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Introduction
The discovery and development of antibiotics, which were
first employed in medical practice in the 1940s, stands as
one of the major accomplishments of medicine. Antibiotics,
combined with vaccination programs and improvements in
sanitation, contributed to the remarkable decline in deaths
from infectious diseases during the past century [1]. How-
ever, the emergence of antimicrobial drug resistance, partic-
ularly among nosocomial pathogens, now appears to be
threatening these medical advances. The problem has
become so critical that antimicrobial resistance is now being
identified as the most pressing infectious disease threat to
public health by a number of leading organizations [2••].
Concern is heightened now more than ever, particularly
with the recent report of the first clinical isolate of Staphylo-
coccus aureus that is fully resistant to vancomycin [3••].

Evidence strongly suggests that antimicrobial use is a
potent selective force for the emergence of drug-resistant
organisms, and that the collective effect of antimicrobial use
over the years has been to increase the overall prevalence of
drug resistance. Nevertheless, clearly defining the link

between antimicrobial use and antimicrobial resistance has
been challenging. The pathway from antimicrobial use to
the development and spread of antimicrobial resistance is
complex and multifaceted, and if we are to have any impact
on this problem it is essential that we gain a thorough
understanding of the many processes involved. The goal of
this review is to summarize our current understanding of the
mechanisms leading to the emergence and spread of anti-
microbial resistance, at both the organism and population
levels; to examine how this understanding has led to inter-
ventions aimed at reducing the development and trans-
mission of resistant organisms in the hospital setting; and to
describe how mathematical modeling can aid in our under-
standing of these complex processes.

Mechanisms by Which Antimicrobials Select 
for Resistance
Most would agree with the broad concept that antimicrobial
treatment exerts selection pressure that promotes anti-
microbial resistance. This causal relationship is supported
not only by a plausible biologic basis, but also by a long
history of consistent observations. For instance, many reports
over the years have documented the emergence of resistance
to new antibiotic classes shortly following their introduction
[4–6]. As well, throughout the latter half of the 20th century,
countless studies recognized the association between anti-
microbial consumption and the frequency of antimicrobial
resistance [7–9]. As antimicrobial use has risen over the past
few decades, we have certainly seen a concomitant rise in the
prevalence of antimicrobial resistance, particularly among
nosocomial pathogens.

Still, the precise relationship between an antibiotic and
microbial resistance to that antibiotic is not altogether as
straightforward as it may seem. In fact, in several cases it has
been difficult to demonstrate that treatment with an anti-
biotic places a patient at an increased risk for the acquisition
of an organism resistant to that antibiotic [10,11,12•]. For
many antimicrobials and pathogens, the pathways by which
exposure to the antimicrobial agent leads to the emergence,
acquisition, and/or spread of a resistant organism can be
quite varied and indirect (Table 1). Some of these pathways
are described below, though such concepts have been
explored in considerably more detail elsewhere [13•].

Organism-level antibiotic effects
In general, acquired antimicrobial resistance in micro-
organisms is mediated by modification of existing genes or
acquisition of new genetic material. At one end of the

As antimicrobial use continues to rise, we are experiencing 
a concomitant rise in the prevalence of antimicrobial 
resistance. The precise relationship between use and 
resistance, however, has been challenging to define. 
Although the selection pressure exerted by antibiotic 
therapy appears to be the primary force promoting 
resistance, it is clear that the pathway to resistance is 
different for various organisms and antimicrobial agents. By 
understanding the mechanisms by which resistance 
emerges and spreads, it should be possible to design 
intervention strategies to slow or halt the process. This 
review summarizes some of our current understandings 
about the development and transmission of antibiotic-
resistant bacteria, some of the control measures designed 
to interrupt the process, and how mathematical modeling 
can help us to better understand these complex pathways.



492 Hospital Epidemiology
spectrum is Mycobacterium tuberculosis, in which resistance to
most antimycobacterial drugs is conferred by a single point
mutation [14]. In the absence of antimicrobial selection
pressure, bacterial cells with these mutations typically have
no survival advantage or possess a decrement in fitness com-
pared with wild-type organisms and are therefore unlikely to
compete successfully against the dominant susceptible popu-
lation. Exposure to an antimicrobial agent is the key selective
force that promotes expansion of these mutant, resistant sub-
populations. Emergence of resistance may thus occur during
treatment of an infection in the individual host, depending
on the density of organisms and the activity of the antimicro-
bial agent(s) used.

