

Provide microbe barrier 

Competitively inhibit the binding of pathogenic bacteria in intestines

Produce antibacterial substances (bacteriocins or microcins)

Competitively consume nutrients that may be used by pathogenic bacteria

Regulate Toll-like receptors for intestinal homeostasis

Induce host bacteria-binding lectins and antimicrobial peptides
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other bacterial species within the microflora is unknown.
Although bacterial digestion provides host and bacterial
energy resources, these processes may also produce poten-
tially toxic substances (eg, DNA-damaging molecules), 
though direct links between the release of these poten-
tially toxic molecules and disease pathogenesis remain 
speculative [12,13]. Colonic microorganisms also play a
critical role in vitamin synthesis, including vitamin K, B12,
biotin, folic acid, and pantothenate, as well as absorption
of calcium, magnesium, and iron [5]. 

Trophic functions
Short-chain fatty acids released, in part, by bacterial 
digestion (as described above) have a trophic effect on
the colonic intestinal epithelium, allowing gut micro-
flora in part to regulate proliferation and differentiation 
of intestinal epithelial cells. Cell differentiation is highly 
influenced by the microbial community. For example,
germ-free animals have reduced epithelial cell turnover
in colonic crypts compared with controls [1]. As another
example, colonization of germ-free mice with only
B. thetaiotaomicron induces villous capillary formation
in the intestinal mucosa, further promoting the host’s
absorptive capabilities [14]. Bacteria can also play a role 
in the development of a competent mucosal and possibly 
systemic immune system. In contrast to conventional
mice that possess a native microflora, germ-free mice
have lower densities of lymphoid cells in the gut mucosa,
fewer IgA-secreting plasma cells, and reduced submucosal 
T-cell populations [15,16••]. Ongoing sampling of the gut 
microflora by the mucosal immune system drives produc-
tion of mucosal IgA (secreted at the rate of 3–5 g/d). IgA 
secreted into the gut lumen binds microflora antigens,
serving to maintain host–bacterial mutualism [8]. Recent 
data further suggest that a specific bacterial molecule 
(ie, polysaccharide A of the B. fragilis capsule) contrib-
utes to systemic T-cell development [17].

Protective functions
The commensal microflora are thought to provide a bar-
rier effect in the gut and thus a crucial line of defense 
to inhibit colonization by pathogenic bacteria. Animals
and humans that receive broad-spectrum antibiotics are
often more susceptible to infection with, for example,
Salmonella spp, Klebsiella oxytoca, or Clostridium dif-
ficile. Adherent nonpathogenic bacteria may prevent the 
attachment or entry of pathogenic species into epithe-
lial cells by competing for attachment sites in the brush
border of the intestinal cells. This concept is sometimes
termed “colonization resistance” and is one mechanism
by which probiotics may confer disease resistance. Other 
potential mechanisms by which commensal bacteria may
impede pathogenic bacteria include competing for nutri-
ent availability and thus limiting utilization by pathogenic 
bacteria; producing antimicrobial substances, termed
bacteriocins or microcins, which inhibit the growth of 

pathogenic bacterial competitors; and inhibiting the activ-
ity of virulence factors [5,18]. 

Normal commensal flora appear essential to the main-
tenance of homeostasis in the gut and to the host’s ability 
to limit gut injury [19]. Toll-like receptors (TLRs) are a 
family of pattern-recognition receptor proteins that recog-
nize conserved molecules released by bacteria, and they are 
considered part of the innate immune (“first responder”) 
inflammatory host response to bacterial infection. However, 
murine experiments have shown that a colon with limited 
bacterial stimulation (through treatment with antibiotics) 
is more susceptible to TLR-regulated injury, and the gut 
bathed in its normal microflora is more resistant to injury 
[19]. These counterintuitive results suggest that the colonic 
microflora, through their regulation of TLR function, are 
critical contributors to intestinal homeostasis. Additional 
experiments suggest that members of the microflora also 
induce the host to express bacteria-binding lectins and 
antimicrobial peptides that serve to foster and maintain 
symbiotic host–microbial relationships in the gut [20,21].

Pathogenicity of Gut Bacteria
Several disorders are proposed to result, in part, from
changes in the composition or function of the microflora
(Table 2). These conditions may result from indigenous gut
microbes acquiring virulence factors that change them from 
commensals/symbiotes to pathogens. Examples include 
C. difficile or B. fragilis that do or do not produce secreted
toxins and even Salmonella spp that may be pathogenic
or nonpathogenic [22]. Alternatively, the pathogenicity of 
the microflora may result from environmental exposures
shifting the host–microbe equilibrium and/or underlying 
host genetic polymorphisms that regulate inflammatory
responses to the microflora.

