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Abstract
Purpose of the Review Low-grade systemic inflammation increases residual cardiovascular risk. The pathogenesis of low-grade
systemic inflammation is not well understood.
Recent Findings Visceral adipose tissue accumulates when the subcutaneous adipose tissue can no longer store excess nutrients.
Visceral adipose tissue inflammation initially facilitates storage of nutrients but with time become maladaptive and responsible
for low-grade systemic inflammation. Control of low-grade systemic inflammation requires reversal of visceral adipose tissue
accumulation with intense and sustained aerobic exercise or bariatric surgery. Alternatively, pharmacologic inhibition of the
inflammatory signaling pathway may be considered.
Summary Reversal visceral adipose tissue accumulation lowers residual cardiovascular risk.
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Introduction

Patients with cardiovascular disease (CVD) remain at risk for
subsequent CVD events despite intensive secondary preven-
tion therapy [1]. Low-grade systemic inflammation enhances
the residual CVD risk of patients who are receiving such

therapy [2]. In the current obesity epidemic, accumulation of
adipose tissue (AT), particularly visceral adipose tissue (VAT),
is a common cause of low-grade systemic inflammation [3••].
Obese middle-aged individuals without hypertension (HTN),
hyperlipidemia (HLD), and diabetes are at a much greater risk
of CVD events than their lean counterparts [4]. Further, obe-
sity is the only independent determinant of atherosclerosis
progression in patients who are receiving guideline directed
therapy for HTN and HLD [5]. Thus, obesity begets low-
grade systemic inflammation that in turn may heighten CVD
risk in patients with preexisting vascular disease.

The present review examines the diverse sites of AT accu-
mulation as the balance between nutrient excess and energy
expenditure deteriorates. The review then details the VAT
transition from an adaptive to a maladaptive inflammatory
state and emphasizes the role of the central nervous system
(CNS) and bone marrow derived immune cells (BMDIC) in
the pathobiology of VAT accumulation and inflammation
(Fig. 1). Lastly, the different therapeutic approaches that aim
at reversing VAT accumulation or minimizing the adverse ef-
fects of VAT on residual CVD risk are discussed.

Accumulation of Adipose Tissue

Body mass index, the ratio of body weight in kilograms over
height in meter squared (BMI, kg/m2), is routinely used in
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clinical practice to define obesity and reveal the accumulation
of AT [6]. Patients with a BMI ≥ 25 and < 30 kg/m2 are clas-
sified as overweight, and those with a BMI ≥ 30 kg/m2 are
classified as obese. In men, AT preferentially accumulates in
the trunk and upper body, whereas in women it preferentially
accumulates in the hips and thighs [7••, 8]. Lipoprotein lipase
activity, the rate-limiting step in AT accumulation from circu-
lating triglycerides (TG), is greater in the abdominal region in
men, whereas it is greater in the gluteal than in the abdominal
region in women. Sex hormones, principally estrogens, affect
regional ATaccumulation and enhance the potency of anorex-
ic signals such as leptin, cholecystokinin, and brain-derived
neurotrophic factor (BDNF) while reducing the potency of
orexigenic factors such as melanin-concentrating hormones
and ghrelin [9]. Human AT expresses β 1-3 adrenergic recep-
tors that exert a lipolytic effect and α 2 adrenergic receptors
that have an anti-lipolytic effect. Estradiol increases α 2-
adrenergic receptor expression in subcutaneous adipose tissue
(SAT), but has no effect on intra-abdominal adipocytes [9].
Reversal of the β 1-2/α 2 adrenergic receptor ratio after the
menopause promotes accumulation of intra-abdominal SAT
and VAT that is associated with production of small low-
density lipoprotein particles, thereby increasing CVD risk
[10].

Adipose tissue accumulates in three compartments. The
subcutaneous AT(SAT) accounts for 80–90% of total AT,
whereas VAT and perivascular AT account for 5–15 and 2–
3%, respectively [11]. SAT consists of superficial and deep
layers. Metabolic and inflammatory genes are preferentially
expressed in SAT superficial and deep layers, respectively
[12–14]. Deep layers of the SAT undergo greater expansion
when obesity develops and correlate more strongly than su-
perficial layers with obesity-related insulin resistance and
CVD [13]. Ectopic ATmay also accumulate in the heart (myo-
cardial, epicardial, and pericardial layers), liver (hepatic
steatosis), pancreas, kidneys (renal sinus fat), and the abdo-
men (omental, mesenteric, and extraperitoneal) [11].

