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Abstract
Purpose of Review Preeclampsia complicates 5–10% of all pregnancies and is a leading cause of maternal and perinatal 
mortality and morbidity. The placenta plays a pivotal role in determining pregnancy outcome by supplying the fetus with 
oxygen and nutrients and by synthesizing hormones. Placental function is highly dependent on energy supplied by mitochon-
dria. It is well-known that preeclampsia is originated from placental dysfunction, although the etiology of it remains elusive.
Recent Findings During the last three decades, substantial evidence suggests that mitochondrial abnormality is a major 
contributor to placental dysfunction. In addition, mitochondrial damage caused by circulating bioactive factors released from 
the placenta may cause endothelial dysfunction and subsequent elevation in maternal blood pressure.
Summary In this review, we summarize the current knowledge of mitochondrial abnormality in the pathogenesis of preec-
lampsia and discuss therapeutic approaches targeting mitochondria for treatment of preeclampsia.
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Introduction

The mitochondrion is a double-membrane bound cellular 
organelle in eukaryotic cells. The widely accepted endos-
ymbiotic theory proposes that the mitochondrion is origi-
nated from alphaproteobacterium through a process termed 
endosymbiosis [1]. Although being endosymbiotic origin, 
the mitochondrion has been evolved into an indispensa-
ble organelle for cellular functions. Producing ATP is the 
preeminent function of mitochondria. However, mitochon-
dria are also involved in various other cellular processes, 
including biosynthesis of DNAs, proteins, and fatty acids, 
 Ca2+ homeostasis, redox homeostasis, apoptosis, among 
others [2]. Mitochondria are exquisitely sensitive to exter-
nal (e.g., hypoxia) and internal stress (e.g., oxidative stress/
endoplasmic reticulum (ER) stress) and undergo adaptation 

or maladaptation following stress exposure [3]. Mitochon-
drial homeostasis is maintained through mitochondrial bio-
genesis, mitochondrial fission and fusion, and mitophagy to 
sustain energy metabolism. Not surprisingly, mitochondrial 
dysfunction is implicated in a variety of human diseases [4].

The placenta, a transient organ developed during preg-
nancy, constitutes the interface between the maternal and 
fetal circulation. It plays pleiotropic roles during pregnancy 
such as nutrient and oxygen transport, endocrine secretion, 
and immunological protection that are pivotal to fetal growth 
and maternal well-being [5]. To fulfill its functions, the pla-
centa has a high energy demand and is a highly metaboli-
cally active organ. Glucose is the primary energy source for 
ATP generation in the placenta and ~ 30% of glucose taken 
up from the maternal blood is consumed by the placenta 
[6•]. Approximately 40% of total oxygen taken up from the 
uteroplacental circulation is used for the metabolism in the 
placenta [7•]. The majority of glucose and oxygen are con-
sumed for oxidative phosphorylation in mitochondria [7•, 8].

Preeclampsia is defined as new onset hypertension 
(≥ 140 mmHg systolic blood pressure or ≥ 90 mmHg 
diastolic blood pressure) after 20  weeks’ gestation 
with one or more of the following conditions: (1) 
proteinuria; (2) other maternal organ dysfunction such 
as acute kidney injury, liver dysfunction, neurological 
complications, and hematological complications; and 

This article is part of the Topical Collection on Preeclampsia

 * Xiang-Qun Hu 
 xhu@llu.edu

 * Lubo Zhang 
 lzhang@llu.edu

1 Lawrence D. Longo MD Center for Perinatal Biology, 
Division of Pharmacology, Department of Basic Sciences, 
Loma Linda University School of Medicine, Loma Linda, 
CA, USA

http://orcid.org/0000-0003-1626-9541
http://crossmark.crossref.org/dialog/?doi=10.1007/s11906-022-01184-7&domain=pdf


158 Current Hypertension Reports (2022) 24:157–172

1 3

(3) fetal growth restriction [9]. With high morbidity 
and mortality, preeclampsia affects 5–10% pregnancy 
worldwide [10]. Preeclampsia is also associated with 
long-term risk of cardiovascular disease in the mother 
[11]. Although the etiology of preeclampsia is not 
fully understood, placental dysfunction appears to 
underpin preeclampsia. It is believed that preeclampsia 
occurs in two stages: impaired invasion of trophoblast 
culminates in incomplete remodeling of spiral arteries, 
resulting in narrow vessels with high resistance to 
uteroplacental blood flow and the subsequent placental 
hypoperfusion triggers hypoxia or hypoxia/reperfusion 
which promotes the release of antiangiogenic factors 

and/or inf lammatory cytokines into the maternal 
circulation, leading to systemic inf lammation and 
endothelial dysfunction and consequent hypertension 
and other clinical features [12••] (Fig. 1). Preeclampsia 
is heterogeneous and usually exists in two phenotypes: 
early-onset (delivery before 34  weeks’ gestation) 
and late-onset (delivery after 34  weeks’ gestation). 
The early-onset (placental) preeclampsia arises from 
abnormal placentation (i.e., inadequate invasion of 
trophoblasts and remodeling of spiral arteries), while 
the late-onset (maternal) preeclampsia is suggested to 
stem from existing chronic systematic inf lammation 
and frequently occurs in women with pre-gestational 

