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Abstract

Purpose of Review Summarize the methods used for measurement of cerebral blood flow and oxygenation; describe the effects
of hypertension on cerebral blood flow and oxygenation.

Recent Findings Information regarding the effects of hypertension on cerebrovascular circulation during exercise is very limited,
despite a plethora of methods to help with its assessment. In normotensive individuals performing incremental exercise testing,
total blood flow to the brain increases. In contrast, the few studies performed in hypertensive patients suggest a smaller increase in
cerebral blood flow, despite higher blood pressure levels. Endothelial dysfunction and increased vasoconstrictor concentration, as
well as large vessel atherosclerosis and decreased small vessel number, have been proposed as the underlying mechanisms.
Summary Hypertension may adversely impact oxygen and blood delivery to the brain, both at rest and during exercise. Future
studies should utilize the newer, noninvasive techniques to better characterize the interplay between the brain and exercise in
hypertension.
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Introduction

Hypertension is one of the most prevalent diseases affecting
more than 874 million people globally [1]. In 2015, it
accounted for 143,000,000 disability-adjusted life years
(DALYSs) [1]. It increases stroke risk [2], inflicts dementia
[3], and may accelerate its course [4—6]. Subclinical brain
lesions, such as white matter hyperintensities, silent lacunar
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infarcts, and microbleeds, have all been reported in patients
with hypertension [7+¢]. Recent data suggest that regular ex-
ercise training can assist with better blood pressure control [8]
as well as with maintenance of cognitive function [9, 10].
Taking these into account, a better understanding of the adap-
tations of cerebral perfusion and oxygenation during exercise
is of paramount importance, as it could identify molecular
pathways activated or inhibited during exercise, which could
constitute new therapeutic targets towards better cerebrovas-
cular health in patients with hypertension.

In the first part of this review, we outline the methods used
for the measurement of cerebral blood flow (CBF) and oxy-
genation. In the second part, we summarize the effect of hy-
pertension on CBF and oxygenation at rest, as well as during
exercise.

Methods for Measuring CBF and Oxygenation
The methods used to measure CBF and oxygenation (Table 1)

have significantly evolved over time from invasive, using tis-
sue or intravenous (IV) catheters, to noninvasive technologies
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Table 1 Summary of the most common methods used to measure cerebral blood flow and oxygenation
Method Mechanism Comments
Radioactive IV infusion of isotope, radiation count probes placed over areas of First method used; of historical value at this point
133Xe interest, cerebral blood flow is proportional to radioactivity
PET scan Radioactive H,'°0 injection, blood flow estimated from the Gold standard method for measuring CBF. Involves radiation,
emitted radiation, and the time elapsed from the tracer injection ~ not sensitive to rapid changes in blood flow, prone to motion
artifacts. H,">O tracer not readily available
SPECT scan IV " Te-HMPAQ is injected, gets metabolized, and is ultimately Involves radiation, not sensitive to rapid changes in blood flow,
distributed to the brain, the systemic circulation, and the venous prone to motion artifacts
compartment; cerebral blood flow is estimated by the
radioactivity emitted from the 3 compartments
ASL-MRI Cerebral perfusion is estimated by noninvasively labeling blood in Technically challenging, not well standardized, sensitive to
neck arteries and measuring arrival of this label into the brain motion artifacts, restricting its use mainly in stationary
conditions
DCE-MRI IV contrast creates signal change as it flows into the brain. CBF is Sensitive to motion artifacts, restricting its use mainly in

calculated using the application of law of mass preservation for
the different “phases” of the tracer i.e., plasma flow, plasma
equilibration, tissue extraction, and tissue equilibration

Neck vessel Blood flow is estimated by vessel diameter and blood velocity

stationary conditions

Sensitive in detecting rapid changes in blood flow; ultrasound

Doppler
ultrasound

Transcranial
Doppler
ultrasound
(TCD)

vessel diameter and blood velocity

Near-infrared
spectroscopy

(NIRS) based on infrared light absorption

Ultrasound probe fixed on the skull, blood flow is estimated by

Relative changes in oxygenated and deoxygenated hemoglobin
concentrations measured by the modified Lambert-Beer law

probe needs to be still over vessel which can be challenging
during exercise

Fixation of ultrasound probe allows use in exercise, sensitive in
detecting rapid changes in blood flow, concurrent
measurement PEtCO, allows for correction of results for
change in vessel diameter, provides only regional
measurements, and does not assess small vessels

