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Abstract
Purpose of Review Mechanisms facilitating progression of hypertension via cross stimulation of the renin-angiotensin system
(RAS) and inflammation have been proposed. Accordingly, we review and update evidence for regulation of RAS components
by pro-inflammatory factors.
Recent Findings Angiotensin II (Ang II), which is produced by RAS, induces vasoconstriction and consequent blood pressure
elevation. In addition to this direct action, chronically elevated Ang II stimulates several pathophysiological mechanisms
including generation of oxidative stress, stimulation of the nervous system, alterations in renal hemodynamics, and activation
of the immune system. In particular, an activated immune system has been shown to contribute to the development of hyper-
tension. Recent studies have demonstrated that immune cell-derived pro-inflammatory cytokines regulate RAS components,
further accelerating systemic and local Ang II formation. Specifically, regulation of angiotensinogen (AGT) production by pro-
inflammatory cytokines in the liver and kidney is proposed as a key mechanism underlying the progression of Ang II-dependent
hypertension.
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Introduction

In its classic form, the renin-angiotensin system (RAS)
consists of an enzymatic cascade beginning with liver-
mediated production of angiotensinogen (AGT), the pre-
cursor of angiotensin (Ang) peptides. Ang II, the main
effector of this system, results from successive enzymatic
actions of renin and angiotensin-converting enzyme
(ACE), and exerts most of its actions through activation
of Ang II type 1 and type 2 receptors (AT1R and AT2R,
respectively). In general, AT1R mediates the pathogenic
actions of Ang II, whereas, activated AT2R elicits protec-
tive effects. In the last few decades, novel components of
RAS including (pro)renin receptor, ACE2, other Ang

peptides, and their receptors have been discovered [1].
Peptide hormones produced by RAS play crucial roles in
controlling blood pressure and regulating electrolyte and
body fluid homeostasis [2]. While originally described as
a potent vasoconstrictor, accumulating evidence now indi-
cates that both Ang II and RAS are key drivers of multiple
physiological alterations and various disease pathologies.
Of the wide-ranging actions of RAS, its role in immune-
promoting hypertension development has come into focus
[3–5]. Ang II induces differentiation of immune cells and
augmentation of pro-inflammatory cytokine production,
both contributing to elevated blood pressure and sustained
hypertensive conditions. Pathological significance and
mechanisms of Ang II-mediated immune activation lead-
ing to progression of inflammation and hypertension have
been relatively well delineated. Moreover, there is an in-
creasing evidence that pro-inflammatory factors enhance
expression of RAS components. These findings suggest
the immune system as a driver of RAS activation, thus
amplifying systemic and local Ang II generation. In this
brief review, the cross regulation between RAS and im-
mune system and molecular mechanisms underlying regu-
lation of RAS components by cytokines are summarized.
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Immune System and Hypertension

Recent reports have described intimate links between in-
flammation and the regulation of hypertension in both
humans and experimental animal models [6, 7]. In organ
transplant recipients, treatment with immunosuppressive
drugs such as sirolimus and cyclosporine to prevent
graft-versus-host disease exhibited pro-hypertensive ef-
fects [8, 9]. In contrast, administration of immunosuppres-
sive drugs to rodent models mitigated the development of
hypertension in both lead induced and spontaneous hyper-
tensive rats [10, 11]. Noteworthy findings demonstrate
that elevated blood pressure induced by Ang II infusion
and desoxycorticosterone acetate-salt are attenuated in
RAG-1-deficient mice which do not produce mature B
and T lymphocytes [12]. Additionally, Ang II infusion
caused hypertension when RAG-1-deficient mice received
adoptive transfer of T cells, further supporting a critical
role for the adaptive immune system in driving hyperten-
sion. Furthermore, an elevated expression of CD70 in
macrophages and dendritic cells coupled with exhaustion
of effector memory T cells producing interleukin (IL)-17A
and interferon γ (IFN- γ) were essential mechanisms to
sustain high blood pressure in hypertension [13••].
Collectively, these studies incriminate adaptive immunity
as a critical player in the development of hypertension.
Likewise, roles of the innate immune system in the devel-
opment of hypertension have been suggested [14].
Elevation of blood pressure by Ang II infusion was
blunted in macrophage colony-stimulating factor null
mice which do not produce mature macrophages [15] as
well as in lysozyme M-positive monocyte-depleted mice
[16]. Moreover, mineralocorticoid receptors are involved
in regulation of monocyte/macrophages function, and
gene dele t ion of these receptors in monocyte /
macrophages prevented deoxycorticosterone-induced high
blood pressure [17]. On the other hand, it has been report-
ed that an anti-hypertensive role for macrophages has
been demonstrated in skin through normalization of sodi-
um concentrations and elevation of vascular endothelial
growth factor-C expression [18]. Accordingly, while mac-
rophages can be involved in anti-hypertensive mecha-
nisms, the innate immune system including macrophages,
in aggregate, contributes to the development of hyperten-
sion directly or through communication with cells of the
adaptive immune system [19••].

