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Abstract
Purpose of Review This review will provide an in-depth coverage of the epidemiological and pre-clinical literature surrounding
the role of dietary protein in hypertension, with a special emphasis on the history of our work on the Dahl salt-sensitive rat.
Recent Findings Our studies have dedicated much effort into understanding the relationship between dietary protein and its effect
on the development of salt-sensitive hypertension and renal injury. Our evidence over the last 15 years have demonstrated that
both the source and amount of dietary protein can influence the severity of disease, where we have determined mechanisms
related to immunity, the maternal environment during pregnancy, and more recently the gut microbiota, which significantly
contribute to these diet-induced effects.
Summary Deeper understanding of these dietary protein-related mechanisms may provide insight on the plausibility of dietary
modifications as future therapeutic avenues for hypertension and renal disease.
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Introduction

According to the latest American College of Cardiology/
American Heart Association guidelines on the levels of sys-
tolic and diastolic blood pressure used to define hypertension
[1], 46% of the US population can be characterized as hyper-
tensive.While genetic predisposition is the first listed cause of
hypertension within the guidelines, environmental exposures
comprise the majority of all other risk factors, with those fac-
tors being nearly exclusively related to diet (i.e., saturated fat,
sodium, potassium, alcohol). This highlights the potential
power of dietary modifications in the prevention and treatment
of high blood pressure. Studies from our laboratory have
shown the influence of such dietary interventions, in particular
changes in the non-sodium components of the diet, in deter-
mining the severity of salt-induced hypertension and renal
damage. Our more recent areas of exploration within the

Dahl salt-sensitive (SS) rat model have revealed important
contributions of the immune system, the in utero environment,
and the gut microbiota to dietary protein-induced modulation
of hypertension (Fig. 1). This review examines the potential
interplay between these novel mechanisms as potential links
between dietary changes and hypertension.

Dietary Protein and Hypertension

Epidemiological studies have highlighted the importance of
nutrition in the regulation of blood pressure, where consump-
tion of high salt, carbohydrate, saturated fat, and cholesterol
diets is correlated with hypertension [2–4]. In contrast, the
effects of a diet high in protein are considered to be somewhat
controversial, where evidence supports both protein-induced
decreases [4, 5] and increases [6] in blood pressure. Yet in
humans with preexisting renal insufficiency, the evidence is
quite clear that a high protein diet accelerates the decline in
renal function [7–9], where the consumption of a reduced
protein diet has been shown to improve total kidney failure
outcomes [10]. An important point of consideration is not just
the amount, but the source of dietary protein, since varying
sources have been associated with different degrees of disease
susceptibility. There is strong observational data surrounding
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the comparison of animal versus plant protein consumption
and its effects on overall cardiovascular health, where vege-
tarians have been shown to have lower blood pressure than
omnivores [11] and vegetable protein intake inversely corre-
lates with blood pressure [12]. Importantly, the interventional
Dietary Approaches to Stop Hypertension (DASH) trial and
the Optimal Macronutrient Intake Trial to Prevent Heart
Disease (OmniHeart) overall confirmed the blood pressure
benefit in a diet rich in plant protein consumption [13, 14].
However, the very general animal versus plant distinction is
likely oversimplified with the concomitant contribution of
nonprotein components [15] and recent evidence suggesting
that it could perhaps ultimately be driven by genetics [16].

In various animal models of hypertension, blood pressure
has been shown to be modulated by the fat [17–20], carbohy-
drate [20–22], and protein [23] components of the diet. Our
investigations have focused on the utilization of the Dahl SS
rat as a model of high blood pressure and chronic kidney
disease in response to a high-salt challenge, since it recapitu-
lates many of the hallmarks typically observed in humanswith
salt-sensitive hypertension [24]. An initial study demonstrated
that parental SS rats fed an animal, casein-based purified diet
(AIN-76A, Dyets Inc.) led to a significant increase in blood
pressure in the offspring compared with grain-fed parental SS
rats, regardless of offspring diet, providing the first indication
that modulation of non-sodium components of the diet could
in turn affect Dahl SS hypertension and renal damage [25].
Over a decade’s worth of additional studies have since ex-
plored this in depth, attributing the effect of the purified versus
grain diet specifically to the difference in dietary protein
source (casein versus wheat gluten) [26], and revealing a