At the opposite end of the spectrum is methicillin
resistance in S. aureus and vancomycin resistance in
Enterococcus. For these resistance types, resistance is mediated
by a set of transferable genes associated with transposable ele-
ments or plasmids. In these cases, as with M. tuberculosis, anti-
microbial exposure acts as a selective force, but unlike the
previous example, resistance does not arise de novo in an
individual patient. Pre-existing susceptible strains need to
acquire new genetic material to become resistant, an event
that may occur at a rate that is exceedingly low, depending on
the genetic requirements for resistance and frequency of gene
transfer. Antimicrobials still promote dissemination of
resistance but through actions on colonization resistance and
suppression of susceptible populations. Bacteria exhibiting

this mechanism of resistance often are colonizers rather than
obligate pathogens. Furthermore, their exposure to antibiotics
typically occurs during therapy for an unrelated infection, and
thus their persistence and/or rise following therapy is not
necessarily an indication of treatment failure [13•].

Situated between these two ends of the spectrum are
many types of resistance that emerge as a sequence of
multiple mutational events. In the case of fluoroquinolone
resistance in Streptococcus pneumoniae, resistance occurs in
stepwise fashion as a result of multiple mutation events in
the genes coding for DNA gyrase and topoisomerase IV
[15,16]. Typically, an initial mutation event occurs similar to
that described above for M. tuberculosis, which results in low-
level resistance to fluoroquinolones and a modest selective
advantage to that subpopulation. As members of this sub-
population survive, proliferate, and migrate from one host
to another, further mutational events occur which, in the
setting of repeated antibiotic exposures, lead eventually to
the expression of high-level fluoroquinolone resistance.
Likewise, a similar pathway describes the development of an
enhanced spectrum of activity of the plasmid-borne beta-
lactamase found in many gram-negative bacilli, as mutation
and antimicrobial-mediated selection have led to the rise of
potent extended-spectrum beta-lactamases [17,18].

Also situated within this spectrum are situations where
expression of some or all of the resistance genes is not cons-
titutive. The organisms may thus display in vitro suscep-
tibility to a particular antibiotic, but in vivo exposure to that
antibiotic for a period of time may induce the expression of
the resistance gene, resulting in phenotypic resistance and,
potentially, treatment failure during the course of therapy.
Such is the case with inducible beta-lactamases in various
gram-negative bacilli such as Pseudomonas, Enterobacter, and
Serratia [19,20]. In some cases, exposure to one antibiotic
can induce the expression of more than one resistance
mechanism, resulting also in resistance to antibiotics other
than the one used initially [21].

In each of the above examples, the action of anti-
microbials is to function primarily as a selective force. There
is evidence, however, that antibiotics may contribute to the
emergence of bacterial resistance also by inducing a state of
hypermutability [22•,23]. Two notable examples include
the effects of streptomycin and quinolones on genetic muta-
tion rates in Escherichia coli. There is appreciable evidence
that exposure of E. coli to streptomycin, an antibiotic known
to increase the number of translational errors, results in the
induction of a mutator phenotype [24]. Put another way,
streptomycin-mediated mistranslational stress essentially
elevates the level of background mutagenesis, effectively
allowing a greater opportunity for the microbes to evade the
inducing stress (streptomycin). Another form of stress-
induced mutagenesis, referred to as adaptive mutation [25],
appears to occur when E. coli are exposed to quinolones. In
this instance, evidence suggests that the mutation process—
traditionally thought to occur only in actively dividing bac-
teria during the DNA replication process—can also occur in

Table 1. Postulated roles of antimicrobial 
agents in promoting or selecting 
for resistant microorganisms

Organism/phenotype-level effects
Killing or inhibition of target pathogen 

with susceptible phenotype 
Killing of commensal microorganisms
Failure to inhibit or kill existing subpopulations 

of resistant mutants
Intermediate levels of resistance
Fully resistant organisms

Failure to inhibit or kill new types of resistance organisms 
generated by recombinant events