Fig. 1  Association of mito-
chondrial dysfunction with 
preeclampsia. Preeclampsia is 
proposed to occur in two stages. 
In the first stage, incomplete 
spiral artery remodeling causes 
reduced placental perfusion. In 
the second stage, the resultant 
placental hypoxia/ischemia or 
hypoxia/reoxygenation induces 
oxidative stress which in turn 
boosts the release of bioactive 
factors, leading to endothelial 
dysfunction and ultimately 
clinical symptoms such as 
hypertension and proteinuria. 
Accumulating evidence sug-
gests mitochondrial dysfunc-
tion plays a central role in the 
pathogenesis of preeclampsia. 
Placental hypoxia/ischemia-
induced mitochondrial reactive 
oxygen species (mtROS) 
overproduction apparently is 
the major player of mitochon-
drial dysfunction by promoting 
mtDNA damage and mtDNA 
release into the circulation, 
altering mitochondrial dynamics 
and mitophagy, and increas-
ing apoptosis. mtROS also 
stabilizes HIF-1 in the placenta 
which then reprograms metabo-
lism and stimulates sFlt-1 
expression and release into the 
circulation. sFlt-1 and mtDNA 
along with other bioactive fac-
tors initiate systemic inflamma-
tion and endothelial dysfunc-
tion, engendering preeclamptic 
phenotype
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obesity and diabetes [12••]. The late-onset preeclampsia 
accounts for ≥ 80% preeclampsia cases. However, the 
early-onset preeclampsia is more clinically important 
as it is associated with fetal growth restriction and 
high maternal/perinatal morbidity and mortality. An 
early observational study identified a high incidence of 
preeclampsia in a family with mitochondrial dysfunction 
[13••].  Since this init ial  f inding, dysregulated 
mitochondria in the placenta have been demonstrated 
in both pregnant women with preeclampsia and animal 
models of preeclampsia [14]. This review intends to 
summarize our knowledge on the roles of mitochondrial 
dysfunction in the pathogenesis of preeclampsia. 
Potential therapeutic approaches targeting mitochondria 
for preeclampsia will also be discussed.

Mitochondrial Dysfunction in the Placenta 
and Preeclampsia

Metabolism Reprogramming in Preeclampsia

Eukaryotic cells derive their chemical energy ATP from 
nutrients such as carbohydrates, lipids, and proteins through 
glycolysis and oxidative phosphorylation (Fig. 2). Glycolysis 
occurs in the cytosol converting glucose into pyruvate in the 
presence of oxygen or into lactate in the absence of oxygen 
and produces 2 mol of ATP per mole of glucose. In contrast, 
the oxidative phosphorylation in mitochondria theoretically 
generates 36 mol of ATP per mole of glucose and produce 
up to 95% of ATP to sustain cellular activity. This process is 
fulfilled by the coupling the tricarboxylic acid (TCA) cycle 

Fig. 2  Cell bioenergetics in the placenta. Placental function depends 
on constant energy supply. Mitochondria act as the energy center to 
produce ATP, the energy currency of the cell. The primary energy 
substrate in placental cells is glucose with some contribution from 
fatty acids. Under aerobic conditions, glucose is converted to acetyl 
coenzyme A (acetyl-CoA) through glycolysis. Fatty acids can 
undergo β-oxidation to produce acetyl-CoA in mitochondria. Acetyl-
CoA is fed to the tricarboxylic acid cycle (TCA) cycle (also known as 
the Krebs cycle) and the cycle reduce  NAD+ to NADH and FAD to 
 FADH2. High-energy electrons from NADH and  FADH2 are passed 
onto and flow through the ETC. The energy carried by those electrons 
is used to pump protons  (H+) from the matrix to the intermembrane 
space, resulting in a proton gradient. Oxygen acts as the terminal 

electron acceptor and reacts with protons to form water at the end of 
the ETC. Protons then flow back to the matrix through Complex V 
(the ATP synthase) and the energy from this influx is used to drive 
ATP synthesis. When placental hypoxia/ischemia occurs, the placenta 
undergoes metabolic reprogramming and glycolysis becomes the 
dominant pathway of bioenergetics. Intriguingly, mitochondria are the 
major  source of cellular reactive oxygen species (ROS). Leakage of 
electrons at complexes I and III from the ETC leads to partial reduc-
tion of oxygen to form superoxide  (O2

•−).  O2
•− is rapidly converted to 

hydrogen peroxide  (H2O2) by superoxide dismutases (SODs), which 
is then reduced to water by glutathione peroxidases (GPXs) and per-
oxiredoxins (PRXs). The production of ROS at complexes I and III 
are increased in hypoxic conditions



160 Current Hypertension Reports (2022) 24:157–172

1 3

(also known as Krebs cycle) in the mitochondrial matrix to 
the electron transport chain (ETC) embedded in the inner 
mitochondrial membrane. The TCA cycle functions as the 
final common pathway for the oxidation of fuel molecules. 
Acetyl-CoA bridges glycolysis of glucose/β-oxidation of 
fatty acids/deamination of amino acids and the TCA cycle. 
Through the enzymatic reactions in the cycle, electrons are 
harvested to form NADH and  FADH2 and are subsequently 
passed onto the ETC. Energy released during the shuttling 
of electrons across complexes I–IV is used to pump protons 
from the matrix into the intermembrane space and establish 
an electrochemical gradient across the inner membrane. Pro-
tons then flow through ATP synthase (complex V) to drive 
the phosphorylation of ADP to ATP. Oxygen serves as the 
final electron acceptor at the end of ETC and reacts with 
protons to form water. It is estimated that ~ 90% of intracel-
lular oxygen is consumed by oxidative phosphorylation in 
mitochondria [15].

In the early gestation, the implantation and placental 
development are dependent on glycolysis to supply ATP 
due to low oxygen concentration at the implantation site 
[16]. With the establishment of the uteroplacental circulation 
and an increase in oxygen level in the placenta at the begin-
ning of the second trimester [17••], the oxidative metabo-
lism becomes the prevailing pathway to generate ATP in the 
placenta [7•, 8] (Fig. 2). However, aerobic glycolysis still 
occurs in the placenta to produce lactate which is used by 
the fetus as an energy source, consuming one fifth of glucose 
taken up from the uteroplacental circulation [18].