Able to detect rapid changes in oxygenation, not prone to
motion artifacts enabling use during exercise; special
software can correct results for regional skin blood flow;
validated in many settings including carotid endarterectomy,
orthostatic response, presyncopal episodes, systemic
hypoxia, post-resuscitation, exercise; can provide
information only in the region of the optodes; with the use of
multiple channels, different brain areas can be assessed

1V intravenous, PET positron emission tomography, CBF cerebral blood flow, SPECT single-photon emission computerized tomography, " Tc-
HMPAO technetium-99m-d,l-hexamethylpropyleneamine oxime, ASL-MRI arterial spin-labeled magnetic resonance imaging, DCE-MRI dynamic
contrast-enhanced magnetic resonance imaging, PEtCO, partial pressure of end-tidal carbon dioxide

such as ultrasound (US), magnetic resonance imaging (MRI),
and near-infrared spectroscopy (NIRS).

Radionuclide-Based Methods Traditional methods for
assessing global cerebral blood flow used the Fick principle
(Kety and Schmidt method, using nitrous oxide) [11] or ra-
dioactive '**Xe [12]. Radioactive '**Xe is infused intrave-
nously and regional blood flow can be estimated by measuring
the arterial '**Xe concentration using radiation count probes
placed over the areas of interest. The whole procedure takes
approximately 11 min, but is not sensitive to rapid changes in
blood flow, such as those observed with exercise, and is now
rarely used [13]. Two other radioactive methods employed to
measure blood flow to the brain are positron emission tomog-
raphy (PET) and single-photon emission computerized to-
mography (SPECT). The PET scan tracer for that purpose is
radioactive water, HZISO. Cerebral blood flow is a function of
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the emitted radiation and the time passed since the radioactive
tracer injection. With H,'°O PET, regional and global esti-
mates of cerebral perfusion can be obtained [14, 15]. H,'°O
PET scan is considered the gold standard for measurement of
CBF. Unfortunately, the short half-life of H,"°0 (~2 min)
creates the requirement for a cyclotron at the imaging site,
making this method not readily available in clinical practice
[16]. The SPECT scan uses IV technetium-99m-d,I-
hexamethylpropyleneamine oxime (*”™Tc-HMPAO), a lipo-
philic radioactive tracer, which readily crosses the blood-brain
barrier (BBB). Once in the brain, it gets metabolized to a large
hydrophilic molecule and smaller hydrophilic moieties.
Unlike the smaller moieties, the large molecule cannot cross
BBB and return to the systemic circulation; thus, it stays in the
brain. Cerebral blood flow is estimated as a function of the
emitted radioactivity from the brain, the fraction of the tracer
that returned to the systemic circulation, and the radioactivity
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of'the tracer in the venous compartment [17, 18]. Neither PET
nor SPECT is very sensitive to rapid changes in blood flow.
Moreover, head movement can cause artifacts, therefore lim-
iting their use in supine exercise [13]. Finally, PET and
SPECT methods expose research participants to ionizing
radiation.

MRI-Based Methods MRI can be used to measure cerebral
perfusion through the arterial spin-labeled MRI (ASL-MRI)
sequence. Cerebral perfusion is estimated by noninvasively
labeling the blood in neck arteries and measuring arrival of
this label into the brain [19]. ASL-MRI is technically chal-
lenging, relying on assumed constants and imaging parame-
ters set by the user, which can limit the accuracy of the mea-
surements. Additionally, it is not well standardized, which can
affect generalizability of the results across centers [16].
Another sequence used for cerebral blood flow measurement
is the dynamic contrast-enhanced MRI (DCE-MRI). This en-
tails the use of an intravascularly injected Gadolinium-based
contrast agent, which causes a detectable signal change as it
flows into the brain. Cerebral blood flow is calculated by
applying the mass preservation law for the injected contrast.
This takes into account the signal change during each phase of
the tracer circulation (i.e., plasma flow phase, plasma equili-
bration phase, tissue extraction phase, tissue equilibration
phase) while also factoring in the duration of the individual
phase [20]. With MRI techniques, values for regional cerebral
blood flow can be obtained. Unfortunately, these techniques
are sensitive to motion artifacts. Hence, their use is restricted
mainly in stationary/resting conditions.