distinct contribution for both the immune system [27, 28]
and a heritable component [29]. More recent parallel studies
have examined purified diet-fed Dahl SS rats from the
Medical College of Wisconsin (SS/MCW) and grain-fed
Dahl SS rats from Charles River Laboratories (SS/CRL),
which have reinforced the blood pressure-lowering nature of
this plant versus animal protein chow due to differences in
maternal environment [30] and epigenetics in T lymphocytes
[31, 32]. Together, there is compelling evidence that dietary
protein is an important determinant of Dahl SS hypertension
and renal damage.

Dietary Protein and Immunity

Modifying dietary habits is an attractive method for modulat-
ing inflammatory disease due to the relative ease and cost of
intervention. The Metabolic Syndrome Reduction in Navarra
(RESMENA) project compared the RESMENA diet (30%
energy from protein) to a diet based on American Heart
Association guidelines (15% of energy from protein). This
randomized interventional study revealed a direct relationship
between dietary protein intake and inflammation.
Furthermore, this relationship was specific for increases in
animal/meat protein intake but not fish or vegetable protein
intake [33]. There is also evidence that increased dietary pro-
tein enhances the incidence of inflammatory bowel disease
specific to ingestion of animal by-products [34] and that in-
creased dietary protein, specifically of red meats and proc-
essed meats, increases relapse of ulcerative colitis [35].
There is no doubt that dietary protein influences the
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Fig. 1 Visual schematic
representing the interplay
between the immune system, gut
microbiome, and maternal
environment in the dietary
modulation of salt-sensitive
hypertension and renal damage
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inflammatory state of the gut, but less is known on the con-
nection between the gut and other organ systems.

Education of the immune system in the gut provides an
essential role in preventing inappropriate immune responses
to the food we eat through a mechanism termed oral tolerance.
Mohammad et al. demonstrated this phenomenon using an
ovalbumin (OVA)+ alum adjuvant-induced inflammatory
model. Mice that were pre-tolerized to OVA orally have an
attenuated inflammatory response measured by reduced se-
rum IgE titer. Maintaining these mice on a high-protein diet
increased IgE titers, enhanced splenocyte production of Th2-
driving IL-4 and Th1-driving IL-12, and enhanced LPS-
induced proliferation [36]. This study not only illustrated that
tolerization to dietary proteins is important in regulating sys-
temic immune responses but also that increased dietary pro-
tein enhances the systemic response. To further highlight the
importance of oral tolerance, Kim et al. demonstrated that
germ-free mice fed an “antigen-free” diet have lower levels
of serum immunoglobulins and fewer intestinal lymphocytes
primarily due to a depression in CD4+memory Tcells accom-
panied by a reduction in Foxp3+CD4+ T regulatory cells
(Tregs). A restoration of these populations was possible when
mice were switched to a solid food chow containing whole
proteins but not when switched to an amino acid diet [37•].
This study demonstrated that dietary antigens, in the form of
whole proteins, are necessary for the proper production of
intestinal Tregs. This is an important mechanism to consider
when investigating the relationship between dietary protein,
oral tolerance, and systemic inflammation.