The term VAT refers to intra-abdominal accumulation of
mesenteric and omental AT measured by a single slice CT
at the level of L4–L5 or at the umbilicus [15]. Multiple
slice imaging by MRI has shown that the amount of VAT
varies in different slices [15]. Weight loss and resistance
training programs lead to significant changes in the distri-
bution of VAT area from the L3–L4 to the L2–L3 disc level
following the interventions [16]. In the absence of inter-
vention, a slice located 5–6 cm above L4–L5 disc provides
the most accurate assessment of total VAT [17]. Waist cir-
cumference (WC) and waist to hip ratio (WHR) do not
quantitatively reflect the amount of VAT [15]. However,
an enlarged WC is a convenient qualitative signal of excess
VAT in postmenopausal women [18]. Importantly, mea-
surements of WC and WHR are somewhat operator depen-
dent, and thus repeated measurements ideally should be
performed by the initial operator [17].

Since only 5–15% of total AT resides in the visceral com-
partment, the total amount of VAT cannot be estimated from
body weight or BMI [19]. The long-established paradigm that
VAT accumulates when SAT can no longer expand to store
more lipid has been recently challenged by the unexpected
lack of correlation between intra-hepatic lipid accumulation
and subcutaneous adipocyte size after 8 weeks of excess ca-
loric intake [20–22]. At the population level, VAT accumula-
tion may be inferred from a markedly elevated BMI that inti-
mates near exhaustion of SAT storage capacity for lipid
[23–25]. At the clinical level, a third of obese patients do not
accumulate VATand have no or minimal metabolic abnormal-
ities. These patients are classified as metabolically healthy
obese (MHO) [26, 27]. MHO appears to be a transitional state,
however, as the adipokine profile (adiponectin/leptin/resistin)
of MHO postmenopausal women is intermediate between that
of normal weight postmenopausal women without and with
metabolic abnormalities [28], and one third of MHO patients
eventually develop metabolic abnormalities [29]. Further,
MHO individuals have a higher risk of CAD, stroke, and heart
failure than metabolically healthy normal weight individuals
[30••]. In contrast, lean individuals with BMI < 30 kg/m2 may
accumulate VAT and present with obesity-related metabolic
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Fig. 1 Nutrient excess leads to neuro-inflammation and production of
leptin and angiotensin II (Ang II) by subcutaneous adipose tissue
(SAT). Acting on hypothalamic neurons and microglia, leptin and Ang
II activate the sympathetic nervous system (SNS) and induce resistance to
leptin’s anorexic effect through metabolic inflammation (meta-
inflammation)-related negative regulatory pathways. Leptin resistance
leads to protracted nutrient excess that promotes SAT expansion.
Patients tend to accumulate visceral adipose tissue (VAT) when SAT
can no longer expand and store nutrients. Increased SNS activity and
Ang II levels promote recruitment/engraftment of bone marrow-derived
immune cells (BMDIC) in the hypothalamus and VAT. Whether obesity
leads to hypothalamic meta-inflammation or hypothalamic meta-
inflammation regulates the susceptibility to obesity through leptin
resistance remains to be determined
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abnormalities and are classified as metabolically obese normal
weight persons [31].

Adipocyte hypertrophy mediates VAT expansion,
whereas both adipocyte hyperplasia and hypertrophy con-
tribute to SAT expansion in a depot-specific fashion: ab-
dominal SAT expands through adipocyte hypertrophy, and
femoral SAT expands through hyperplasia [20]. New adi-
pocytes derived from pre-adipocytes account for 14–20%
of cells in SAT [20]. Pre-adipocytes are associated with
blood vessels and derive from endothelial cells or
pericytes in AT [32]. They differentiate into adipocytes
in response to insulin growth factor 1, glucocorticoids,
and cyclic AMP [33]. Activation of the transcription fac-
tor CCATT enhancer-binding protein-β (C/EBPβ) triggers
transcription of peroxisome proliferator-activated
receptor-γ (PPARγ) and C/EBPα that activate genes re-
quired for the adipocyte phenotype [9, 22, 34, 35].