Ultrasound-Based Methods These are sensitive to rapid
changes in blood flow and are less prone to motion artifacts.
However, they only assess the flow in the large- and medium-
sized vessels [21, 22].

Cervical vessel (carotid artery (CA)-vertebral artery (VA))
Doppler can estimate blood flow to the brain by measuring blood
velocity and vessel diameter. Through this method, global cere-
bral blood flow can be estimated, but regional blood flow infor-
mation cannot be obtained. The US probe should be held still on
the neck during the Doppler measurement, which can make its
use during exercise challenging [22].

The most prevalent US-based method used for cerebral
blood flow measurement during exercise is transcranial
Doppler (TCD). This measures blood velocity in different
cerebral vessels as a surrogate marker for cerebral blood flow.
It provides an estimate of regional blood flow, based on the
vessel examined. The US probe can be fixed on the subject’s
skull, enabling its use during exercise and motion. Results
obtained with TCD have been validated by the '**Xe method
[21, 23-25].

Unfortunately, TCD is an indirect method of estimating
cerebral blood flow. It directly measures blood velocity and

operates under the assumption that vessel diameter remains
unchanged in order to calculate blood flow. Whether or not
this assumption is valid during exercise has been a topic of
debate, with different studies providing mixed results [21].
One way to bypass this assumption is to measure the partial
pressure of end-tidal carbon dioxide (PCO,), which is a po-
tent cerebral artery vasodilator. Subsequently, an adjustment
can be made to correct blood flow results for the change in
vessel diameter [21, 25].

Near-Infrared Spectroscopy NIRS can measure brain oxygen-
ation during rest or exercise. It is based on the Beer-Lambert’s
law, which states that the absorption of light through any
medium is proportional to the distance the light has to travel,
the concentration of chromophores, and a molar extinction
coefficient (showing how strongly the chromophores absorb
light at a given wavelength). Within the NIRS range, the main
light-absorbing molecules in biological tissues are metal com-
plex chromophores, i.e., hemoglobin, bilirubin, and cyto-
chrome. The wavelengths of the NIR light used in commercial
devices are sensitive between 700 and 850 nm, where the
absorption spectra of deoxygenated hemoglobin (HHb) and
oxygenated hemoglobin (O,Hb) are maximally separated.
Optodes are placed on the skin over the regions where tissue
oxygenation will be measured.

NIRS detects relative changes in oxygenated and deoxy-
genated hemoglobin concentrations (uM min™ '), and provides
information regarding tissue oxygen saturation and thus, brain
activation in a specific region [26, 27]. NIRS has the ability to
detect rapidly occurring changes in cerebral oxygenation and
is relatively unaffected by motion. The results obtained with
this technology can be confounded by blood flow to the skin
of the area where the optodes are applied [28]. These results
can be corrected with the use of special software algorithms
[29¢]. There is a penetration limit for NIRS. For the brain, the
probing depth of NIRS is about 3 cm. In comparison with the
MRI techniques, the NIRS collects information about more
superficial parts of the brain. Moreover, NIRS collects infor-
mation only in the areas of the optodes; however, multiple
brain areas can be simultaneously assessed using a multichan-
nel functional NIRS (fNIRS). The major advantage of NIRS is
that with direct measurement of both oxygenated and deoxy-
genated hemoglobin, its signal provides a real-time evaluation
of brain activation/function during different stimuli [30].