Regulation of Immune Activity and Cytokine
Production by Ang II

Immune cells including T lymphocytes, dendritic cells,
and macrophages express AT1R [4]. A study using

AT1R knockout mice demonstrated Ang II involvement
in splenocyte proliferation [4]. In addition, Ang II in-
creased the number of inflammatory monocytes by facil-
itating differentiation of hematopoietic stem cells [20].
Ang II directly stimulates adhesion molecules including
intercellular adhesion molecule 1 and vascular cell adhe-
sion molecule 1, and P-selectin which promote accumu-
lation of immune cells in local tissues during progression
of many diseases [5, 21]. It has been shown that Ang II
induces increased leukocyte rolling flux, adhesion, and
migration via augmentation of P-selectin without any va-
soconstrictor action [22]. These findings indicate that
chronically elevated Ang II promotes activation of the
immune system and development of hypertension and
inflammation. However, Ang II bound to AT1R induces
M2 macrophage polar i za t ion , which has an t i -
inflammatory effects and protective actions in RAS-
associated diseases [23–25]. Accordingly, the Ang II-
immune axis may exert pathogenetic actions in early
stage Ang II-dependent hypertension, triggering not only
the development of hypertension but also associated end
organ damages.

Animal studies have revealed that inappropriately ele-
vated Ang II alters systemic and local levels of pro- and
anti-inflammatory cytokines. Ang II infusion enhances
plasma cytokine levels such as IL-6, IFN-γ, tumor necro-
sis factor α (TNF-α), and IL-1β [26]. Among plasma and
aortic cytokines, IL-6 levels show the greatest increase
following Ang II infusion, and plasma IFN-γ levels are
substantially elevated as well [26, 27]. During the devel-
opment of Ang II-dependent hypertension, immune cell
infiltration into various tissues including the aorta, heart,
brain, and kidneys is enhanced [28–30] leading to elevat-
ed local pro-inflammatory cytokine levels [28, 29, 31].
Results obtained from in vitro settings using cultured im-
mune cells support these findings. For example, treat-
ments of dendritic cells with Ang II resulted in augmen-
tation of IL-6 and IFN-γ production [32]. Moreover, iso-
lated peripheral blood T lymphocytes from Ang II-infused
mice exhibited greater TNF-α and IFN-γ production than
cells isolated from control mice [12]. Likewise, expres-
sion levels of TNF-α, IL-1β, and IL-6 in cultured macro-
phages were increased by Ang II [33, 34, 35••]. Evidently,
Ang II promotes multi-hit activation of the immune sys-
tem, stimulating not only immune cell proliferation, adhe-
sion, and migration/infiltration but also production of cy-
tokines ultimately facilitating Ang II-dependent hyperten-
sion. In contrast, Ang (1–7), ACE2, and MAS receptor,
which have been regarded as anti-pathogenic RAS com-
ponents [36], have been proposed to counteract with Ang
II-induced activation of immune cells [37]. These findings
suggest intimate but complicated regulation of immune
system by RAS.
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Regulation of RAS Components by Cytokines