Apparently, mitochondrial bioenergetics in the placenta is 
altered in preeclampsia. ATP production is reduced in preec-
lamptic placentas [19, 20] and in the placenta of a mouse 
model induced by overexpressing sFlt-1 [21]. The preec-
lamptic placenta displays a hypoxic phenotype [22••]. To 
promote survival, mammalian cells undergo hyoxia-induc-
ible factor (HIF)‐1‐dependent reprogramming of glucose 
metabolism to cope with the deficiency of oxygen (Fig. 1). 
Glycolysis is boosted by the HIF-1-induced upregulation of 
glucose transporters and glycolytic enzymes while the oxida-
tive metabolism is suppressed by preventing the conversion 
of pyruvate into acetyl-CoA through HIF-1-mediated induc-
tion of pyruvate dehydrogenase kinase 1 (PDK1) which 
deactivates pyruvate dehydrogenase (PDH) [23••, 24]. In 
addition, HIF-1 also upregulates lactate dehydrogenase, 
enhancing the conversion of pyruvate to lactate. Glucose 
transporter 1 (GLUT-1) and key enzymes such as phospho-
fructokinase (PFK) and hexokinase II (HKII) are upregu-
lated in the preeclamptic placenta [25••]. Proteomic analysis 
reveals that several enzymes in the TCA cycle including 
pyruvate dehydrogenase E1 subunit α1 (PDHA1), oxoglutar-
ate dehydrogenase (OGDH, also known as α-ketoglutarate 
dehydrogenase (KGDH)), and malate dehydrogenase 2 
(MDH2) are downregulated in preeclamptic placentas [26, 

27]. Moreover, preeclampsia also suppresses the expression 
and/or activities of ETC complexes I–IV and ATPase in the 
placenta [26–31]. However, there are reports suggesting that 
oxidative phosphorylation in the early-onset preeclamptic 
placenta is reduced without altering the expression of ETC 
complexes [32••, 33]. Intriguingly, protein abundance of 
mitochondrial complexes II and III and mitochondrial respi-
ration are increased in the late-onset preeclamptic placenta, 
suggesting a metabolic adaptation [32••, 34]. Fatty acid 
β-oxidation primarily occurs in the mitochondrial matrix. 
Preeclampsia decreases abundance/activity of long chain 
acyl-CoA dehydrogenase (LCAD) and hydroxyacyl-CoA 
dehydrogenase trifunctional multienzyme complex subu-
nits α/β (HADHA/HADGB) and fatty acid oxidation in the 
placenta [20, 35]. The suppression of fatty acid oxidation in 
preeclamptic placentas is probably mediated by oxidative 
stress as fatty acid oxidation is reduced by  H2O2 in placental 
explants [36]. The metabolic reprogramming also occurs in 
placentas of high-altitude pregnancy, which is associated 
with ~ threefold increase in the incidence of preeclampsia 
[37•]. Similar changes have also been observed in vitro/ex 
vivo hypoxia- or hypoxia/reoxygenation-treated placental 
explants and trophoblast cell lines [38, 39••] and in pla-
centas of hypoxia-exposed rodents [24, 40•, 41, 42]. Fur-
thermore, hypoxia-responsive microRNA 210 (miR-210) is 
elevated in the preeclamptic placenta and impairs mitochon-
drial respiration by targeting and downregulating iron-sulfur 
cluster assembly enzyme (ISCU) [29]. This reprogram-
ming is believed to reduce placental oxygen consumption 
and to ensure adequate oxygen to be delivered to the fetus 
at the expense of glucose availability [37•]. Moreover, 
severe preeclampsia could diminish lactate supply to the 
fetus. Bloxam and colleague demonstrate that glycolysis is 
impaired in the placenta when preeclampsia is complicated 
by fetal growth restriction, showing reduced pyruvate and 
lactate [43].

Mitochondrial Reactive Oxygen Species 
and Preeclampsia

During oxidative phosphorylation, reactive oxygen species 
(ROS) are also produced at the ETC and are the primary 
source of ROS in most mammalian cells. Up to 2% of the 
electrons passing through the ETC leak primarily from 
complexes I and III and are partially reduced by oxygen 
to generate superoxide  (O2

•−) [44]. Superoxide produced 
at complex I is released into the matrix, while  O2

•− gen-
erated at complex III is discharged into both the matrix 
and intermembrane space. The superoxide anion is rapidly 
converted into hydrogen peroxide  (H2O2) by superoxide 
dismutase 1 (SOD1, Cu, Zn-SOD) in the intermembrane 
space and SOD2 (Mn-SOD) in the matrix.  H2O2 is then 
reduced to water by glutathione peroxidases (GPX1 and 4) 
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and peroxiredoxin 3 (PRX3 and 5) (Fig. 2) [44]. At low 
levels, ROS, primarily  H2O2 due to its stability and perme-
ability across the membrane, function as signal molecules. 
For example,  H2O2 could alter activities of enzymes and 
transcription factors by regulating the oxidative state of 
cysteine residue(s) [45]. Moreover, mitochondria function as 
cellular oxygen sensor. Hypoxia stimulates mitochondria to 
produce ROS and mitochondrial ROS (mtROS) in turn sta-
bilize HIFs to regulate the metabolic adaptation in hypoxia 
[46]. However, mtROS at high levels produce irreversible 
damage to mitochondria and cells [47]. Compared to normal 
pregnancy, preeclampsia exhibits heightened oxidative stress 
in the placenta, evidenced by increased generation of ROS 
and reduced expression/activity of antioxidant enzymes [48]. 
Mitochondria appear to be the major source of ROS in the 
preeclamptic placenta [49•] (Fig. 1). The increase in mtROS 
in the preeclamptic placenta is derived from observations 
of increased lipid peroxidation in mitochondria [49•]. This 
notion is corroborated by direct detection of elevated mtROS 
in the preeclamptic placenta and in the placenta of rodent 
models of preeclampsia [31, 40•, 50]. Consistently, hypoxia 
or hypoxia/reoxygenation also increases mtROS in the pla-
centa and trophoblast cell lines in vivo and in vitro [32••, 
39••, 51, 52] and in animal studies [50, 53].