Inflammatory bowel disease
Inflammatory bowel disease (IBD), specifically Crohn’s dis-
ease (CD) and ulcerative colitis (UC), is proposed, in part, to 
be a disease precipitated by the host’s microflora [23••,24].
IBD pathogenesis is complex, reflecting the interactions of 
host genetics and antigenic stimulation by intestinal flora
and resulting in vigorous gut immune responses, although
no specific pathogen has yet been implicated. 

Table 2. Putative diseases related to microflora

Inflammatory bowel disease

Irritable bowel syndrome

Obesity

Cancer

Bacterial translocation illnesses

Graft-versus-host disease

HIV immunopathogenesis
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From the perspective of host genetics, the func-
tion of at least some of the specific host genes strongly
associated with IBD (NOD2 [CD only], ATG16L1 [CD 
only], and the interleukin [IL]-23 receptor [CD and 
UC]) are linked to immune responses to microbial anti-
gens [25]. NOD2, a member of the caspase recruitment 
domain family, binds muramyl dipeptide present in 
the cell wall of essentially all bacteria; ATG16L1 is an 
autophagy gene modifying the intracellular processing
of bacteria; and the IL-23 receptor appears to be neces-
sary for certain immune responses to intestinal bacteria
[26]. Recently, in a murine model, loss of the transcrip-
tion factor T-bet led to spontaneous colitis, suggesting
that additional genes influencing the symbiote–host
relationship remain to be identified [27]. Excess epithe-
lial permeability reported in IBD family members—and 
thus likely to be genetically defined—is further thought 
to enhance direct contact between the colonic flora 
and the immune system, possibly permitting disease
initiation [16••].

Numerous murine models have demonstrated the
necessity of the intestinal flora for development of coli-
tis, and they have suggested that in the immunodeficient
murine host (such as IL-10 knockout mice), specific organ-
isms differ in the site and speed of colitis induction [23••]. 
Consistent with these experimental results, patients with
bowel inflammation have high concentrations of mucosal
bacteria (exceeding 109/mL) and a dense, adherent muco-
sal biofilm mass composed predominantly of B. fragilis
group organisms, but controls do not [28]. Patients with
IBD also demonstrate increased mucosal secretion of IgG
antibodies against commensal bacteria and active T lym-
phocytes against antigens of the bacteria such as flagellin 
[23••,29]. This finding suggests a breach in the local 
mucosal tolerance mechanisms. In smaller experiments,
reinfusion of intestinal contents to previously excluded 
ileal segments reactivated mucosal lesions, support-
ing the link between active IBD and the microflora [5]. 
Lastly, CD is partially responsive to antibiotic treatment  
(eg, metronidazole, ciprofloxacin, and rifaximin), consis-
tent with the concept that enteric bacteria are important 
in disease pathogenesis.

Obesity
The gut flora play an integral role in fat storage. Germ-
free mice, which normally have smaller fat pads compared
with conventional mice, will increase body fat by 60%
within 14 days when colonized with normal gut flora.
This increase in body fat occurs despite a 30% reduction 
in food intake associated with increased leptin levels, an
adipocyte hormone that suppresses appetite [30]. Gut
microflora seem to induce lipogenesis by suppressing
the production of fasting-induced adipocyte factor, an
inhibitor of lipoprotein lipase [30]. When fasting-induced
adipocyte factor is inhibited, fat cells increase due to
enhanced triglyceride deposition.

Through a series of experiments including trans-
fer of flora from obese mice (genetically engineered to 
have leptin deficiency) to germ-free mice, recent intrigu-
ing data have linked a higher proportion of Firmicutes 
compared with Bacteroidetes in the gut flora to the phe-
notype of murine obesity  [31,32••]. The microbiome 
of the obese mice, in which Firmicutes predominated, 
appeared to influence the efficiency in which energy 
was harvested. Most relevant was the determination 
that obese humans also exhibited Firmicutes dominance 
similar to that noted in the obese versus lean mice [33]. 
Upon weight loss occurring over a year of study, these 
individuals exhibited a shift in their microbiome to favor
the Bacteroidetes. These results support the concepts
from murine studies that energy utilization from food is 
regulated in part by our gut microflora and that modifi-
cation of the flora may influence human physiology. 