Induction of previously unexpressed resistance elements
Stress-induced alteration of mutation rate

Individual/patient-level effects
Expansion of resistant subpopulations

Transient carriage
Persistent colonization
Treatment failure
Super-infection

Increased risk for acquisition of new strains 
Increased load of resistant colonizers

Group/population-level effects
Increased transmission of resistant organisms

Higher probability that contact results in transmission
Decreased colonization resistance
Increased shedding by carriers

Higher frequency of contact as prevalence increases
Decreased transmission of susceptible organisms
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nondividing cells while under selection for a particular phe-
notype (antibiotic resistance). In the case of E. coli, the pres-
ence of ciprofloxacin in the growth medium was shown to
induce the emergence of ciprofloxacin-resistant colonies,
despite the absence of detectable replication or death during
the observation period [26].

Individual- and population-level antibiotic effects
Once resistant microorganisms emerge and their survival is
enhanced through the action of antimicrobial agents, a sub-
sequent hazard is that resistant species will escape from their
host into the environment, with the potential for colonizing
or infecting other individuals. Antimicrobials are capable of
exerting some measure of influence on this process as well,
albeit in a more indirect fashion (Table 1). By doing so, it
could then be concluded that antibiotics have discernible
effects not only on organisms and individuals, but also on
the population as a whole [14,27].

The common denominator in the process by which anti-
microbials exert their influence on the spread of resistant
organisms appears to be the eradication of susceptible
organisms within a host—both pathogens (intentionally)
and colonizers (unintentionally). In those cases where anti-
microbial use is clearly justified, this consequence is
difficult, and often impossible, to avoid. Regardless, eradica-
tion of susceptible organisms leaves an ecologic void within
the host, ultimately to be repopulated by other organisms
from the local or external environment. Antimicrobials
effectively shift the competitive balance for this repopula-
tion toward resistant organisms. Also, by affecting the type
and quantity of organisms shed into the environment by the
treated host, antimicrobial treatment of one individual can
potentially have consequences on other individuals in that
environment [14,28]. Thus, through both direct and indirect
mechanisms, antimicrobials are able to catalyze the spread
of resistance through the environment and the population.
The challenge to investigators at this point is to better define
each mechanism and the role each plays in the spread of
antimicrobial resistance.

Measures to Control Antimicrobial Resistance
Based upon the previous discussion, interventions aimed
at controlling antimicrobial resistance can be classified as
those that ultimately control the emergence of resistance
and those that ultimately control the spread of resistance.
These actions are not exclusive, however, as some measures
can perform both functions simultaneously; in fact, any
measure that modifies antimicrobial use could, theoreti-
cally, have an effect on both the emergence and the spread
of resistance through an alteration in antibiotic selection
pressure. A more useful approach, therefore, might be to
classify strategies for controlling resistance as antimicrobial
or nonantimicrobial measures (Table 2).

Nonantimicrobial measures consist primarily of infec-
tion control measures for preventing the horizontal cross-

transmission of resistant organisms (hand disinfection,
contact precautions, patient isolation, and cohorting), and
specialty consultation to aid in the diagnosis, treatment, and
handling of infected or colonized patients. A considerable
amount of clinical research has been dedicated to the study
of these practices, in many cases demonstrating the efficacy
and cost effectiveness of these measures for the reduction of
the spread of resistant organisms [29–31]. Typically, the
greatest impact of these measures is seen when several
approaches are used concurrently, but in those situations it
can be difficult to ascertain the impact of each individual
control measure on the overall effect on antimicrobial resis-
tance. More comprehensive reviews of these interventions
have been published recently elsewhere [32,33].