Mitochondria are also targets of mtROS, leading to 
impaired structure and function [26, 27, 29, 54••]. It should 
be noted that mtDNA is located and mtDNA-encoded pro-
teins are synthesized in mitochondrial matrix. Thus, mtDNA 
is potentially subject to oxidative stress-induced mutation 
and protein processing could be disturbed by uncontrolled 
ROS. Increased mtDNA mutations in trophoblasts are 
observed in African American women with preeclampsia 
[55]. As mtDNA encodes a portion of ETC subunits, damage 
to mtDNA could cause defects in the ETC, leading to further 
increase in mtROS [56]. Moreover, placentas of early-onset 
preeclampsia also display elevated mitochondrial unfold 
protein response (UPR) [33]. Furthermore, excessive ROS 
also could activate mitochondrial permeability transition 
(mPTP), leading to necrotic and apoptotic cell death [57]. 
Indeed, preeclamptic placentas exhibit increased tropho-
blast apoptosis [58]. Notably, placentas from late-onset 
preeclampsia exhibit increased both ROS and antioxidant 
enzyme (e.g., GPX and PRDX3) activity, suggesting devel-
opment of a compensatory mechanism against oxidative 
stress [26, 32••]. Oxidative stress could also impact various 
placental functions including spiral artery remodeling, hor-
mone biosynthesis, and bioactive factor expression/release. 
In vitro studies demonstrate that ROS inhibit trophoblast 
invasion and induce trophoblast apoptosis [54••, 59, 60]. 
Increasing mtROS with the Complex I inhibitor rotenone 
reduce the expression of human placental lactogen (hPL) 
and insulin-like growth factor 2 (IGF2) in BeWo cells, a 
human placental cell line [61]. sFlt-1 production in placental 

villous explants, primary cytotrophoblasts, and BeWo cells 
is increased by mtROS [31, 62].

Mitochondrial Dynamics and Preeclampsia

Mitochondria are dynamic organelles and constantly fuse 
and divide in response to various stresses [63]. Mitochon-
drial fusion involves outer membrane fusion mediated by 
Miotfusin 1 and 2 (MFN1 and MFN2) and inner membrane 
fusion controlled by Optic atrophy 1(OPA1) [64]. On the 
other hand, mitochondrial fission is driven by dynamin-
related protein 1 (DRP1) [64]. Whereas the fusion gener-
ates interconnected mitochondria, the fission results in 
mitochondrial fragments. Morphological changes of mito-
chondria dynamics play an important role in mitochondrial 
bioenergetics. For example, mitochondrial fusion increases 
oxidative phosphorylation and bioenergetic efficiency [65]. 
In addition, mitochondrial dynamics is important for mito-
chondrial quality control. The fusion provides complemen-
tation of mitochondrial proteins and DNA by mixing the 
contents of healthy and partially damaged mitochondria to 
maintain a population of functional mitochondria, while the 
fission facilitates the removal of damaged mitochondria by 
mitophagy [64]. There are studies demonstrating that early-
onset preeclampsia promotes mitochondrial fission in the 
placenta. For example, the expression of OPA1 and DRP1 
is reduced and enhanced, respectively, in the placenta of 
early-onset preeclampsia [33, 66]. In addition, Vangrieken 
and colleagues observe an increase in fission in the pla-
centa of early-onset preeclampsia, showing an increase in 
protein abundance of dynamin-1-like protein (DNM1L), a 
key protein involved in mitochondrial fission and no change 
in pro-fusion proteins [25••]. However, Vishnyakova et al. 
[67••] demonstrate that MFN1/2 remains unchanged and 
OPA1 increases in the early-onset preeclamptic placenta. 
In the placenta of late-onset preeclampsia, the expression 
of MFN1/2 along with the long form OPA1 is found to be 
increased [19, 32••] on unchanged [67••]. In contrast, other 
studies find decreased expression of OPA1 and/or MFN1/2 
and no change for DRP1 and fission 1 (FIS1) [19, 20]. These 
discrepancies may result from that only mRNAs are meas-
ured for pro-fusion and pro-fission related gene expression 
in some studies. Notably, there is usually poor correlation in 
general between mRNA and protein expression levels [68]. It 
is preferable that protein levels of these genes are measured 
since they are executors of mitochondrial dynamics. Interest-
ingly, hypoxic treatment of BeWo cells increases the expres-
sion of Fis1 and DNM1L and decrease the expression of 
MFN1/2 [39••]. Similarly, hypoxia also reduces the expres-
sion of MFN2 in trophoblast cell line TEV-1 [19]. Moreover, 
increasing mtROS in BeWo cells by inhibiting complex I 
with rotenone decrease the expression MFN2 and OPA1 and 
increase the expression of DRP1 [61]. Furthermore, prenatal 



162 Current Hypertension Reports (2022) 24:157–172

1 3

hypoxia in pregnant rats selectively suppresses the expres-
sion of the long form OPA1 in the placenta carrying the 
male fetus [42].

Mitophagy and Preeclampsia

To maintain a healthy mitochondrial pool, damaged or sur-
plus mitochondria are sequestered by autophagosomes and 
subsequently transferred to lysosomes for degradation. This 
process is termed as mitophagy. The PTEN-induced kinase 
1 (PINK1) and E3 ubiquitin ligase Parkin (PRKN) consti-
tute the primary pathway of mitophagy [2]. Under physi-
ological conditions, PINK1 is cleaved by proteases upon 
being transported into mitochondria and is subsequently 
released into the cytoplasm and degraded by the protea-
some. When mitochondrial damage occurs, the import and 
cleavage of PINK1 are impaired. PINK1 is thus stabilized on 
the outer mitochondrial membrane and recruits Parkin from 
the cytosol to damaged mitochondria. Parkin is activated 
following PINK1-meidated phosphorylation and promotes 
ubiquitination, resulting in the engulfment of mitochondria 
by autophagosomes and degradation following lysosomal 
fusion. BCL2/adenovirus E1B 19 kDa protein-interacting 
protein 3 (BNIP3) also participates in mitophagy [69]. More-
over, and BNIP3-like (BNIP3L, also known as NIX) are 
implicated in PINK1-independent mitophagy [70]. Intrigu-
ingly, BNIP3 and BNIP3L are regulated by hypoxia and both 
of them are involved in hypoxia-induced mitophagy [70]. 
In addition, the recruit of light chain 3 (LC3) by FUN14 
domain containing 1 (FUNDC1) on mitochondrial outer 
membrane also participates in hypoxia-mediated mitophagy 
[71]. The placental expression of BNIP3, BNIP3L, and 
PINK1 is increased in early-onset preeclampsia, suggesting 
increased mitophagy [25••, 27, 66] (Fig. 1). Consistently, 
the hypoxic treatment of BeWo cells results in an increase 
in the BNIP3 and BNIP3L expression [39••]. In contrast, 
late-onset preeclampsia is associated with reduced placental 
expression of BNIP3, implying attenuated mitophagy [20].