Pre-adipocytes can undergo senescence with aging and
obesity and then release inflammatory cytokines, chemokines,
and extracellular matrix proteases [36, 37]. T cell senescence
may persist after loss of body weight and mediate chronic
inflammation in AT due to continued production of osteopon-
tin [38]. Contrary to conventional wisdom, the total number of
adipose cells does not remain constant in adult SAT [39, 40].
However, when obesity develops in childhood or early ado-
lescence, the number of adipocytes remains relatively constant
thereafter [40].

Visceral Adipose Tissue

In adults, VAT largely comprises white energy storing
adipocytes, with few brown energy dissipating adipocytes
[41]. White adipocytes have large uni-locular lipid drop-
lets and minimal uncoupling protein 1 (UCP1), while
brown energy dissipating adipocytes have multi-locular
lipid droplets and high UCP1 and mitochondrial content.
The stromal vascular fraction (SVF) of AT contains im-
mune cells, including resident macrophages which com-
prise up to 10–15% of AT cell population in lean persons
and up to 40–50% in obese persons [42••, 43]. Sex affects
VAT accumulation, with women having relatively less
VAT and more SAT than men [44]. After controlling for
total AT mass, age, and sex hormones, Caucasians have
more VAT and less SAT than African-Americans [45–47].
VAT does not appear to be homogeneous: genome-wide
arrays have shown that mesenteric pre-adipocytes have a
greater capacity for replication and adipogenesis than
omental pre-adipocytes [35].

Visceral AT accumulation is associated with a constella-
tion of factors that increase CVD risk, including insulin
resistance, hyperinsulinemia, increased small dense LDL
and low HDL cholesterol, hypertriglyceridemia, diabetes,

hypertension, inflammation, altered fibrinolysis, and endo-
thelial dysfunction [23, 31, 48••, 49]. In contrast, SAT is
not associated with metabolic abnormalities, and SAT accu-
mulation does not increase CVD risk independently from
BMI [50]. Further, liposuction with surgical removal of ab-
dominal SAT has no effect on CVD risk [51]. After adjust-
ment for general obesity measures (BMI, WC, WHR), only
VAT remains associated with markers of systemic inflamma-
tion [50, 52]. Increased lipid turnover in VAT and reduced
lipid turnover in SAT underlie the association between VAT
and metabolic abnormalities [53]. Sympathetic nervous sys-
tem (SNS) activation enhances inflammation. In men, the
SNS is activated in visceral but not in subcutaneous obesity
[54, 55]. In women, the SNS is not activated in visceral or
subcutaneous obesity [56]. VAT is metabolically highly ac-
tive and CVD risk correlates with VAT in both obese and
metabolically unhealthy lean patients [57–59]. In the major-
ity of obese patients, macrophage infiltration and release of
cytokines/chemokines is greater in VAT than in SAT [60,
61]. Persistent blood pressure (BP) elevation, lower BP var-
iability, and incident hypertension have been related to VAT
[50, 62, 63]. VAT accumulation in Asian men may account
for their increased cardiometabolic risk even in the presence
of a normal BMI [31].

Circulating inflammatory markers like CRP and
interleukin-6 (IL-6) are poor indices of VAT-related low-grade
inflammation: CRP correlates more closely with the amount
of SAT than VAT and only 30% of circulating IL-6 originates
from AT [64–66]. Further, markers of AT inflammation such
as reduction in adiponectin and increase in leptin levels do not
reliably assess obesity-related low-level systemic inflamma-
tion [67]. Sex hormone binding protein level is inversely re-
lated to VAT in premenopausal overweight women [68].
Whether blood levels of classical monocytes reliably reflect
CD11c+ macrophage infiltration in VAT needs to be con-
firmed [69].