Cerebral Perfusion and Blood Flow
in Normotensive Versus Hypertensive
Individuals at Rest

Cerebral blood flow at rest, assessed via ALS-MRI, has been

shown to be similar in newly diagnosed hypertensive and
normotensive individuals [31]. However, in the same study,
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Lee et al. found that cerebral capillary blood flow time was
prolonged in hypertensives, suggesting impaired microcircu-
lation [31]. To evaluate the number and morphology of large
and small brain vessels in humans with recently diagnosed,
untreated hypertension, Kang et al. used ultrahigh-field 7
Tesla brain MRI [32]. Their study found no differences be-
tween the large vessels of hypertensives and normotensives,
other than benign, expected anatomic variations. In terms of
small vessels, hypertensives had 25% fewer lenticulostriate
arteries. This difference could be either due to decreased num-
ber, decreased lumen size, or decreased flow in the brain ves-
sels of hypertensive individuals, resulting in a lower signal
intensity on the MRI scan [32, 33]. Pathology slides from
macroscopically healthy brains of hypertensive individuals
showed reduced number of capillary vessels (i.e., capillary
rarefaction), as well as decreased lumen size compared with
those of normotensives [34].

Established hypertension has been associated with decreased
CBF [35, 36]. A sub-analysis of the SMART-MR (Second
Manifestations of ARTerial disease-Magnetic Resonance) study
in 575 individuals with hypertension and clinical atherosclerotic
disease followed over 3—5 years showed that parenchymal cere-
bral blood flow (an indirect measure of brain tissue perfusion) and
total cerebral blood flow were inversely associated with systolic
blood pressure (BP) and diastolic BP levels [35]. Similar results
were obtained from a follow-up of the CARDIA (Coronary
Artery Risk Development in Young Adults) study in 517 individ-
uals, in which BP levels were correlated with reduced gray matter
blood flow. This was notable from systolic BP levels >
130 mmHg [36], highlighting the importance of treating patients
with systolic BP > 130 mmHg, in congruence with the most
recent guidelines for the treatment of hypertension by the
American College of Cardiology/American Heart Association
(ACC/AHA) [37°].

Interestingly, in the SMART-MR study, even well-controlled
hypertension was associated with a non-statistically significant
decrease in cerebral blood flow and perfusion. The groups with
untreated and poorly controlled hypertension had a significant
decline in parenchymal cerebral blood flow over 4 years of the
study. Within the hypertensive population, treatment with angio-
tensin II receptor blockers (ARBs) was protective against the
decrease in blood flow. This effect was not observed with other
antihypertensive medication classes including angiotensin-
converting enzyme inhibitors (ACE:i) [35].

These data suggest that the reduction in blood flow ob-
served in hypertension may stem from distinct underlying
neurohormonal profiles in addition to the mere difference in
blood pressure levels. More specifically, hypertension leads to
increased vasoconstriction of the small vessels by inducing
Acta 2 gene expression, and by reducing the expression of
calcitonin gene-related peptide receptors [38]. Additionally,
increased activation of the renin-angiotensin system promotes
cerebral vessel remodeling [39, 40]. Angiotensin II increases
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matrix metalloproteinase 9 (MMP9) expression in the brain
vessels through caveolin 1 expression [41]. Consequently, the
elastin content of the vessel wall decreases, resulting in stiffer
vessels [42]. The above changes combined with the decrease
in total capillary cross-sectional area, and the impaired
vasodilatory capacity, result in decreased cerebral blood flow.
The above dysfunctions can play a central role in brain health,
as cerebral blood vessels are responsible for the delivery of
oxygen and nutrients. Thus, vascular damage and reduced
blood to the brain can disrupt vital homeostatic mechanisms
and contribute to structural brain lesions (such as white matter
hyperintensities and cerebral infarcts), worsening of cogni-
tion, and development of dementia [35, 36].

Collectively, these findings suggest that in the early stages
of hypertension, cerebral perfusion is limited by small vessel
vasoconstriction and capillary rarefaction. Later in its course,
vascular remodeling increases cerebral vascular resistance,
resulting in decreased cerebral blood flow. Angiotensin II is
one of the main molecules implicated in these alterations;
blockage of this pathway could be protective.

Of note, other studies suggested that the hypertension—brain
link can be bidirectional in the sense that hypertension is not the
cause, but rather the result of brain dysfunction [43, 44]. In sup-
port of this concept, an MRI study in normotensive patients linked
exaggerated BP reactivity with altered brain activation patterns in
response to psychological stress [45]. More studies are needed to
clarify this concept in hypertensive individuals, as a better under-
standing of hypertension-related brain functional reorganization
could have important implications for the prevention of both car-
diovascular disease and cognitive impairment.