Mitochondrial Biogenesis and Preeclampsia

Mitochondrial biogenesis is the process to increase 
mitochondria numbers through the growth and division of 
pre-existing mitochondria. Mitochondria possess their own 
genome. Mammalian mtDNA exists as a circular molecular of 
16.5 kb encoding 13 protein subunits of the ETC, 22 tRNAs, 
and 2 rRNAs. However, vast majority of mitochondrial 
proteins are encoded by nuclear genome, synthesized in the 
cytosol and imported to mitochondria. Thus, mitochondrial 
biogenesis requires coordinated expression of both nuclear 
and mitochondrial genes. Mitochondrial biogenesis involves 
replication of mtDNA and expression of proteins encoded by 
nuclear and mitochondrial DNAs, which is orchestrated by 

peroxisome proliferator-activated receptor γ coactivator-1α 
(PGC-1α) [72]. PGC-1α is activated by AMP-dependent 
kinase (AMPK)-mediated phosphorylation and by Sirtuin 1 
(Sirt1)-mediated deacetylation, respectively [73]. PGC-1α 
stimulates various transcription factors including the nuclear 
respiratory factors 1 and 2 (NRF1/2), peroxisome proliferator-
activated receptor-γ (PPARγ), and estrogen-related receptor-α 
(ERR-α) and NRFs increase the expression of mitochondrial 
transcription factor A (TFAM) [74]. TFAM determines the 
abundance of mtDNA by regulating packaging, stability, and 
replication [75]. Conflicting observations of mitochondrial 
biogenesis in preeclamptic placentas have been reported. 
Vishnyakova et al. [67••] observe elevated mitochondrial 
biogenesis in early-onset preeclampsia, evidenced by increased 
mtDNA copy number. Similarly, Holland et al. [32••] detect 
increased mtDNA content in late-onset preeclamptic placentas. 
In contrast, other groups report a reduction in mitochondrial 
content along with decreased PGC-1α and lower activity of 
citrate synthase, a biomarker of mitochondria in early-onset 
preeclamptic placentas [25••] and suppressed expression of 
PGC-1α in late-onset preeclamptic placentas [20]. Similar 
findings such as reduced mtDNA copy number and decreased 
citrate synthase activity/abundance are also obtained in vitro 
hypoxic treatment of villous explants and in cultured BeWo cells 
[39••, 76]. Circulating testosterone increases in preeclampsia 
[77]. In pregnant rats, elevating plasma testosterone decreases 
the expression of PGC-1α and NRF1 and mtDNA copy number 
in the placenta [78]. Nonetheless, other studies demonstrate 
unaltered mtDNA copy number and citrate synthase activity 
in early-onset/late-onset preeclamptic placentas [32••, 33, 79], 
which is corroborated by the observation that placental citrate 
synthase activity is not changed in a rat model of prenatal 
hypoxia [42].

Apoptosis and Preeclampsia

Mitochondria play a critical role in cell death primarily 
involving intrinsic apoptosis and necrosis [80]. In contrast 
to extrinsic apoptosis which is initiated via death receptors 
in the cell membrane, intrinsic apoptosis is controlled by 
the BCL-2 protein family in mitochondrial outer membrane. 
When activated by apoptotic stimuli including mtDNA 
damage, BCL-2-associated X protein (BAX) located in the 
cytosol is translocated to the outer mitochondrial membrane 
where it alone or together with BCL2 antagonist/killer 1 
(BAK) to causes mitochondrial outer membrane permea-
bilization (MOMP) and subsequent release of cytochrome 
c and other apoptogenic proteins into the cytosol [81]. 
Cytochrome c binds to apoptotic peptidase-activating fac-
tor 1 (APAF1), forming the apoptosome which recruits and 
activates the initiator caspase 9. The activated caspase 9 in 
turn cleaves and activates executioner caspase 3 and cas-
pase 7 leading to the cleavage of structural and regulatory 
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proteins in the cytoplasm and in the nucleus, ultimately lead-
ing to the demise of the cell [80].  Ca2+ perturbation in mito-
chondria plays a critical role in cell death.  Ca2+ overload 
could trigger the opening of mPTP in the inner mitochon-
drial membrane [82]. The opening of mPTP results in both 
ATP deprivation due to the loss of mitochondrial membrane 
potential and mitochondrial swelling due to water flux into 
the mitochondrial matrix. These incidents eventually lead to 
cell death due to compromised bioenergetics function and 
structural integrity of mitochondria. Placental apoptosis is 
increased in preeclampsia [83] (Fig. 1). HTR-8/SVneo cells 
and JEG-3 cells as well as placenta explants under hypoxia 
or hypoxia/reoxygenation display an increase in apoptosis 
[52, 83]. The study by Longtine et al. [84] suggests that 
placental apoptosis in preeclampsia exclusively occurs in 
cytotrophoblasts. However, other groups demonstrate that 
preeclampsia promotes syncytiotrophoblast apoptosis [85, 
86]. Various studies reveal increased expression of BAX and 
caspase 3 and reduced expression of BCL2 in both early- and 
late-onset preeclampsia [27, 85, 87]. Exposure of placental 
villous tissue explants to hypoxia-reoxygenation simulates 
the expression pattern of BAX and BCL2 in preeclamp-
tic placentas [88]. Hypoxia is also found to increase the 
expression of BAX, caspase 9, and cleaved caspase 3 and 
to decrease the expression of BCL2 in cultured cytotropho-
blasts and HTR-8/SVneo cells [83, 89]. In a mouse model of 
preeclampsia, the overexpression of HIF1α increases BAX 
expression and BAX/BCL2 ratio in the placenta [41]. As 
a result of increased apoptosis, mitochondrial swelling is 
frequently observed in preeclamptic placentas/trophoblasts 
[26, 27, 29, 33, 54••]. Interestingly, a recent study shows 
that late-onset preeclampsia results in reduced BAX expres-
sion and increased BCL2 expression in the placenta [32••].