The link between VAT accumulation and increased car-
diometabolic risk remains poorly understood [52].
Although women have less VAT than men, the correlation
between VAT accumulation and cardiometabolic risk is
much stronger in women than men [19, 70]. Whether
VAT accumulation is a manifestation of a general process
that leads to metabolic and CVD or whether VAT accu-
mulation plays a direct role in the development of these
conditions is debated. A common view is that VAT accu-
mulation signals the body’s inability to cope with contin-
uous excessive caloric intake and triggers a downhill
course of the obesity syndrome. Proposed specific causes
of VAT accumulation such as increased hepatic free fatty
acid (FFA) load, activation of the hypothalamic-pituitary
adrenal axis and the endocannabinoid system, gonadal
steroids, and epigenetic mechanisms have fallen out of
favor or await supportive evidence [7••, 71].
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Visceral Adipose Tissue Inflammation

As the gap between nutrient overload and reduced energy
expenditure widens, unremitting visceral adipocyte hyper-
trophy leads to hypoxia, exposure to gut antigens, me-
chanical stress against a rigid extracellular matrix, im-
mune cell infiltration, cytokine and chemokine secretion,
and ultimately necrosis and inflammation in VAT [27].
The mechanisms and molecular signaling pathways of
metabolic inflammation, i.e., meta-inflammation, have
been extensively reviewed over the past decade [72–77,
78••, 79, 80••, 81–85]. The inflammatory responses of
VAT and the central nervous system (CNS) to nutrient
overload are reviewed here.

Adaptive VAT Inflammatory Response

Initially, the inflammatory response to adipocyte hypertro-
phy facilitates VAT expansion, remodeling, and lipid stor-
age by stimulating angiogenesis and extracellular matrix
degradation [76, 86••]. White adipocytes release FFA into
the circulation for oxidation or storage by other cell types.
Early in the AT inflammatory response, rapid AT expan-
sion triggers lipid accumulation in and proliferation of
resident macrophages [87]. White adipocytes secrete
anti-inflammatory adipokines such as adiponectin, fibro-
blast growth factor-21 (FGF21), and IL-33 that activate
innate lymphoid cells (ILC2’s) [81, 82]. In turn, IL-33-
induced ILC2’s generate IL-5 and IL-13 that stimulate
release of IL-4 by eosinophils to recruit alternatively ac-
tivated resident macrophages with a potential for release
of norepinephrine and stimulation of β3 adrenergic recep-
tors, leading to activation of beige adipocytes [80, 88].
Norepinephrine may be imported and metabolized by
sympathetic neuron-associated macrophages rather than
released by AT macrophages [89]. As AT expands, the
number of tolerance promoting B cells decreases, as does
the number of anti-inflammatory type 1 natural killer T
(NKT) cells, invariant (i) NKT cells, T helper 2 (TH2),
and regulatory T cells (Tregs) [76, 83, 90]. TH2 cells and
Tregs help to maintain macrophages in the alternatively
activated state through secretion of IL-4 and Il-10 [83,
90]. Tregs-mediated maintenance of macrophages in the
alternatively activated state requires expression of meta-
bolic mediators such as PPAR γ and PPAR δ [77, 83].
Both innate and adaptive immune systems contribute to
the inflammatory response to AT expansion [74, 75].
Promoting B cells influence both T cell and macrophage
function in VAT [83, 91]. However, suppression of acti-
vated B and T cells in obese mice has no discernible effect
on macrophage-mediated VAT inflammation [92].