Current recommendations for individuals with hyperten-
sion emphasize the benefit of regular exercise training as an
efficient and complementary tool for BP management [46].
Recent studies also suggest that regular exercise training can
be an important tool to prevent and reduce cognitive damage
[47, 48, 49]. Yet, only a few studies have specifically exam-
ined the potential positive effects of exercise on the cerebro-
vascular system and cognitive function in hypertensive indi-
viduals. In addition, exercise may be a sensitive method for
the detection of early hemodynamic impairment in non-
treated hypertensive individuals. However, information re-
garding the effects of hypertension on cerebrovascular control
during exercise is very limited. The following sections aim to
describe the adaptations in cerebrovascular circulation and
oxygenation during exercise in healthy and in hypertensive
individuals.

Cerebral Blood Flow and Oxygenation
During Exercise in Normotensive Individuals

During exercise, as brain activity increases, oxygen consump-
tion by the neurons also increases and cerebral blood flow
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rises in order to meet the higher oxygen and substrate de-
mands [50]. Cerebral perfusion increases in the brain areas
orchestrating the motion to perform the particular exercise
and in areas responsible for the adaptation of vital functions
(e.g., blood pressure and respiration) [51, 52].

Interestingly, cerebral blood flow and oxygenation increase
even in anticipation of exercise. Using NIRS, Matsukawa
et al. [53] and Asahara et al. [54] found that oxygenation in
the prefrontal cortex increases prior to the onset of voluntary
exercise, possibly due to neuronal activation associated with
exercise planning [55]. Using H,'°O PET, Thornton et al. [56]
showed that even with the imagination of exercise, regional
CBEF increases in proportion to the imagined motor effort.
More specifically, increased CBF was found in the supple-
mentary motor area and the dorsolateral prefrontal cortex,
which are brain areas associated with motor planning and
executive function [57, 58].

During the actual exercise session, the acute responses/
adaptations in brain blood flow and oxygenation can vary
depending on the type/mode and intensity of the exercise bout
(maximal exercise test or submaximal steady state exercise).

Adaptations in Cerebral Oxygenation and Blood Flow During
Maximal Exercise Testing (Graded or Incremental Test to
Exhaustion) The CBF response to an incremental exercise test
to exhaustion (maximal test) has been described as biphasic
(Fig. 1a), with a progressive increase in CBF up to approxi-
mately 60-70% of maximal oxygen uptake (VO,max),
followed by a plateau or a reduction in CBF [24, 59—68]. In
more detail, during a maximal incremental exercise test, CBF
has been shown to increase progressively by ~20-30% above
resting levels [50, 69], and then to plateau at around 60—70%
of peak work rate [68, 70]. During heavy/exhaustive exercise,
CBF decreases towards baseline values despite further in-
creases in exercise intensity and the high cerebral metabolic
demand [50, 69]. Cerebral oxygenation, as assessed by the
NIRS oxygenated hemoglobin, has also been reported to dis-
play a relatively similar response: It increases during low and
moderate exercise intensities and then, at high-intensity exer-
cise (above the anaerobic ventilatory threshold), a breakpoint
occurs and a decline in oxygenated hemoglobin is initiated
[71-73]. On the other hand, deoxygenated hemoglobin re-
mains stable during low/moderate-intensity exercise, but then
shows a rapid increase from high (> 60% VO,max) to
maximal-intensity exercise [50, 69, 73]. This adaptation sug-
gests that when CBF reaches its upper limit, oxygen extraction
from hemoglobin increases to meet the brain’s metabolic de-
mands [50, 69]. The disproportionate increase in deoxygenat-
ed hemoglobin at this point also likely reflects increased brain
activation and metabolism at exhaustion [50]. Additionally,
the increase in deoxygenated hemoglobin can be a compensa-
tion to overcome the reduced oxygen supply due to vasocon-
striction induced by hyperventilation [13]. Cerebral cortex

activation can be maintained up to the respiratory compensa-
tion point, after which it decreases [74]. The significant de-
cline in cerebral oxygenation observed during heavy exercise
may influence central fatigue and result in termination of ex-
ercise [13].