Antimicrobial measures, conversely, consist of measures
aimed primarily at the minimization of antimicrobial
selection pressure through the reduction of unnecessary
antibiotic use and/or the optimization of antibiotic
effectiveness. As mentioned, the selective pressure exerted
by an antimicrobial agent appears to be the primary catalyst
for the emergence and spread of resistant organisms. Since
any changes in the pattern of antimicrobial use in a clinical
setting should have a discernible effect on the selection
pressures experienced in that setting, carefully designed
changes in antimicrobial use could promote changes in the
emergence and/or spread of resistance at both the individ-
ual and population levels. A variety of mechanisms have
been employed to promote changes in antimicrobial use in
the hospital setting, with varying results [32,34] (Table 2).

One common approach for preventing emergence of
resistance in individual hosts is to use drugs or combinations
of drugs that diminish the effective rate with which non-
susceptible subpopulations are able to grow. The common
thread to these strategies is that for resistance to the anti-
microbial regimen to become manifest, multiple indepen-
dent mutations are required. Thus, as in the case of
tuberculosis, a regimen containing two to four antibiotics is
given to prevent the emergence of a subpopulation of
resistant organisms.

In addition to drug selection, however, a number of
other factors related to drug delivery and exposure have
been shown to be major determinants of the in vivo efficacy
of antimicrobial agents. The success of a particular anti-
biotic in the treatment of an infection correlates with one or
more pharmacokinetic or pharmacodynamic (PK/PD)
parameters, including peak serum level, the area under the
concentration time curve (AUC), and the duration of time
serum levels exceed the minimum inhibitory concentration
(MIC), depending on the antimicrobial agent and the
offending organism [35,36•]. Thus, for agents such as
aminoglycosides and fluoroquinolones that exhibit
concentration-dependent killing, maximizing their anti-
microbial activity may best be achieved through the max-
imization of the ratio of peak serum level to the MIC.
Conversely, for agents that exhibit time-dependent killing
such as beta-lactams, macrolides, and clindamycin, maxi-
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mizing the duration of time above the MIC should best
exploit their antimicrobial effects. Some agents, such as
azithromycin, tetracyclines, and vancomycin, exhibit time-
dependent killing but with prolonged persistent effects; in
these cases, the 24-hour AUC to MIC ratio should be maxi-
mized to achieve the greatest antimicrobial effect [36•].

The magnitude of the PK/PD parameters required for the
most efficient killing of bacteria also appears to depend on
the target organism. Specifically, there appear to be
differences based on whether the organism is gram-positive
or gram-negative, such as the differences seen in the 24-hour
AUC/MIC ratios required for the clinical efficacy of fluoro-
quinolones against gram-negative bacilli and S. pneumoniae
[36•,37,38]. There is also the suggestion that the use of these
parameters can contribute not only to improved clinical
efficacy, but also to a reduced risk of the emergence of anti-
microbial resistance during therapy, particularly with gram-
negative bacillary infections [36•,39,40].

Emphasizing the relationship between antimicrobial
concentration and selection of resistant mutants even
further, the concept of the mutation prevention concen-
tration (MPC) has been proposed. The MPC is operation-
ally defined as the lowest antibiotic concentration that
completely prevents the emergence of mutant resistant
strains from a large starting inoculum [16]. Another expla-
nation of the MPC is that it represents a concentration of
an antimicrobial agent beyond which double mutations
should be required for resistance to emerge. It has been
suggested that antimicrobial drugs that do not achieve tis-
sue concentrations above the MPC should only be used as
part of combination therapy [16]. Much more data from
clinical and animal studies are needed before this principle
can be adopted as the core strategy for preventing emer-
gence of resistant organisms.