Translocation of bacteria 
and their molecular components
Bacterial translocation is defined as the passage of viable
bacteria from the gastrointestinal tract through the epithelial
mucosa [5]. The dissemination of viable microorganisms,
usually gram-negative such as in the genera Escherichia,
Proteus, and Klebsiella, may produce sepsis, shock, multi-
system organ failure, and death of the host. In animal
models, translocation is dependent on an overgrowth of bac-
teria in the small intestine, a decline in the immune defenses
of the host, and/or a breakdown in the intestinal mucosal
barrier. Bacterial translocation can occur in various disease
processes. Patients undergoing surgery have a significant
risk of postoperative sepsis secondary to translocation. 
For example, healthy people undergoing laparotomy had
culture-positive mesenteric lymph nodes up to 5% of the
time [5]. Often, bacterial translocation occurs in patients
with multisystem organ failure, severe acute pancreatitis,
liver cirrhosis (especially with spontaneous bacterial perito-
nitis), intestinal obstruction, or IBD.

More recently, bacteria translocation, as assessed by 
the biomarker lipopolysaccharide (LPS), the gram-negative
bacterial endotoxin, has been proposed to promote the
development and severity of graft-versus-host disease fol-
lowing allogeneic bone marrow transplant [34]. Similarly,
systemic LPS was elevated in individuals with HIV infection 
but not in uninfected controls, correlating with measures of 
innate and adaptive immune stimulation, the hallmarks of 
progressive HIV-associated immunodeficiency [35]. In these
patients, successful treatment with antiretroviral therapy
decreased plasma LPS levels. These results suggested that
restoration of immune function, including likely mucosal
immune function, repaired the breach in the gut mucosal 
barrier, thereby limiting microorganism translocation and
detrimental systemic immune activation. These data col-
lectively suggest an important and intricate relationship
between systemic and mucosal immunity that is regulated
in part by the microbiome. Additional studies will be critical
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to further examine these interrelationships in other chronic
illnesses associated with systemic immune activation.

Irritable bowel syndrome
Irritable bowel syndrome (IBS) is a highly variable disor-
der of unknown etiology that affects many people. Scant
data exist regarding alterations in intestinal microflora in
IBS, and sophisticated molecular microbiologic approaches
have not yet been used to study IBS. A recent study has 
demonstrated decreased levels of coliforms, lactobacilli, 
and bifidobacteria in the feces of IBS patients and increased
anaerobes, including Bacteroides spp, in the colonic
mucosa [36]. Furthermore, some IBS patients appear to 
have abnormal lactulose breath tests, implicating bacterial
overgrowth as contributing to the pathogenesis of IBS [37]. 
A link between IBS and bacterial overgrowth is further 
supported by an up to 75% improvement in gastrointestinal
complaints after neomycin treatment [37]. Similar improve-
ment has been noted after treatment with rifaximin. 

Increasing studies suggest that IBS can also be precipi-
tated by infectious acute gastroenteritis. In fact, various
studies have shown that 7% to 31% of subjects with
acute gastroenteritis had prolonged post-gastroenteritis
symptoms consistent with IBS [37]. A large cohort study 
showed that 28% to 36% of patients who had been
infected with either E. coli O157:H7 or Campylobacter
jejuni met Rome I criteria for IBS, whereas IBS was noted 
in only 10% of the control population [38]. These clini-
cal observations suggest the hypothesis that inflammation
triggered by specific enteric bacteria can lead to breaches 
in the mucosal barrier and disruption of the symbiotic
relationship between host and flora that serves to prolong 
mucosal inflammatory responses and gastrointestinal
symptoms. However, what puts an individual at risk for
postinfectious IBS is unknown. Recent data have shown
an association between IL-8 polymorphisms and gastro-
intestinal symptoms with C. difficile or enteroaggregative
E. coli infections, suggesting a clue to the regulation of 
the host responses and symptoms to enteric pathogens
[39,40]. Further study of postinfectious IBS may lead 
to new diagnostic and therapeutic approaches to these
difficult-to-manage illnesses.

Cancer
Colonic flora have long been proposed to be an environ-
mental factor that modulates risk of colonic cancer in
humans [12]. Compared with germ-free mice, convention-
ally raised mice have intestinal microflora that produce
carcinogens such as alkylating agents and nitroso com-
pounds [1]. Furthermore, germ-free mice with a mutation 
in the adenomatous polyposis coli gene (ApcMin), who are
prone to multiple intestinal adenomas, develop twofold 
fewer tumors in the small intestine compared with con-
ventionally raised ApcMin mice [1]. Three recent studies 
suggested specific mechanisms by which certain intes-
tinal flora bacteria may contribute to the development 