Dysregulated Mitochondria and Endothelial 
Dysfunction in Preeclampsia

Endothelial cells play a critical role in regulating vascular 
tone, blood flow, and angiogenesis. Endothelial dysfunc-
tion plays a pivotal role in the pathogenesis of preeclamp-
sia [90]. Lines of evidence suggest that bioactive factors 
released from the preeclamptic placentas are responsible 
for the maternal endothelial dysfunction, leading to clinical 
symptoms such as hypertension and proteinuria [91]. Here, 
we focus our discussion on sFlt-1 and mtDNA. The role of 
angiotensin II type-1 receptor autoantibody (AT1-AA) in 
endothelial dysfunction is also reviewed.

sFlt-1, a splice variant of the VEGF receptor lacking 
the transmembrane and cytoplasmic domains, functions 
as a decoy to bind VEGF, thus reducing its bioavailabil-
ity to maternal endothelial cells and causing widespread 
endothelial dysfunction [92••]. In preeclampsia, both sFlt-1 

expression in the placenta and sFlt-1 in the circulation are 
increased [92••, 93] (Fig. 1). The increase occurs ~ 5 weeks 
prior to the onset of preeclampsia [94]. The increased cir-
culating sFlt-1 has been detected in both early-onset and 
late-onset preeclampsia [95, 96]. Increased placental and 
circulating sFlt-1 is also demonstrated in a rat model of 
preeclampsia induced by reduced uteroplacental perfu-
sion (RUPP) [97]. Heightened oxidative stress promotes 
sFlt-1 release from the placenta [14]. Moreover, hypoxia 
treatment of placental explants, primary trophoblasts and 
HRT-8/SVneo cells increases mtROS and sFlt-1 expression/
release [31, 98, 99]. sFlt-1 contains a hypoxia response ele-
ment (HRE) in its promoter region [100]. It is expected that 
the stabilization of HIF-1α conferred by placental hypoxia-
induced mtROS promotes sFlt-1 expression and release. 
Elevating sFlt-1 levels in pregnant rodents through infusion 
of sFlt-1 or placental exosomes from preeclamptic patients 
or sFlt-1 overexpression induce preeclampsia-like symp-
toms such as hypertension, glomerular endotheliosis, and 
proteinuria [92••, 101, 102]. The endothelial dysfunction 
in preeclampsia is in part conferred by sFlt-1-induced mito-
chondrial abnormality. The treatment of endothelial cells 
with sFlt-1 suppresses mitochondrial respiration, increase 
glycolysis, and promotes mtROS generation [103]. The 
impairment of endothelium-dependent vasorelaxation in 
pregnant rats infused with sFlt-1 could be rescued by ROS 
scavenger Tiron [104].

During apoptosis, mtDNA could be released into the 
cytosol and circulation due to increased mitochondrial 
membrane permeability [105]. Potentially due to the bac-
terial origin, mtDNA with hypomethylated CpG motifs 
serves as a damage-associated molecular pattern (DAMP) 
that is recognized by various pattern recognition receptors 
including Toll-like receptor 9 (TLR9) and activates innate 
immune responses [106]. For example, mtDNA released 
into the circulation during trauma causes systemic inflam-
mation via TLR9 activation [107]. In addition, oxidized 
mtDNA during apoptosis could activate nucleotide-binding 
domain leucine-rich repeat and pyrin domain containing 
receptor 3 (NLRP3) [108]. The activation of NLRP3 trig-
gers the cleavage of pro-interleukin (IL)-1β and pro-IL-18, 
which in turn trigger endothelial damage [109]. Moreover, 
impaired mitophagy and excessive mtROS production also 
lead to NLRP3 inflammasome activation [110]. Circulating 
mtDNA increases in both early-onset and late-onset preec-
lampsia [111, 112] (Fig. 1). The mtDNA in the circulation 
is in part released from the trophoblast decomposition [113]. 
The increased antiphospholipid antibodies in preeclampsia 
could also stimulate mtDNA release from the placenta into 
the circulation [114]. Intriguingly, circulating mediators 
(including mtDNA-triggered TLR9 activity) is increased in 
preeclampsia [115]. Moreover, placental exosomes contain-
ing mtDNA activates TLR9 in endothelial cells, leading to 
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endothelial activation [114]. In pregnant rats, administration 
of synthetic CpG oligonucleotides leads to increased systolic 
blood pressure [116•]. These findings suggest that elevated 
circulating mtDNA in preeclampsia contributes to systemic 
inflammation and vascular dysfunction.