Acute Adaptations of Brain Oxygenation and Flow During
Constant Load, Low/Moderate-Intensity Exercise At the onset
of steady state exercise, middle cerebral artery blood flow
velocity increases exponentially (to ~15% above resting
values) [75]; total cerebral blood flow also increases (to ~
20-28% above resting values) [51]. Thereafter, the magnitude
of the increase and the CBF and oxygenation responses to
constant load exercise depend on the type (dynamic/aerobic,
resistance, isometric) and intensity of exercise [76, 77]. More
specifically, Tsubaki et al. [77] reported that during low-
intensity dynamic exercise (20 min at 30% VO,max), oxygen-
ated hemoglobin (as assessed by NIRS) was not constant,
despite participants (healthy volunteers) performing constant
load exercise. That is, oxygenated hemoglobin increased over
the first 6 min of exercise, then plateaued for 10 min, and then
slowly declined (during the last 4 min of exercise). However,
Takehara et al. [78] reported that during a cycle-ergometer
exercise bout at 30% and 50% of VO,peak, oxygenated he-
moglobin showed a transient decrease at exercise onset, after
which it was significantly increased from the mid- to final
exercise phase (in both intensities examined) compared with
resting values. The authors reported that the duration of the
initial transient decrease in oxygenated hemoglobin in the
beginning of exercise varied according to the brain region
examined [78]. This idea was further examined by Ishii et al.
[76] using multichannel NIRS. The authors assessed the oxy-
genation responses in different brain areas during exercise
(one-armed cranking), at 30% and 60% of the maximal effort.
At the beginning of both voluntary cranking tasks, the oxy-
genation increased only in some parts of the prefrontal and
sensorimotor cortices. Then, during the higher intensity exer-
cise (cranking at 60% of maximal effort), the oxygenation
increased gradually in all cortical arecas examined, whereas,
during the lower intensity (at 30% of maximal effort), oxy-
genation increased only in the frontoparietal area and some of
the frontal areas. Interestingly, passive (motor-driven) exer-
cise of one or two limbs caused a reduction in the oxygenation
of most cortical areas [76, 79]. During resistance exercise
(submaximal continuous or intermittent handgrip) in normo-
tensive individuals, oxygenated hemoglobin (measured by
NIRS) in the prefrontal cortex progressively increased and
plateaued towards the termination of exercise, despite the con-
stant load of exercise [80, 81]. Therefore, differences in the
intensity and duration of exercise used [82], the type of exer-
cise (higher responses during high-intensity sprint versus
steady state) [83], and the body position [84, 85] during exer-
cise and the area of interest examined [ 78] possibly explain the
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a

Fig. 1 Typical response of cerebral blood flow (CBF) during a maximal
test (incremental test to exhaustion) in a normotensive individual (a) and
in an individual with low cardiorespiratory fitness (b). a A typical
response in cerebral blood flow (CBF) in a healthy normotensive
individual. CBF increases even in anticipation of exercise. During an
incremental exercise test to exhaustion, cerebral blood flow (as well as
oxygenation) increases, up to approximately 60-70% of peak work load;

differences in reported results regarding brain oxygenation/
flow during exercise.

Cardiorespiratory fitness levels, aging, and disease can also
alter resting and exercise CBF and oxygenation [86, 87]. In
sedentary older men, aerobic exercise training increased CBF
in the frontal lobes (by 27%, as assessed by ASL-MRI) [88].
The acute increases in cerebral blood flow and oxygenation
during an exercise bout have been suggested to augment the
release of various markers of brain plasticity and possibly
promote improvements in cognitive domains (i.e., executive
function and processing speed) and brain structures [89-91].
In fact, in older adults with higher cardiorespiratory fitness
levels, greater cerebral oxygenation was related to better ex-
ecutive functioning [87]. Furthermore, among older adults,
changes in fitness were associated with changes in hippocam-
pal microstructure and hippocampal volume [91, 92]. Besides
the changes in cerebral perfusion, mechanisms that have been
reported to underlie the exercise training-induced beneficial
effects on executive function include favorable changes in
brain volume and connectivity, synaptic plasticity, and
neurogenesis. The latter occurs via release of neurotrophins,
such as vascular endothelial growth factor (VEGF) and brain-
derived neurotrophic factor (BDNF) [90]. In addition, im-
provements in glucose metabolism as a result of exercise train-
ing can assist in better CBF and improved executive function
[88]. In contrast, in older individuals [67] and patients suffer-
ing from diseases such as type 2 diabetes [93] or heart failure
[94], lower cerebral perfusion and oxygenation (versus
healthy controls) in response to acute dynamic exercise have
been described (Fig. 1b), which might induce brain-regulated
limitations to exercise tolerance.