of colorectal cancer. One study found that a significant 
portion of E. coli strains carry a genomic island encod-
ing a cytotoxin that leads to megalocytosis by blocking
mitosis through induction of DNA double-strand breaks
[41]. A second study demonstrated that the commensal
bacterium Enterococcus faecalis stimulates macrophage 
expression of cyclooxygenase (COX)-2 through produc-
tion of extracellular superoxide [13]. COX-2 expression
is associated with chromosomal instability in mammalian
cells, a potential precursor of oncogenic transformation.
The importance of the COX-2 pathway to oncogenesis
is supported by clinical trials demonstrating the protec-
tive effect of COX-2 inhibitors in prevention of sporadic 
colorectal adenomas [42]. In a prospective cross-sectional 
epidemiologic report, fecal enterotoxigenic B. fragilis
(ETBF) was isolated in 38% of 73 patients with colorectal
cancer but in only 12% of 59 sex- and age-matched con-
current controls [43]. ETBF is a molecular subspecies of 
B. fragilis that secretes a zinc-dependent metalloprotease
toxin termed the B. fragilis toxin (BFT). BFT has been
shown to stimulate colonic epithelial cell proliferation and
proinflammatory cytokine secretion in vitro, mechanisms
that may contribute to the reported association of ETBF
with colorectal cancer [44]. Additional studies are needed 
to assess whether select members of the microflora and/or
a specific “oncogenic microbiome” that are predictive of 
risk for colorectal tumor formation can be identified and 
thus provide potential avenues for development of new
preventive approaches for these common tumors.

Treating with Bacteria
Probiotics are living, nonpathogenic microorganisms (usually
bacteria or yeast) that have been used for centuries for their
potential health benefits [45]. Probiotic organisms theoreti-
cally tilt the microflora toward a more symbiotic relationship
with the host, although precise mechanisms remain unclear.
Certain probiotics, VSL#3 (seven-strain combination of 
Streptococcus, Bifidobacterium, and Lactobacillus spp), 
E. coli Nissle 1917, and i Lactobacillus GG, have been studied
in multiple disorders. Although individual study results often
have been inconclusive, meta-analyses of controlled clinical
trials have suggested that probiotics can shorten the duration
of acute diarrheal illnesses in children by 1 day, may prevent 
antibiotic-associated diarrhea in children and adults, and 
can diminish morbidity and mortality in necrotizing entero-
colitis in infants [5,45,46]. In contrast, despite the proposed
link between the gut microflora and IBD, there is a paucity
of evidence to support the benefit of probiotics in the therapy
of IBD. Probiotics have been tested for therapeutic efficacy
in IBD, and with the exception of patients with pouchitis,
the results have been disappointing [5,45].

Defining the mechanisms by which probiotics act is
an area of active investigation. Multiple proposed mecha-
nisms include improving gut barrier and/or epithelial 
function, enhancing mucosal immune responses, and/or
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interfering with the adherence of bacteria contributing 
to disease. For example, in a microbial-induced sepsis
mouse model, VSL#3 administration was associated
with a reduction in bacterial translocation, secretion of 
proinflammatory cytokines, and attenuated liver injury
[47]. One current research goal is to define the molecules
produced by the probiotic bacteria that are responsible
for interfering with pathogenic mechanisms and/or that
promote host cell or immune function [48]. 

Conclusions
Host–microflora interactions play a critical role in health
and disease. The microfloral organisms, through a sym-
biotic relationship, assist in metabolic and trophic gut
functions and promote protective mechanisms that serve
to limit gut injury. Emerging data suggest these complex 
and as yet incompletely understood host–microbe relation-
ships can go awry, resulting in microflora acting to induce
or sustain quite diverse intestinal and systemic conditions,
such as IBD, obesity, IBS, cancer, transplant rejection, and/
or accelerated HIV pathogenesis. Hence, approaches that
modulate the microflora may have potential therapeutic
benefits for a variety of disorders, as recently suggested in
human studies of obesity [33]. Our present understand-
ing of the “normal flora,” gained by sensitive molecular
approaches, is limited to only a few infants and adults, and 
similarly, our knowledge of the human flora in disease is
rudimentary [2•,4]. Animal studies have been critical to
achieving a better understanding of host–microbe inter-
actions and refining hypotheses for potential evaluation
in human studies. With the development of new, compre-
hensive analytical approaches to the microflora [2•,9,49],
questions about gut ecology in health and disease in popu-
lations with differing genetic backgrounds, customs, and 
environmental exposures are now being addressed, with
exciting opportunities for basic and translational investiga-
tions. The recently launched Human Microbiome Project
(http://nihroadmap.nih.gov/hmp/) is designed to address
these needs through carefully designed investigations
and international collaborations that will define human-
associated microbial communities [50].
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