Maladaptive VAT Inflammatory Response

The metabolic alterations associated with nutrient over-
load interact with immune function as AT expands [92,
93]. Alterations in circulating nutrients and metabolite
signals influence macrophage polarization towards the
classically activated state through nutrient sensing path-
ways such as AMPK and mTORC1 [83]. Continued adi-
pocyte hypertrophy leads to adipocyte hypoxia and cell
death, with production of pro-inflammatory signals such
as monocyte chemotractant protein-1 (MCP1), C-X-C mo-
tif chemokine 12 (CXCCL12), retinol binding protein 4
(RBP4), leukotriene B4 (LKB4) colony stimulating factor
1 (Csf-1), and resistin that promote proliferation of clas-
sically activated macrophages and macrophage infiltration
of white AT [77, 94••, 95, 96, 97••]. Insulin resistance
correlates with increasing MCP1 production and thus
may trigger inflammation in human VAT [98]. Reduced
secretion of IL-10 and increased production of TNF-α and
interferon (IFN) γ by iNKT cells also contribute to pro-
liferation of classically activated macrophages that in turn
release IL-6 and IL-1β [97••, 98]. Upregulation of major
histocompatibility complex class II (MHCII) genes and
leptin promote the T helper type 1 (Th1) phenotype
[77]. T cells, Th1 cells, and macrophages form crown-
like structures (CLS) that phagocytose dead adipocytes.
B cells produce antibodies and activate T cells that in turn
stimulate Th1 and effector T cells to release the pro-
inflammatory cytokines TNF-α and IL-1β [77, 81, 82].
The receptor- and non-receptor-mediated triggers of AT
inflammatory responses to nutrient overload/expansion
are summarized in Fig. 2.

The two-tier classification of macrophages (classical
M1 and alternatively activated M2) observed in high-fat
diet (HFD) murine models of obesity may not reflect the
human condition where macrophages display a number of
phenotypes according the metabolic environment [80••,
93]. Confronted with continuous nutrient overload, mac-
rophages polarize towards the M1 state and activate a
lysosomal program of lipid metabolism [93, 94••].
Inhibition of lysosomal function increases lipid accumu-
lation in macrophages and reduces AT release of non-
esterified fatty acids (FA) [79, 80••]. In AT with large
adipocytes, macrophages play a major role in lipid catab-
olism [94••]. The role of macrophages in AT inflammation
was first described in HFD murine models of obesity that
contained abundant CLS around dying adipocytes [84].
However, human obesity is associated with fewer CLS,
and macrophages play a lesser role in the adipocyte in-
flammatory response to nutrient overload/expansion in
humans [84]. T cells rather than macrophages predomi-
nate in the inflammatory response of human AT to nutri-
ent overload/expansion [107••, 108].
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Neuro-inflammation

The hypothalamus contains several nuclei that control en-
ergy balance through two sets of leptin-sensitive neurons
that have opposing actions [109–111]. The first consists of
neuropeptide Y (NPY) and agouti-elated peptide (AgRP)
neurons. Their activation stimulates caloric intake and re-
duces energy expenditure through the paracrine action of
NPY and AgRP that decreases neuronal activity via
GABAergic signaling [112]. The second set comprises
proop iomelanocor t in (POMC) and coca ine and
amphetamine-related transcript (CART) neurons [109].
Activation of POMC/CART neurons decreases caloric in-
take and increases energy expenditure through release of
α- melanocyte stimulating hormone that regulates caloric
intake and activates melanocortin receptor-4 in the
paraventricular nucleus [109, 113, 114]. Synaptic plasticity
and neurogenesis affect the connectivity of AgRP/NPYand
POMC/CART neurons [109].

Both neuronal sets have the long signaling form of the
long form of the leptin receptor (LEPRb) [115, 116].
Increased leptin levels inhibit AgRP/NPY neurons and
activate POMC/CART neurons [109, 116]. Obese patients
develop leptin resistance as evidenced by persistence of

high caloric intake despite obesity [117–119]. Importantly,
nutrient overload may promote leptin resistance in the
absence of obesity, and leptin resistance only targets en-
ergy homeostasis in obese individuals. Obesity does not
affect leptin-mediated SNS activation or CNS upregula-
tion [120–123]. Leptin resistance appears to be related
to hypothalamic neuronal inflammation that develops
within days of high FFA intake and persists with contin-
ued high FFA intake as neuronal inflammation spreads to
glial cells [124, 125••, 126–131]. Hypothalamic and VAT
inflammation share common signaling pathways that in-
clude Iκβ kinase-β/nuclear factor-κβ signaling, c-Jun-N-
terminal kinase signaling, Toll-like receptor 4 signaling,
endoplasmic reticulum stress, autophagy, and negative
regulators such as suppressor of cytokine signaling 3
and protein tyrosine phosphatase 1B [128, 132, 133].
Hypothalamic inflammation affects the progression of
obesity through leptin resistance. However, the time
course and progression of the hypothalamic and VAT in-
flammatory response to nutrient overload are not directly
related.