In summary, blood flow, oxygenation, and cortical activation
in specific brain regions are influenced by the characteristics

@ Springer

3 Anaerobic 3 A i
3 3 naerobic
o start Ventilatory Enc{ e Start Ventilatory Enq
3 Exercise Threshold Exercise B Exercise Exercise
8 resho o Threshold
o H [ee) !
© ©
el o
o o
@ 5+
(o] O
© < +
Q e
o 9
(V] O +
£ c
) %1
c C
sl /™~ 2
O . .
2\2' Low Moderate High Maximal L Low Moderate High Maximal

Exercise intensity

b

but then at higher intensities, beyond the anaerobic threshold, CBF
plateaus and during maximal exercise, it may even decline. b In
individuals with low cardiorespiratory fitness levels, the appearance of
the anaerobic threshold occurs at a lower percentage of VO,max (< 65%).
In addition, in individuals with cardiovascular disease, there is a blunted
response in cerebral blood flow and oxygenation during exercise versus
healthy controls

(intensity, type, and mode) of the exercise bout. During incremen-
tal exercise testing (maximal test), CBF progressively increases to
a plateau at high exercise intensity, and then declines towards
exhaustion. Cerebral oxygenation also increases (up to approxi-
mately 60—70% of peak work load), but then at higher intensities
(beyond the anaerobic ventilatory threshold), it decreases. At max-
imal exercise intensity, concurrently with the decrease in CBF,
oxygen extraction by the brain increases in an effort to maintain
homeostasis. Higher cardiorespiratory fitness can enhance CBF at
rest and during exercise, and might therefore contribute to brain
health and decelerate cerebral decrease.

Alterations in Cerebral Blood Flow
During Exercise in Hypertensive Individuals

Alterations in the macro- and microcirculation are observed
with hypertension, which can result in changes in tissue per-
fusion and oxygenation during exercise. For example, de-
creased oxygen supply and utilization by skeletal muscle were
correlated with higher central-aortic systolic BP and indices of
arterial stiffness [95]. Additionally, BP of individuals with
untreated hypertension rises to significantly higher levels dur-
ing exercise than those of normotensive individuals [96¢¢].
To study the effect of hypertension on cerebral blood flow,
Magyar et al. [96°¢] compared TCD measured changes in
blood velocity in middle cerebral artery (MCAv) and BP dur-
ing an incremental test (up to 85% HRmax) on a cycle ergom-
eter in non-treated, neurologically symptom-free hypertensive
and normotensive individuals. Most individuals continued the
test for more than 6 min, and data are reported up to the 6-min
mark. At rest, MCAv did not differ significantly between
groups. However, during exercise, MCAv continuously
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increased in normotensives until the end of the incremental
test, whereas it plateaued after 2 min in hypertensives.
Overall, CBF increased by 20% in the hypertensive group.
This is a smaller increase to that observed in normotensives
of the study (34%) [96°°]. Interestingly, end-tidal CO, levels
did not differ significantly between the two groups despite the
difference in MCAwv. This could imply that MCA of patients
with untreated hypertension has a blunted response to the
vasodilating CO,, and thus a lower decrease in cerebrovascu-
lar resistance during exercise. Alternatively, the augmented
sympathetic tone owing to hypersensitivity to the exercise
pressor reflex in hypertensive patients results in increased ce-
rebral vessel tone, and hence a smaller vessel diameter.
Therefore, even if the vessel responsiveness to CO, is the
same between hypertensive and normotensive individuals,
that difference in their diameter could explain the decreased
cerebral blood flow during exercise despite similar CO, levels
[96¢°].