Because of the crucial roles that inflammation and the immune
system play in the development of hypertension as described
above, current research has focused on elucidating immune-
mediated mechanisms underlying elevation of blood pressure.
In a recent report, elevation of blood pressure and downregu-
lation of sodium excretion rates by Ang II infusion were di-
minished, accompanied by abnormal regulation of renal trans-
porter levels in both IL-17A- and IFN-γ-deficient mice [38].
This alteration in renal physiological function by elevated cy-
tokines can be regarded as one of the immune-promoted
mechanisms underlying elevated blood pressure. As AGT
and renin are expressed in multiple tissues [39, 40], local
RAS, which functions in individual organs in a tissue-
specific manner, is increasingly being recognized as an inde-
pendent entity from systemic RAS [39, 41, 42]. Since
intrarenal Ang II is elevated in many forms of hypertension,
renal RAS is acknowledged as a key target for clinical and
biochemical studies. Importantly, administration of an immu-
nosuppressive drug suppressed intrarenal Ang II elevation and
mitigated the development of hypertension and renal injury
[10], providing firm evidence that an activated immune sys-
tem can regulate RAS activity (Fig. 1). We summarize the
regulation of each RAS component by various cytokines in
the following sections.

AGT

As aforementioned, plasma and local cytokine levels includ-
ing TNF-α, IL-1β, IL-6, and IFN-γ are elevated in Ang II-
dependent hypertension. Regulation of AGT expression by
these cytokines has been shown in multiple organs (Table 1).
Hepatic AGT is the major source of circulating AGT protein.
Because plasma AGT concentration is close to Km for its
reaction with renin, AGT regulation in the liver together with
plasma renin activity can dictate levels of circulating Ang II
formation [43, 44]. Augmentation of AGTexpression by IL-6
via signal transducer and activator of transcription 3 (STAT3)
activation was shown in hepatocytes [45–47]. Thus, it is
thought that this mechanism participates in amplification of
circulating Ang II formation and the progression of athero-
sclerosis and vascular inflammation in Ang II-dependent hy-
pertension [48]. Further molecular and biological characteri-
zation of AGT identified an acute phase-response element
(APRE) in the rodent AGT-promoter region [49] in addition
to three STATs binding sites within three APREs in the human
AGT-promoter region [45, 50, 51]. In kidneys of Ang II-
infused animals and human renin/human AGT double-
transgenic mice, an elevated intrarenal AGT expression was
observed [52–54] suggesting an intrarenal Ang II/AGT-
amplifying mechanism in Ang II-dependent hypertension. In
cultured renal proximal tubular cells (PTC), which predomi-
nantly express AGT in the kidney, Ang II alone increased
AGT expression [55]. However, other studies failed to show
augmentation of AGT expression in Ang II-treated PTCs [35,
56]. Thus, Ang II may be able to increase AGT expression in
PCT under special conditions. In human PTC, Ang II stimu-
lated AGT expression only in the presence of IL-6 [56] sug-
gesting that Ang II-induced AGT upregulation in PTC re-
quires co-factors or mediators such as pro-inflammatory cyto-
kines. In an animal model of renal inflammation, elevated
expression of intrarenal AGTwas observed compared to con-
trol mice and treatment with an AT1R inhibitor resulted in
suppressed AGTexpression suggesting pro-inflammatory fac-
tors as mediators of Ang II-induced intrarenal AGT

Fig. 1 Proposed mechanism underlying systemic and local RAS
activation elicited by a stimulated immune system during the
development of hypertension. Ang II: angiotensin II and RAS: the
renin-angiotensin system. Elevated Ang II in Ang II-dependent
hypertension stimulates immune-mediated development of hypertension
and associated tissue injury. Furthermore, Ang II enhances production of
pro- and anti-inflammatory cytokines in immune cells, which up-
regulates expression of RAS components and Ang II formation