Over-nutrition may also mediate leptin resistance by
altering the blood-brain barrier [134]. Hyperglycemia dis-
assembles the specialized glial cells (tanycytes) that com-
prise the blood-cerebrospinal fluid barrier, thereby limit-
ing leptin ingress into the hypothalamus [119]. Nutrient
overload-induced neuro-inflammation [132, 135, 136] has
also been noted in the hippocampus, cerebellum, amygda-
la, and brainstem of mice fed a HFD [136].

In HFD-induced murine models of obesity, microglial
hypothalamic meta-inflammation regulates energy homeo-
stasis [131]. Whether obesity leads to hypothalamic meta-
inflammation or hypothalamic meta-inflammation regu-
lates susceptibility to obesity through leptin resistance in
humans is under active investigation [112].

Circulating Immune Cells

Obesity-associated sympathetic excitation bolsters bone
marrow production of inflammatory cells that, attracted
by local chemokines, infiltrate the CNS and VAT where
they differentiate into macrophages [132, 136, 137].
Angiotensin II increases proliferation and differentiation
of hematopoietic stem cells while decreasing their tissue
engraftment [138, 139]. The spleen serves for storage
and rapid deployment of bone marrow-derived immune
cells [140]. The crosstalk between CNS, SAT, VAT, and
bone marrow is outlined in Fig. 1. Prevention/reversal of
VAT accumulation is a rational and direct approach to
reducing low-grade systemic inflammation-related CVD
risk.

Triggers and Mechanisms of Meta-inflammation

Endoplasmic Reticulum: UPR (IRE-1) JNK, IKK- Activation (99-101)

Reactive Oxygen Species, Mitochondrial Dysfunction (102)

Hypoxia: Hypoxia-Inducible Factor 1 NF B Activation (103)

Mechanical stress against E-C Matrix RhoA-Rock Activation

Nutrients Fetuin A TLR4&2 MyD88 JNK Activation (104)

Adipocyte Death NLRP3 Inflammasome- Caspase-1 Activation (105)

Adipose-derived exosomal miRNA may regulate whole-body metabolism (106)

Fig. 2 Unfolded proteins, excess nutrients, and hypoxia result in
endoplasmic reticulum (ER) stress. ER stress activates a complex
response, i.e., the unfolded protein response (UPR) that contributes to
meta-inflammation by activating the inhibitor of κB kinase–β (IKK-β)
through the inositol-requiring enzyme 1 (IRE-1) pathway. Increased
adipose tissue oxidative stress, obesity-associated mitochondrial
dysfunction (due to altered Ca++ signaling), and UPR are linked since
ER malfunctions or oxidative stress can lead to mitochondrial
dysfunction and vice versa. Hypoxia develops in adipose tissue where
increasing levels of hypoxia-inducible factor-1α lead to nuclear factor-κB
(NFκB) activation. Nutrients (saturated fatty acids) can indirectly activate
pattern recognition receptors such as Toll-like receptors (TLR2 &4) that
activate Jun N-terminal kinase (JNK) through myeloid differentiation
factor 88 (MyD88) signaling. After adipocyte death, pathogen or
danger-associated molecular patterns (PAMPs, DAMPs) and
homeostasis-associated processes (HAMPs) activate an intracellular
multi-protein signaling complex with nucleotide-binding leucin-rich
repeat containing receptor 3 (NLRP3 inflamasome) that leads to
activation of caspase-1.and secretion of pro-inflammatory IL-1β. Lastly,
adipose-derived circulating miRNAs were recently shown to have
systemic metabolic effects
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Bariatric Surgery, Inflammation,
and Cardiovascular Risk