The Dahl SS animal model shows robust inflammatory
activation when subjected to a high-salt challenge exhibiting
pronounced infiltration of immune cells into target organs
including the vasculature and the kidney. The salt-sensitive
increase in blood pressure and renal damage is exacerbated
when these animals are on a high-protein diet, accompanied
by an increase in infiltrating T cells in the kidney [27]. To
counteract this immune activation, treatment with the immu-
nosuppressive drug mycophenolate mofetil completely abro-
gated the effect of a high-protein diet [27]. Utilization of
RAG1−/− Dahl SS rats, lacking T and B cells, demonstrated
that the high-protein diet-induced enhanced salt sensitivity is
mediated by adaptive immunity [28]. Further work investigat-
ed whether the protein source, rather than the amount of pro-
tein, in the diet may influence these phenotypes. Compared
with Dahl SS rats maintained on the animal protein-based
chow (AIN-76A, Dyets), commercially available SS/CRL rats
maintained on a whole grain protein-based chow demonstrate
a dramatic reduction in salt-induced renal immune cell infil-
tration as well as a dramatic shift in the transcriptional and
methylation profile of infiltrating renal T cells [31, 32], sug-
gesting the involvement of epigenetic mechanisms. Moreover,
substituting the animal-based protein source in our standard
chow for a specific plant-based protein source (wheat gluten)

reduces the infiltration of immune cells into the kidney [29]
creating a connection between dietary protein source and salt-
induced renal inflammation.

The series of events connecting changes in protein source
in the diet and renal inflammation is an area of active investi-
gation, where we believe that antigenic aspects of dietary pro-
tein produce an inflammatory response in the gut which is
transmitted to the systemic circulation. This systemic inflam-
mation provides an enhanced response to the renal damage
accumulating in the kidney due to the salt-sensitive increases
in perfusion pressure. To this end, unpublished histological
analysis of the intestinal tract of the Dahl SS rat shows striking
hypertrophy of the Peyer’s patches and inflammation of the
gut epithelium when fed a diet comprised of animal-based
protein which is much less pronounced when rats are fed a
plant-based protein diet.

Dietary Protein and the Microbiome

The relationship between the diet and the microbiome is cer-
tainly twofold, where different dietary habits drive the com-
position of the gut microbiota, and microbial metabolism dic-
tates the ultimate systemic effects of the diet. To the first point,
the fecal microbiota of Western diet-fed European children
was compared with that of rural African children fed a diet
high in fiber, which clearly demonstrated an improved
Firmicutes-to-Bacteroidetes ratio, unique bacterial speciation,
and more fecal short-chain fatty acids in the African children
fed the rural diet [38]. Furthermore, a dietary interventional
study comparing adults placed on either an exclusive plant- or
animal-based diet for 5 days revealed the rapidity of the hu-
man microbiome to respond and switch between an herbivo-
rous and carnivorous profile [39]. While these pieces of evi-
dence highlight the impact of diet on driving microbiotal dif-
ferences, the microbiota itself is also a major determinant of
the physiologic effects of the diet. In terms of dietary protein
specifically, the microbiota contributes directly to proteolysis
[40] and the ability of the microbiota to properly ferment
dietary proteins is essential for amino acid balance, utilization,
and bioavailability [41, 42]; therefore, the composition of both
the gut and the diet plays equally important and reciprocal
roles critical for maintenance of host health. Well summarized
in this recent review by Diether et al., the process of proteo-
lytic fermentation involves a multitude of metabolic pathways
and results in the production of diverse metabolites like short-
and branch-chained fatty acids, ammonia, amines, hydrogen
sulfide, phenols, and indoles, with little known about how a
pathological microbiota affects these by-products [43•]. An
additional variable of consideration is the source of dietary
protein, which has been shown to influence protein digestion
itself as well as microbiota composition [44–46]. Interestingly,
casein has directly been shown to increase microbial density
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and decrease microbial diversity, leading to worsened inflam-
matory bowel disease in a mouse model of DSS-induced co-
litis [47•]. This reemerging role of immunity and inflamma-
tion is a probable, causal link between the diet, microbiota
dysbiosis, and the progression of a number of chronic
pathologies.