Table 1 Regulation of AGT expression by cytokines

Cytokine Local AGT regulation References (#)

IL-6 ↑ Hepatic AGT 43, 44, 45

↑ Renal proximal tubular AGT 35, 53

IFN-γ ↑ Hepatic AGT 49

↑ Renal proximal tubular AGT 57

TNF-α ↓ Cardiac AGT 61

↓ Adipose tissue AGT 62

↓ Renal proximal tubular AGT 65

AGT angiotensinogen, IL-6 interleukin 6, IFN-γ interferon γ, TNF-α
tumor necrosis factor α
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augmentation [57]. A sequential macrophage and PTC culture
system demonstrated that IL-6 production was elevated in
Ang II-treated macrophages, and that exposing PTC to culture
medium of Ang II-treated macrophages resulted in augmenta-
tion of proximal tubular AGT expression which was attenuat-
ed by an IL-6 neutralizing antibody [35]. Taken together, these
findings indicate elevated immune cell-derived IL-6 as a me-
diator of AGT augmentation via activation of STAT3, subse-
quently leading to further circulating and intrarenal Ang II
formation in hypertension. These findings explain how Ang
II-induced high blood pressure and the progression of kidney
injury are prevented in IL-6 gene-deleted mice [58] and mice
receiving STAT inhibitor treatment [59]. Interestingly, stimu-
latory effects of Ang II infusion on intrarenal AGTexpression
was observed in mice receiving a low dose of Ang II infusion
(400 ng/kg/min), but not a high dose (1000 ng/kg/min) [53].
These differences may be due to induction of anti-
inflammatory M2 macrophage polarization by high-dose
Ang II, thus, limiting IL-6-induced intrarenal AGT augmen-
tation. This supports the notion that activation of the Ang II-
immune system-RAS cascade plays pathogenic roles in early
stage Ang II-dependent hypertension.

IFN-γ is also a regulator of the Janus kinase (JAK)-STAT
pathway and AGT expression. In hepatocytes, AGT expres-
sion was augmented by IFN-γ via activation of STAT1 but not
STAT3 [51]. In renal PTC, IFN-γ exhibits biphasic effects on
AGT regulation [60]. IFN-γ decreased AGT expression in
early phase of treatment (6–12 h), with strong STAT1 activation
and STAT3 suppression in PTC. In contrast, longer exposure
(24 or 48 h) increased AGTexpression accompanied by limited
suppressor of cytokine signaling 1 (SOCS1, an endogenous
suppressor of the JAK-STAT pathway) elevation and increased
STAT3 activity. The switch between STAT1/STAT3 and bi-
phasic regulation of AGT were caused by elevated SOCS1.
These observations suggest that STAT1 and STAT3 have
counteracting mechanisms in proximal tubular AGT regula-
tion, and IFN-γ ultimately augments AGT expression in PTC.

Global gene deletion of TNF-α and administration of
TNF-α neutralizing antibody attenuated the progression of
Ang II-induced hypertension [61–63] suggesting that TNF-α
is a key factor in the development of Ang II-dependent hyper-
tension. In contrast to the pro-hypertensive actions of TNF-α,
this cytokine has also shown suppressive effects on AGT ex-
pression in many tissues. Overexpression of TNF-α by genet-
ic modification decreased AGT levels in the heart [64].
Moreover, TNF-α suppressed AGT expression in human ad-
ipocytes [65] which is an important source of circulating AGT.
In renal PTC, TNF-α induced excessive formation of p50/p50
homodimer, a transcriptional repressor of NF-κB [66, 67]
leading to the downregulation of AGT expression [68].
Accordingly, TNF-α is unlikely to participate in AGT ampli-
fication mechanisms in Ang II-dependent hypertension al-
though it clearly contributes to the development of

hypertension and associated tissue injury. In studies using
TNF-α knockout mice [61–63], in which a high dose of
Ang II (1000 ng/kg/min) was infused into the mice, intrarenal
AGT was not stimulated [53]. Thus, a lower dose of Ang II
infusion will be required to test effects of TNF-α on AGT
regulation at least in kidneys in future studies.