Roux-en-Y Gastric Bypass (RYGB) Surgery

RYGB surgery consistently reduces circulating levels of
CRP, IL-6, and IL-13 levels, while TNF-α levels are un-
affected [141–143]. In a study of 65 morbidly obese pa-
tients, RYGB surgery decreased pro-inflammatory cyto-
kines, including IL-18, soluble TNF-α receptor 2
(sTNFR2), and CRP in conjunction with a reduction in
BMI from 49.2 to 31.9 kg/m2 [144]. Plasma concentra-
tions of heat shock protein 60 (hsp60), an inflammatory
and stress signaling protein, were reported to be lower 6–
12 months after RYGB in a study of 53 obese women
[145]. In addition to the decrease in circulating inflamma-
tory mediators, RYGB surgery remodels body distribution
of AT: 12 months after surgery, the reduction in VAT is
relatively greater than that in SAT [146, 147]. VAT but not
body weight continues to decrease after 12 months post-
surgery [148]. Bariatric surgery reduces subcutaneous ad-
ipocyte size and LEPRb expression, but does not decrease
adipocyte number [149]. Overall, bariatric surgery is as-
sociated with less weight loss in elderly male and diabetic
patients [150, 151].

RYGB surgery is associated with a high remission rate
of type II diabetes and reduces 10-year CVD risk by 40–
50% in obese persons [152, 153]. However, observation-
al studies and meta-analyses have shown that despite a
low 10-year CVD risk, obese patients have a high life-
time CVD risk [151, 154–157]. Case-controlled studies
with 10–12 year follow-up have shown that bariatric sur-
gery (mostly RYGB) reduces fatal CVD outcomes in
obese patients [158, 159••, 160]. In 418 obese patients
who underwent RYGB and were followed for 12 years,
remission of type 2 diabetes was 75% at 2 years, 62% at
6 years, and 51% at 12 years [158]. The Swedish Obese
Subjects (SOS) study reported significant reductions in
CV death, myocardial infarction, and stroke in 2010
obese patients who underwent bariatric surgery and were
followed for a median duration of 14.7 years [159••].
Further, the Surgical Treatment and Medications
Potentially Eradicate Diabetes Efficiently (STAMPEDE)
trial demonstrated that 12 months of medical therapy
plus bariatric surgery achieved glycemic control in sig-
nificantly more patients than medical therapy alone
[160].

The clear benefits of bariatric surgery on sustained
weight loss and remission of type 2 diabetes point to the
need for randomized trials of the procedure with mortality
as a primary endpoint. Further, the long-term outcomes of
bariatric surgical procedures, which are routinely not cov-
ered by third party payment, need to be monitored.

Sleeve Gastrectomy

Several lines of evidence point the favorable effects of lapa-
roscopic sleeve gastrectomy (LSG) on low-grade systemic
inflammation and VAT. Mean hs-CRP level fell from 8.8 to
2.6 mg/L at 12 months post-LSG in 197 obese patients with a
median BMI of 46.8 kg/m2 [161]. In 110 morbidly obese
women, high hs-CRP levels predicted the amount of VAT lost
1 year after LSG [162]. Six to 24 months after LSG, mRNA
expression of inflammation-related genes in SAT decreased in
13 obese patients with a mean baseline BMI of 42.3 kg/m2

[163]. In contrast, mRNA expression of pro-inflammatory cy-
tokines in SAT remained unchanged at 1 and 6–12 months in
17 obese patients with a mean baseline BMI of 46.3 kg/m2

who underwent RYGB (n = 7) or LSG (n = 10) [164]. These
apparently discordant findings may be related to a predomi-
nant effect on of bariatric surgery on VAT rather than SAT in
the latter study. The decrease in BMI and relative decrease in
CRP levels were similar at 12 months in both studies: 13
versus 12 kg/m2 and 52 versus 66%, respectively.

Few studies have focused on the effects of LSG on CVD
risk, and none has dealt with its effect on VAT. Reduced ca-
rotid artery intima-media thickness and increased brachial ar-
tery flow-mediated dilation following LSG provide indirect
evidence of its beneficial effect on CVD risk [165, 166].
Further, a single-center study comparing LRYGB (n = 12)
and LSG (n = 10) concluded that LRYGB is more effective
in resolving low-grade systemic inflammation than is LSG
[167]. Recent data indicate that bypass and sleeve gastrectomy
have similar effects on weight loss and comorbid conditions
through 5 years of follow-up [168]. Longer-term data are
needed to ascertain which bariatric procedure is preferred for
CVD risk reduction.