Emerging human and preclinical data provide evidence for
strong links between the microbiome and the development of
hypertension, where both hypertensive humans and animal
models exhibit gut dysbiosis, decreases in microbial diversity,
and the hallmark deleterious increase in Firmicutes-to-
Bacteroidetes ratio compared with normotensive controls [48,
49]. Some pathogenic factor is derived directly from the hyper-
tensive microbiota, since normotensive WKY rats receiving
cecal transplant from spontaneously hypertensive stroke-prone
rats also developed hypertension and increased the Firmicutes-
to-Bacteroidetes ratio [50]. Furthermore, transplantation of fe-
ces from hypertensive humans elevated blood pressure in germ-
free mice [51]. More recent studies demonstrate that immune
mechanisms appear to be involved between the microbiome
and the development of disease. Wilck et al. have attributed
the salt-sensitive hypertensive effects in a model of autoim-
mune encephalomyelitis to a depletion in Lactobacillus
murinus, which occurs in a T helper 17 (TH17) cell-dependent
manner [51]. The gut dysbiosis observed in both hypertensive
human subjects and experimental mice has been associated
with increased intestinal inflammation and activation of
antigen-presenting cells [52••]. Given the known contribution
of immune mechanisms in our model of salt-sensitive hyper-
tension, this new and compelling evidence of how the micro-
biota shifts in hypertension as well as in response to dietary
protein changes provides us with the rationale to explore these
mechanisms in our purified casein-fed versus grain- or gluten-
fed Dahl SS rats. Our preliminary work has determined that
these various diets induce massive shifts in the fecal microbiota
composition of the SS rats, with a causative, pathogenic factor
or species that drives hypertension and renal disease being spe-
cifically derived from SS/MCW microbiota [53].

Dietary Protein and Pregnancy

Preeclampsia (PE) is a pregnancy-specific disorder that is
characterized by new-onset hypertension accompanied by
proteinuria and affects 3–5% of nulliparous pregnant women
[54]. Despite a better understanding of the risk factors in-
volved in the pathology, the only cure to alleviate symptoms
is to deliver the fetus and placenta. While it is well known that
PE has long-term effects on the health of both the mother and
child, less is known about how both the health of the mother
during pregnancy and her risk of developing PE can be mod-
ulated by dietary protein, microbiome, and the immune
system.

There are multiple reports that the source of dietary protein
can impact the risk of developing preeclampsia. The
Norwegian Mother and Child Cohort Study (MoBa) reported
that in women, higher dietary intake of vegetables and plant
foods was associated with a lower risk of preeclampsia com-
pared with higher intake of processed meats [55].
Furthermore, the type and amount of dietary fiber have also
been shown to influence the development of PE. Based upon a
food frequency questionnaire during preconception and early
pregnancy, Qiu et al. found that the relative risk of developing
PE was lowest among the women that fell in the highest quar-
tile for dietary total fiber intake versus those that were in the
lowest quartile [56]. Moreover, this association was also ob-
served when water-soluble and insoluble fiber were examined
separately. To our knowledge, there are no preclinical studies
published investigating how different protein sources contrib-
ute to the pathogenesis of PE; however, we have ongoing
studies investigating the role of maternal dietary protein intake
on the development of a maternal syndrome. Casein-fed Dahl
SS rats develop a pregnancy-specific increase in MAP and
protein excretion that is absent in dams maintained on the
modified AIN-76A wheat gluten diet [57]. One potential
mechanism on how dietary intake could play a protective role
in PE is through modification of the microbiota composition.