Circulating AT1-AA also increases in preeclampsia and 
the increase is more pronounced in early-onset than late-
onset preeclampsia [117, 118]. AT1-AA binds to and acti-
vates angiotensin II type 1 (AT1) receptors [119]. Following 
injection of AT1-AA from women with pre-eclampsia, preg-
nant mice develops key features of preeclampsia including 
hypertension, glomerular endotheliosis, proteinuria, pla-
cental abnormalities, and fetal growth restriction [120•]. 
RUPP rats also display increased circulating AT1-AA [121]. 
Intriguingly, administration of AT1-AA also elevates circu-
lating sFlt-1 in pregnant mice [122]. It appears that AT1-
AA can target endothelial mitochondria to cause endothe-
lial dysfunction. Serum from (early-onset) preeclampsia 
suppresses mitochondrial respiration and increases mtROS 
in human umbilical vein endothelial cells (HUVECs) and 
the mitochondrial antioxidants MitoQ and/or MitoTempo 
attenuate these detrimental effects [40•, 123, 124]. Moreo-
ver, an AT1-AA inhibitor peptide reduces mtROS produc-
tion in HUVECs stimulated by sera from RUPP rats and 
early-onset preeclampsia [124, 125]. Furthermore, MitoQ 
and MitoTempo lower blood pressure in RUPP rats [40•]. 
Together, mitochondria in endothelial cells could produce 
excess ROS following sFlt-1 and/or AT1-AA exposure in 
preeclampsia, acting as the primary mediator of oxidative 
stress to contribute to endothelial dysfunction.

Therapeutic Strategies Targeting 
Mitochondria for Preventing/Treating 
Preeclampsia

As discussed in previous sections, dysregulated mitochon-
drial function is implicated in the dysfunction of both the 
placenta and endothelial cells in preeclampsia. Despite being 
a common pregnancy complication, preeclampsia is with-
out effective cures except delivery. Given the crucial role 
of mitochondrial abnormality in placental and endothelial 
dysfunction, targeting mitochondria to improve/restore 
mitochondrial function would be a promising therapeutic 
approach. This notion is substantiated by numerous preclini-
cal studies discussed below.

Coenzyme Q10  (CoQ10) and mitoQ

CoQ10 (ubiquinone) is best known as a component 
of the ETC.  CoQ10 can also function as an antioxi-
dant [126]. In a rat model of preeclampsia induced by 
 Nω-Nitro-l-arginine-methyl ester (l-NAME),  CoQ10 

reduces systolic blood pressure, proteinuria, and increases 
birth weight along with increased mitochondrial membrane 
potential and mtDNA [127]. Notably,  CoQ10 lowers the 
incidence of preeclampsia in a small-scale human clinic 
trial [128]. MitoQ is a synthetic compound consisting of a 
ubiquinone moiety linked to a triphenylphosphonium  (TPP+) 
moiety [129••]. The  TPP+ moiety allows mitoQ targeting 
to and accumulating within mitochondria. mitoQ normal-
izes hypoxia-induced elevation of ROS in cultured BeWo 
cells [39••] and reduces gestational hypoxia-induced oxi-
dative stress in rat placentas [130, 131]. Consequently, the 
decrease in birth weight in gestational hypoxia is rescued 
by mitoQ [130]. The elevated ROS in endothelial cells fol-
lowing exposure to RUPP serum and in RUPP rat placentas 
are attenuated by mitoQ [40•, 54••]. Expectedly, mitoQ also 
reduces hypertension in RUPP rats [40•]. It should be noted 
that timing of the use of mitoQ is critical for the outcomes of 
antioxidant treatment. Using the RUPP rat model, Yang and 
colleagues notice that mitoQ treatment in early pregnancy 
exacerbates blood pressure, proteinuria and fetal growth 
restriction, while the treatment in late gestation alleviates 
the preeclamptic phenotype [54••].

Selenium

Selenium, through incorporating in the selenoproteins 
such as GPXs and TXRs, plays its biological roles [132]. 
Selenium also promotes mitochondrial biogenesis [133]. 
In trophoblast cell lines, selenium upregulates GPXs and 
TXRs, reduces mtROS, stimulates mitochondrial biogen-
esis by increasing PGC-1α and NRF-1 expression, and 
increases ATP production [134, 135]. Selenium also dimin-
ishes hypoxia-induced increase in ROS in HTR-8/SVneo 
cells [135]. mtROS-induced apoptosis could also be sup-
pressed by selenium in trophoblast cell lines and placental 
explants [134, 136]. In human trials, selenium supplement 
lowers circulating sFlt-1 [137] and decreases the incidence 
of preeclampsia [138].

Hydrogen Sulfide Compounds

Hydrogen sulfide  (H2S), a gasotransmitter, has been shown 
to be an endogenous modulator of mitochondrial function, 
evidenced by stimulating oxidative phosphorylation and 
ATP production [139]. Wang et al. [140] demonstrate that 
 H2S producing enzyme cystathionine γ-lyase (CSE) expres-
sion is reduced in preeclamptic placentas, and inhibiting 
CSE activity with DL-propargylglycine reduces placental 
growth factor (PlGF) production in first-trimester placenta 
explants and inhibits the invasion of HTR-8/SVneo cells. 
Moreover, blocking endogenous  H2S production in pregnant 
mice results in preeclampsia phenotype such as increased 
circulating sFlt1, maternal hypertension, and fetal growth 
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restriction, which is reversed by  H2S-releasing compound 
GYY4137 [140]. Similar findings are observed in RUPP 
mice when the other  H2S-releasing compound MZe786 is 
used [141]. AP39 is a mitochondria-targeted  H2S donor con-
sisting of a  H2S-donating moiety (dithiolethione) coupled 
to  TPP+. AP39 increases mitochondrial content, reduces 
HIF-1α, mtROS and sFlt-1 production in hypoxia-treated 
human primary trophoblasts [31]. Endothelial cells exposed 
to AP39 display increased ETC activity and bioenergetics 
[142]. AP39 also abrogates the increase in mtROS and 
improves mitochondrial respiration in CSE-knockdown 
endothelial cells [143]. Therefore, it appears that AP39 is a 
promising therapeutic agent for preeclampsia. However, it 
should be aware of that AP39 at high concentrations could 
lead to mitochondrial dysfunction by inhibiting the ETC and 
disturbing redox homeostasis [144].