Prorenin and Renin

In adults, prorenin/renin ((pro)renin) expression and secretion
by juxtaglomerular apparatus (JGA) cells is the primary reg-
ulating mechanism determining circulating (pro)renin concen-
tration. It has been shown that inflammatory signaling plays
an important role in regulation of (pro)renin expression and
activity. For example, IL-6 treatments decreased (pro)renin
expression in As4.1 cells, an immortalized JGA-like cell line
[69]. In this same cell line, IL-1β attenuated (pro)renin ex-
pression mediated via the p44/42 MAPK-STAT3 pathway
[70]. Furthermore, oncostatin M, an endotoxin-responsive
pro-inflammatory cytokine, was shown to inhibit (pro)renin
expression via activation of STAT5 inAs4.1 cells [71]. TNF-α
is also known to downregulate (pro)renin expression in JGA
cells via activated NF-κB targeting of a cAMP responsive
element in the renin gene promoter [72, 73]. Therefore, acti-
vated inflammatory signaling and elevated pro-inflammatory
cytokines in Ang II-dependent hypertension may serve as re-
pressors of (pro)renin expression in JGA cells. Furthermore,
because TNF-α suppresses both (pro)renin and AGT produc-
tion, the rate-limiting reaction in RAS, TNF-α may exert pro-
hypertensive actions in a RAS activation-independent manner
through stimulation of pathophysiological factors including
oxidative stress [63] in late stage hypertension [74] or in mas-
sive hypertension. In addition to JGA (pro)renin, studies have
demonstrated important roles of (pro)renin production in renal
connecting tubules and collecting ducts [2]. While chronic
Ang II infusion suppresses (pro)renin expression and secre-
tion in JGA cells [75], expression levels of collecting duct
(pro)renin are increased [76], indicating that JGA (pro)renin
and collecting duct (pro)renin are regulated by different mech-
anisms in hypertension. The importance of collecting duct
(pro)renin activation in progression of hypertension has also
been shown through gene deletion of (pro)renin receptor in
collecting ducts which prevented Ang II-induced hyperten-
sion [77]. However, effects of pro-inflammatory cytokines
on regulation of collecting duct (pro)renin in hypertension
have not been established, warranting further investigation.

ACE

Information regarding regulation of ACE and ACE2, anti-
hypertensive enzymes in RAS, by inflammatory factors is
scarce. In an adjuvant-induced arthritis model, ACE levels in
the heart and aorta were increased [78, 79] and expression
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levels of ACE2 were decreased in the heart [78], suggesting
that pro-inflammatory conditions can induce local ACE/
ACE2 imbalances and lead to accelerated RAS-associated tis-
sue injury. Although TNF-α downregulates both JGA
(pro)renin and AGT production, TNF-α stimulates local
ACE expression. ACE expression levels and activity were
enhanced in heart tissue of TNF-α transgenic mice [80] as
well as in subfornical organ and paraventricular nucleus re-
gions of TNF-α-injected brain tissue [81]. In addition to
TNF-α-mediated transcriptional activity, the presence of
NF-κB-binding sites [82] in human somatic and germline
ACE promoter regions potentiates gene expression by other
NF-κB-activating factors including IL-1β, IL-17A, and Ang
II.