The microbiome is an emerging topic in the pregnancy
field, and there is great interest in understanding how alter-
ations of the maternal microbiome can lead to disease in off-
spring; however, little is known about the role of the maternal
microbiome in the pathogenesis of PE. There are reports of
differences in gut microbiota composition between healthy
and PE women [58], and these differences persist even until
6 weeks postpartum [59]. While there is importance in being
able to make such observational associations, to date, there are
no studies demonstrating a causal relationship between chang-
es in the microbiota and PE. However, it has been shown that
if women are treated with a probiotic during late pregnancy,
the risk for PE was reduced [60]. Even in a healthy pregnancy,
it has been demonstrated that the composition of the gut
microbiome significantly remodels from the first trimester to
the third trimester [61•]. Interestingly, when microbiota from
the third trimester were transferred into germ-free mice, there
was a greater adiposity and inflammation in these mice rela-
tive to mice that received microbiota transfer from the first
trimester. In regard to the offspring microbiota, infants are
born widely undifferentiated and uncolonized [62], with the
inoculation process being primarily driven by mode of deliv-
ery and type of milk [63, 64]. Thus, the dietary and PE effects
on the maternal microbiome and how its transmission to the
infant leads to future disease susceptibility will be an impor-
tant area of future study. More investigations into how the
microbiome could be leading to PE and altering the health
of the mother and child are necessary to better understand
these associations, but one potential mechanism that is
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plausible to link alterations in the gut microbiota with the risk
of PE is the immune system. Normal immune adaptions occur
for the maintenance of a healthy pregnancy, but immune dys-
function is a clinical manifestation during the onset of PE [65].
In particular, T cells have been linked to the development of
PE with increased levels of circulating CD4+ and CD8+ cells
[66] and various elevated proinflammatory cytokines such as
IL-6, TNF-alpha, and IL-17 [67]. These findings have been
recapitulated in preclinical models of PE, such as the Reduced
Uterine Perfusion Pressure (RUPP) model, to help understand
their roles in the disease process [68]. Our unpublished work
shows that Dahl SS rats lacking T cells (SSCD247−/− rats) are
protected from developing maternal syndrome and again
highlight the importance of the T cell in PE [69].

Our group has previously demonstrated that the severity of
salt-induced hypertension and renal damage can be impacted
by the protein source in both parental and offspring diets. The
initial observations that parental dietary protein can influence
offspring’s sensitivity were performed in SS/MCW rats where
breeders were maintained on either the casein- or grain-based
diet with their sequential litters weaned to either casein- or
grain-based diets. It was determined that offspring fed a
grain-based diet starting at weaning exhibited an attenuation
in salt-induced hypertension and renal disease relative to the
offspring fed a casein-based diet [25]. The importance of diet
during gestation and lactation was further emphasized when
Geurts et al. performed an embryo transfer experiment utiliz-
ing SS/MCWand SS/CRL rats. Similarly, it was the diet of the
surrogate dam that predicted the severity of hypertension and
renal disease in the offspring [30]. While these colonies are
essentially genetically identical (0.000001% single nucleotide
variants), a colony of SS/MCW rats fed a modified AIN-76A
with the protein source being wheat gluten instead of casein
was developed in an attempt to eliminate any possible genetic
contribution to this phenotype. In a more recent publication,
the SS/MCW rats fed wheat gluten chow displayed attenua-
tion in their salt-sensitive phenotype relative to offspring from
casein-fed rats [29]. Furthermore, offspring born to parents
that were born and bred on the modified wheat gluten AIN-
76A diet saw a further protection compared with their casein-
fed counterparts. These reports highlight the importance of
diet on the severity of the disease phenotype; however, our
recently generated unpublished work shows that these diets
can also impact the health of the mom during pregnancy [57].
Our work has revealed that dietary protein source can greatly
impact both pregnancy and offspring’s susceptibility to salt-
sensitive hypertension and renal disease.

Conclusion

Taken together, the current literature supports the view that
manipulations to the diet can have drastic effects on the

development and severity of disease, namely hypertension.
While wheat gluten consumption is generally associated with
a negative connotation due to increased public awareness of
Celiac disease, it is important to note that gluten is the major
protein component of whole grain. For those without gluten
intolerances, balanced diets should incorporate whole grains,
and in terms of salt-sensitive hypertension, our work high-
lights the benefit of greater consumption of this plant-based
protein versus animal protein. The microbiota undoubtedly
plays a contributory role in how various dietary components
become systemically exposed to the host, where it then be-
comes important in how the host responds immunologically,
both in the gut as well as in other target organs. Furthermore,
understanding how changes to the maternal microbiota shapes
the in utero environment and how it impacts offspring immu-
nity and disease susceptibility provides another important area
of future investigation and potential intervention.
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