Melatonin

Melatonin can reduce oxidative stress by functioning as a 
ROS scavenger and by upregulating antioxidant enzyme 
expression, and plays an important role in regulating mito-
chondrial function [145]. Melatonin enters mitochondria 
probably through peptide transporters PEPT1 and PEPT2 
[146], leading to its accumulation in this organelle [147]. 
Melatonin increases the expression of antioxidant enzymes 
thioredoxin, glutamate-cysteine ligase catalytic subunit (the 
first rate-limiting enzyme of glutathione synthesis), and 
NAD(P)H dehydrogenase [quinone] 1 (NQO1) in cultured 
human primary trophoblasts [148]. The oxidative stress and 
subsequent mitochondrial apoptosis and DNA fragmentation 
induced by hypoxia/reoxygenation are reversed by melatonin 
in trophoblasts [149]. These in vitro findings are also corrob-
orated by observations in vivo studies. Melatonin normal-
izes ischemia/reperfusion induced fetal growth restriction 
in pregnant rats by improving mitochondrial respiration and 
by reducing oxidative stress in the placenta [150]. Similarly, 
melatonin reduces sFlt-1 expression in RUPP rat placenta 
and lowers blood pressure [150]. Melatonin also improves 
endothelial function and alleviates tumor necrosis factor-α 
(TNF-α)-induced endothelial damage [151]. Significantly, 
melatonin is found to prolong pregnancy by ~ 6 days in 
women with early-onset preeclampsia [151].

Proton Pump Inhibitors

Proton pump inhibitors (PPIs) such as lansoprazole, rabe-
prazole, and esomeprazole are found to increase endoge-
nous antioxidant function by increasing the expression of 
NRF2 and its targets heme oxygenase-1 (HO-1), NQO1 and 
thioredoxin in primary trophoblasts, placental explants from 
women with preterm preeclampsia, and endothelial cells 
[152]. Lansoprazole is shown to decrease mtROS production 

and to maintain mitochondrial membrane potential [153]. 
Accordingly, PPIs reduces sFlT-1 release from trophoblasts 
and placental explants from preeclamptic pregnancy, miti-
gates TNF-α-induced endothelial dysfunction, and decreases 
hypertension in a mouse model overexpression human sFlt-1 
[152]. In a human trial, PPIs reduce circulating sFlt-1, 
hypertension, and proteinuria [154].

AMPK Activators

AMPK, serine/threonine kinase, plays a pivotal role in 
maintaining cellular metabolism. AMPK is activated by 
AMP or ADP during ATP insufficiency [155]. Its activa-
tion redirects metabolism toward increased catabolism and 
decreased anabolism to restore cellular energy balance in 
part through impacting glycolysis, fatty acid oxidation, and 
mitochondrial homeostasis [155]. Several AMPK activators 
including 5-aminoimidazole-4-carboxyamide ribonucleoside 
(AICAR), metformin, and resveratrol have been tested for 
preventing/treating preeclampsia. It is worth noting that 
resveratrol is also a ROS scavenger. AICAR restores pla-
cental antioxidant capacity and decreases circulating sFlt-1 
in RUPP rats as well as lowers RUPP-induced hypertension 
[156]. Gestational hypoxia-induced fetal growth restriction 
is also alleviated by AICAR [157]. However, activation of 
AMPK by AICAR suppresses metabolism and ATP pro-
duction in human term placenta explants [158], which is 
probably due to that the metabolism and ATP production are 
already maximized in the term placenta. Metformin reduces 
sFlt-1 release from trophoblasts and preterm preeclamptic 
placental explants and improves endothelial dysfunction 
[159]. In a rat model of preeclampsia induced by lipopoly-
saccharide, metformin reduces oxidative stress, hyper-
tension, proteinuria, and fetal growth restriction [160]. A 
phase II clinical trial of treating early-onset preeclampsia 
with metformin is underway in South Africa [161]. Res-
veratrol reduces hypoxia-induced oxidative stress and pre-
vents hypoxia-induced apoptosis in HTR-8/SVneo cells 
[162]. Resveratrol also decreases sFlt-1 release from pri-
mary trophoblasts and promotes expression of HO-1, NQO1, 
GCLC, and TXN [163]. In a rat model of preeclampsia 
induced by l-NAME, resveratrol increases placental expres-
sion of SOD and decreases oxidative stress, apoptosis, and 
sFlt-1 expression in the placentas, leading to reduction in 
both hypertension and proteinuria [162, 164].

PPARγ Agonists

PPARγ is a member of the nuclear receptor superfamily of 
ligand-activated transcription factors. It is co-activated by 
PGC-1α and participates in regulating oxidative metabo-
lism in mitochondria [165]. The PPARγ agonist rosiglita-
zone reduces hypoxia- or hypoxia/reoxygenation-induced 
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apoptosis by decreasing caspase-9 and 3 activities and 
reducing cytochrome c release, and increases antioxidant 
capacity by upregulating the expression of catalase and 
SODs in first trimester placental explants and/or JEG-3 cells 
[165]. Remarkably, the downregulation of SOD2 in preec-
lamptic placentas is rescued by rosiglitazone [52]. The other 
PPARγ agonist pioglitazone improves hypoxia-induced fetal 
growth restriction [166]. In RUPP rats, rosiglitazone lowers 
placental and circulating sFlt-1 and alleviates endothelial 
dysfunction and hypertension [167].

Conclusion

Mitochondria are essential for both placental and endothelial 
function during pregnancy. The dysregulated mitochondria 
conferred by placental hypoxia or hypoxia/reoxygenation 
generally exhibit metabolism reprogramming, increased 
mtROS, fission, mitophagy, and apoptosis, and reduced bio-
genesis in the placenta. mtROS appear to be the centerpiece 
causing mitochondrial damage and are engaged in other 
aspects of mitochondrial dysfunction. The bioactive factors 
released from the preeclamptic placentas also target mito-
chondria in endothelial cells. Together, these changes appar-
ently contribute to placental and endothelial dysfunction, 
ultimately leading to preeclampsia. Given the lack of effec-
tive cures and the important role of mitochondrial dysfunc-
tion in preeclampsia, preclinical studies provide evidence 
that improving/restoring mitochondrial function could be a 
promising therapeutic approach for treating preeclampsia.
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