At the population level, one method of optimizing the
effectiveness of antimicrobials worth mentioning that has
been under increased investigation in recent years is the use of
antibiotic cycling. A combination of other measures includ-
ing antibiotic restriction and area-specific antimicrobial regi-
mens, antibiotic cycling is a strategy to potentially reduce
resistance through the temporary withdrawal of one anti-
biotic or antibiotic class and substitution with another, to
allow resistance rates to the withdrawn agent(s) to stabilize or
decrease. The cycle continues as the withdrawn agent is then
reintroduced at a later date in place of the substitute, a key
difference between this method and a simple policy of anti-
biotic class restriction. Although antibiotic restriction policies
have been shown to lead to a reduction in the prevalence of
resistance to the restricted antibiotic [41], the restriction of
one class of antibiotics frequently results in the equivalent use
of a different class, with concomitant increases in resistance to
the alternate [41]. Antibiotic cycling works in a similar fash-
ion, but each cycle is theoretically scheduled to occur before
resistance is allowed to rise significantly to the substitute
agent, potentially reducing the overall prevalence of
resistance. A number of studies [9,42,43] have shown encour-
aging results in this regard, including one intriguing study
reporting concurrent reductions in the incidence of antibiotic-
resistant infections and infection-related mortality [44], but
limitations in study design and analysis prevent broad appli-
cability of the results. As well, at least one analysis suggests
that alternatives to cycling, such as the simultaneous use of
alternative drugs at the population level, may be more
efficacious overall [45]. Thus, there remains a lack of clinical
experience with this method and uncertainty regarding its
overall efficacy, particularly since it fails to address some of
the larger issues concerning excessive or inappropriate anti-
biotic use [46]. Clearly, additional controlled studies will be
needed before this modality receives widespread acceptance.

Improving Control of Antimicrobial 
Resistance: Role of Mathematical Models
Although most of the practices currently employed to control
antimicrobial resistance have been shown in controlled
studies to have some measure of effect on the emergence
and/or spread of resistance, from a practical standpoint they
are used almost always in combinations, particularly in the
setting of an outbreak of resistant organisms. As such, it can
be very difficult to ascertain the impact each individual
mechanism might have, if any, in the overall effort to elimi-
nate or reduce the spread of resistant species. Because each of
these practices are interdependent to a degree and the
relationships between them quite complex, designing
experimental or observational studies to assess the efficiency
of these measures is extremely challenging.

Models are theoretical frameworks of interactions
based on existing knowledge that can be useful in situa-
tions like this to help us understand the complexity of the
real world. When these models are simulated in mathe-

Table 2. Strategies to control antimicrobial resistance

Antimicrobial measures
Academic detailing
Antibiotic cycling
Antibiotic management teams
Audit/feedback
Area-specific empiric antibiotic regimens
Combination antimicrobial therapy
Computerized decision support and order entry
Formulary restriction/antibiotic approval
Implementation of clinical evidence-based guidelines
Individual application of pharmacokinetic/

pharmacodynamic parameters
Nonantimicrobial measures

Active surveillance cultures
Contact precautions
Hand disinfection
Specialty consultation (infectious diseases, pharmacy, 

infection control)
Isolation of patients colonized or infected 

with resistant organisms
Patient/staff cohorting
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matical formulas, we are able to quantify different compo-
nents of the overall process, and to express in quantitative
terms the overall effect of manipulating each component.
Quantification in this way allows for more direct and rea-
sonable comparisons of the values of the different compo-
nents relative to each other. Although the model cannot
nearly approach the complexity of the system it is describ-
ing, it does allow the investigator to simulate complex
interactions among those components that are believed to
be important, and to evaluate the quantitative effects of
each component process.

Mathematical models have been in use for many years in
the study of infectious diseases epidemiology, even as far
back as the early 20th century, when they were used to
understand malaria transmission for the purpose of disease
control [47]. They have been applied over the years to the
epidemiologic study of numerous viral, bacterial, and
parasitic diseases, but in many cases the perception that
mathematical theory was too detached from clinical reality
resulted in a general lack of enthusiasm and acceptance for
this approach to the solution of clinical problems [47,48•].
The past few years, however, have seen a resurgence in the
use of this approach to address the epidemiology of anti-
microbial resistance, particularly as it relates to nosocomial
transmission and infection control practices in hospital
settings such as intensive care units (ICUs). These studies
have helped us gain a better understanding of transmission
dynamics in a hospital setting, as well as the potential effica-
cies of different infection control techniques.