AT1R and AT2R

Roles of inflammatory factors on regulation of Ang II recep-
tors by inflammatory factors in Ang II-dependent hyperten-
sion require special attention to the following issues. First,
regulation of Ang II receptors in Ang II-dependent hyperten-
sion varies in tissue type- and cell type-specific manners [83].
Namely, these receptors exhibit both upregulation [84–86]
and downregulation [87, 88] in disease conditions. Second,
since commercially available anti-AT1R antibodies have low
specificity [89], some previous conclusions regarding changes
in AT1R protein levels might have to be re-evaluated.
Additionally, rodents express two isoforms of AT1R gene,
AT1a and AT1b, but humans do not have these isoforms.
These mRNA isoforms are differentially regulated in hyper-
tension [90], making evaluation of AT1R mRNA expression
complicated in studies using rodent models or cells isolated
from rodents. Furthermore, aging changes basal expression
levels of AT1R and AT2R leading to altered Ang II-pressor
responses [91]. This indicates diverse regulation of Ang II
receptor expression by inflammatory factors among different
age groups in experimental models. Greater expression of
AT1R was shown in the aorta of an adjuvant-induced arthritis
model, exacerbating hypertension, endothelial dysfunction,
and vascular hypertrophy induced by Ang II infusion [79].
In human umbilical vein endothelial cells and vascular smooth
muscle cells, treatment with serum obtained from patients
with pregnancy-induced hypertension increased AT1R ex-
pression [92]. Administration of a TNF-α neutralizing anti-
body increased AT2R levels and attenuated the augmentation
of AT1R levels [92]. These findings suggest that active in-
flammation can increase aortic AT1R levels and facilitate
pathogenesis of Ang II in hypertension. In contrast, Ang II
infusion suppressed AT1R in aorta, which was mediated by
IL-6 [88]. Likewise, direct treatments with a cytokine cocktail
containing TNF-α, IL-1β, and IFN-γ downregulated AT1R
expression in vascular smooth muscle cells isolated from the
aorta [93]. Thus, further studies will be required to delineate

regulation of Ang II receptors in the aorta by an activated
immune system. AT1R levels in skeletal muscle were reduced
in Ang II-dependent hypertension [87]. In the brain, Ang II
infusion increased AT1R expression in subfornical organ and
paraventricular nucleus regions of the hypothalamus [94].
Since upregulation of AT1R expression was also observed in
these brain regions of TNF-α-injected rats [81], elevated
TNF-α may be involved in Ang II-induced cerebral AT1R
augmentation. IL-1 treatment induced elevation of both
AT1R and AT2R expression in chondrocytes isolated from
articular cartilage of patients with rheumatoid arthritis and
osteoarthritis [95], suggesting IL-1 can facilitate both patho-
genic and protective actions in chondrocytes under inflamma-
tory conditions. In kidneys, high Ang II levels induced by a
low-salt diet decreased glomerular AT1R expression but in-
creased tubular AT1R levels [86]. However, elevated glomer-
ular AT1R levels in a glomerular nephritis model were report-
ed [57]. Furthermore, in cultured renal PTC, neither Ang II
nor IL-6 changed AT1R expression levels [56]. Therefore,
pathological and protective mechanisms including inflamma-
tory factors may be complexly intertwined in regulation of
intrarenal Ang II receptor levels during the development of
hypertension.

Conclusion

Inflammation has recently emerged as an important mecha-
nism in progression of Ang II-dependent hypertension. In the
process, inflammatory factors produced by the immune sys-
tem and RAS intimately interplay and synergistically promote
elevation of blood pressure and the development of RAS-
associated tissue injury. Immune activation by elevated Ang
II and roles of the activated immune system in hypertension
have been relatively well described. Regulation of RAS com-
ponents by elevated pro-inflammatory factors has been recent-
ly highlighted as inflammation-induced RAS activation pro-
vides a link between activated immune components and blood
pressure elevation. Findings gleaned from these studies indi-
cate that inflammatory factors regulate each RAS component
through cytokine- and/or tissue-specific manners, which may
ultimately induce further production of systemic or local Ang
II in Ang II-dependent hypertension. Further studies to eluci-
date more detailed mechanisms underlying RAS regulation by
inflammation and to disclose pathophysiological significance
of the inflammation-RAS axis will contribute to the develop-
ment of novel strategies to prevent and treat hypertension and
RAS-associated tissue injury.
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