Data from a study in mice with angiotensin II-induced hy-
pertension support this theory [97]. MCA of hypertensive
mice reacted to acutely increased intraluminal pressure (mim-
icking exercise conditions) with increased vasoconstriction
compared with the normotensive control group. This was me-
diated by increased 20-hydroxy-5,8,11,14-eicosatetraenoic
acid (20-HETE) concentration. 20-HETE is produced by the
action of cytochrome P450 4A omega-hydroxylases, and
through activation of the transient receptor potential cation
channel subfamily C (TRPC), it causes an increase in intracel-
lular Ca** resulting in vasoconstriction. The end result was a
20% decrease in CBF at systolic BP levels > 160 mmHg [97].

Regarding the decreased vascular reactivity seen in hyper-
tensive patients, results of human studies showed that it is
improved after L-arginine infusion. L-arginine is the substrate
for endothelial NO synthase, activation of which increases NO
production [98]. Therefore, the reduced NO concentration
seen in hypertensive individuals [99] could explain the
blunted cerebral vasoreactivity of that patient population.
Additionally, higher levels of soluble vascular adhesion mol-
ecule (sVCAM) seen in uncontrolled hypertension were asso-
ciated with reduced MCALv at rest, as well as with diminished
cerebral vasodilation in response to CO, [100¢]. The postulat-
ed mechanism is that adhesion molecules attract lymphocytes,
which impair endothelial function either by reducing
endothelial-dependent vasodilation, or by increasing protein
and fluid leak from the capillary vessels [101]. Moving for-
ward, further studies should evaluate whether MCAv mea-
surement during exercise could be a marker of the functional
integrity of cerebral circulation in hypertension, and whether it
could yield any prognostic data on the risk of those individuals
for stroke. Finally, it is likely that the decreased number of
small cerebral vessels [32] and the intracranial atherosclerosis
and narrowing of large vessels [102] provide a smaller reserve
for blood flow increase.

In summary, data from the small number of studies that
examined this topic suggest that cerebral blood flow during
exercise increases to a lesser extent in hypertensive patients.
This possibly happens due to both anatomic and functional
changes (Table 2). However, further studies are required to
fully elucidate alterations in cerebral oxygenation and circu-
lation during exercise in hypertensive individuals. In addition,
the optimal doses or mode of exercise to improve brain oxy-
genation and maximize cognitive benefits in individuals with
hypertension are not clear; thus, interventional training studies
in individuals with hypertension are needed.

Conclusions and Recommendations
for Further Research

Recent technological advances have enabled the assessment
of cerebral perfusion both at rest and during exercise. Cerebral
oxygenation and blood flow change with exercise. The exact
adaptations depend on the intensity and duration of exercise,
among other factors. During dynamic exercise in healthy in-
dividuals, brain blood flow increases to a peak observed at
60—70% of maximal intensity. There it plateaus or even de-
clines at maximal intensity. Hypertension alters the response
of cerebral blood flow to exercise. The increased concentra-
tion of circulating vasoconstrictor molecules, a hypersensitiv-
ity of the exercise pressor reflex, as well as the stenosis and
reduced number of vessels supplying the brain, limit the
body’s capacity to increase cerebral blood flow, despite a
marked increase in BP levels. Future studies should assess if
impairments of cerebral blood flow are associated with other
target organ damage in the hypertensive population. More
importantly, their role as heralds of adverse neurologic out-
comes, such as dementia and stroke, should be explored. The
need for biomarkers and diagnostic testing for the earlier iden-
tification of those at high risk for stroke cannot be

Table 2 Hypertension-
induced changes that
could limit cerebral
blood flow increase
during exercise

Decreased serum concentration of nitric
oxide

Increased
20-hydroxy-5,8,11,14-eicosatetraenoic
acid concentration

Reduced endothelial-dependent
vasodilatation

Loss of capillary integrity

Decreased number of small vessels
Atherosclerosis of large brain vessels
Increased sympathetic tone

Decreased vessel response to the
vasodilatory carbon dioxide (decreased
cerebrovascular reactivity to
hypercapnia)
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overemphasized, as timely blood pressure control could lead
to significant reductions in stroke and dementia-related mor-
bidity and mortality.
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