One such study [49] simulated the spread of a resistant
nosocomial pathogen (methicillin-resistant S. aureus
[MRSA]) in a hypothetical ICU setting, and examined the
impact of three infection control measures on the prevalence
of colonization. The model was based on the direct and
indirect interactions between patients and staff members,
and set during the course of an MRSA outbreak. In addition
to supporting the notion that staff-member colonization is
critical for the spread of resistant organisms in an ICU set-
ting, their results suggested that of the three infection control
protocols studied—hand disinfection, antimicrobial policy,
and curtailed admission of colonized patients—only the lat-
ter effectively and rapidly contained the outbreak. Interest-
ingly, strong hand hygiene compliance (even up to 90%) had
only a moderate effect on patient colonization rates,
although the outbreak was attenuated and colonization
among staff members was quickly eliminated. Despite the
difficulty in implementing a strategy to restrict the admission
of colonized patients to an ICU, their model did provide
some insight into the role of different infection control tech-
niques, and generated a series of testable hypotheses that
could eventually lead to real-world experimental studies.

Similarly, a different set of investigators [50] developed a
model to describe the transmission dynamics and persistence
of vancomycin-resistant Enterococcus (VRE) in an ICU setting.
Their model, based on the transmission dynamics of vector-
borne diseases, viewed health care workers as vectors and

patients as definitive hosts, and examined the impact of vari-
ous infection control measures (handwashing, cohorting, and
antibiotic restriction) on nosocomial cross-transmission.
Combining predictions of the model with surveillance and
monitoring data gathered directly from their ICU, they were
able to demonstrate that the observed endemic prevalence of
VRE was less than half of that predicted by the model, a
decrease attributed to the effect of the infection control mea-
sures. Despite that observation, and despite the fact that
handwashing compliance and cohorting were shown to be
effective control measures, the model again demonstrated
that restricting the admission of colonized patients was the
only means of eradicating resistant organisms from the ICU.
But like the previous study, this work provided a deeper
understanding of the process by which resistant organisms
maintain a stable endemicity in an ICU setting, and provided
a strong theoretical basis for further testing of interventions to
control infection and resistance in the hospital.

Despite their appearance of complexity, mathematical
models are only simplified representations of much more
complex real-world phenomena, and as such the interpre-
tation of their results carries certain limitations. The predic-
tive value of any model is directly related to the ability of
the investigators to break down reality into important,
easily quantifiable components, and to tie them together
with sound mathematical formulas. To do this, however,
modelers are required to make numerous assumptions
upon which the framework is based, assumptions that are
usually estimated from values derived from the literature.
The applicability of any model, therefore, is contingent
upon the validity of the assumptions that underlie it, some
of which do not accurately reflect reality. In the first
example, for instance, it was assumed that the numbers of
staff members and patients remained fixed over time, and
that patients discharged from the ICU were immediately
replaced with others [49]. Although assumptions like these
appear to detract from the validity of the model, often the
alternative adds significant complexity to the model with-
out providing much interpretive value. Even with these
assumptions, models can prove to be very useful if their
results are interpreted within the bounds of the stated
assumptions and used to generate hypotheses testable in
the real world through experimental studies. Through this
work, we have gained a better understanding of the
transmission dynamics of resistant organisms in the
hospital setting and the impact of various infection control
measures on this process.

Conclusions
Antimicrobial resistance is clearly one of the most challeng-
ing issues facing clinical medicine at the onset of the 21st
century. Through studies of the pathways by which resistance
emerges and spreads through the population, we have come
to the understanding that antibiotics have a broad range of
effects, not just on the microorganism and the individual,
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but also on the population as a whole. This presents an
important challenge to clinicians, since what may be good
for the individual patient may not be as good from an eco-
logic standpoint for the population. Nevertheless, our under-
standing of these processes has allowed for the design of
numerous interventions that can help slow or halt the emer-
gence and spread of resistance. Still, the design of clinical
studies to evaluate the impact of these interventions contin-
ues to be a challenge, particularly since the control of antibi-
otic resistance requires a multifaceted approach using many
different control measures simultaneously. In cases such as
this where the relationships between the measures are
complex and the effects of each are interdependent, mathe-
matical modeling can provide a means to generate testable
hypotheses upon which to design useful clinical experi-
ments. Because of the efficiency with which microorganisms
adapt to or circumvent the various protective measures we
currently employ, perhaps our most important goal should
be to optimize our use of antimicrobial agents, and to this
effect we must constantly strive to address the longstanding
issues of inappropriate or excessive antibiotic use.
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