Physical Activity and Aerobic Exercise

Present data regarding the effect of physical activity on VAT
are inconsistent. In the Framingham third-generation and
Omni Ii cohorts, moderate-to-vigorous physical activity
(MVPA)measuredwith accelerometers over a period of 5 days
was associated with reduced VAT accumulation [169]. The
association between physical activity and VAT reduction was
greater in women than in men, and sedentary time was not
associated with VAT accumulation [169]. In contrast, MVPA
measured with accelerometers over a period of 4 days
accounted for only 4% of the variance in VAT in another study
of 82 adults with a mean BMI of 30.9 kg/m2 [170]. A signif-
icant inverse association was reported between MVPA and
VAT in a study of 271 middle-aged African-American women
and men [171]. Overall, vigorous physical activity sustained
in time and intensity may lessen VAT accumulation, while
sedentary behavior is unrelated to VAT.
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Randomized controlled trials of aerobic exercise training
clearly indicate a beneficial effect of training for ≥ 8-week
duration on VAT accumulation, providing that caloric intake
remains constant [172]. Whether sex affects the VAT response
to aerobic exercise remains an unresolved issue. Similar de-
creases in WC were reported in men and women after
12 months of daily aerobic exercise for 60 min/day [173].
Brisk walking for 3 h/week for 12 months decreased intra-
and subcutaneous abdominal fat in 168 postmenopausal wom-
en with a baseline BMI of 30.5 kg/m2 [174]. This study
showed that VAT accumulation may regress without a con-
comitant decrease in BMI [174]. A systematic review of 35
studies with a total of 2145 patients showed that aerobic ex-
ercise induced VAT reduction but that resistance exercise re-
duced insulin resistance and lowered LDL cholesterol but did
not affect VAT [175]. VAT reduction occurred without signif-
icant loss of body weight in 3 of the 35 studies. Aerobic
exercise-induced reduction in VAT depends on exercise inten-
sity and duration [176]. Jogging 20 miles/week was shown to
decrease VAT by 6.9% compared to 1.7 and 2.5% for walking
12 miles/week and jogging 12 miles/week, respectively [176].
A recent study confirmed the beneficial effects of 80% aerobic
and 20% resistance exercise training on VAT. A cohort of 278
overweight/mildly obese women and men who had been pre-
viously randomized to a Mediterranean/low-carbohydrate
(MED/LC) diet or a low-fat (LF) diet for 6 months were then
randomized in factorial 2 × 2 design to 80% aerobic and 20%
resistance exercise training three times a week or no training
for 12 months [177••]. The MED/LC and LF diets did not
affect VAT, while the exercise/resistance training resulted in
significant VAT reductions in patients randomized to both di-
ets [177••]. Although weight loss has been reported to have a
greater effect on markers of inflammation than aerobic or re-
sistance exercise, present consensus favors diet with physical
training over diet without physical training for reduction of
obesity-related systemic inflammation [74, 178, 179]. Aerobic
exercise decreases low-level systemic inflammation by reduc-
ing total AT especially VATaccumulation and by a direct anti-
inflammatory effect as evidenced by increased release of IL-1
receptor antagonist and reduced hepatic production of the
adaptor protein fetuin-A [180]. Preclinical studies point to
the importance of exercise intensity, duration, and frequency
for VAT and mitochondrial lipid metabolism remodeling
[181]. Finally, moderate caloric restriction for 12 months
failed to reduce VAT in the recent Calorie Restriction in
Overweight Senior S: Response of Older Adults to Dieting
Study (CRSSROADS) [182]. While adherence to a vigorous
exercise program appears to be the most effective intervention
for VAT reduction, many obese patients are unable to exercise
vigorously.

Changes in VAT cannot be estimated from changes in SAT
or body weight. Relative percent changes in visceral versus
subcutaneous abdominal fat were reviewed in 61 weight loss

studies [183]. Save for very-low-calorie diets that resulted in
short-term preferential VAT loss, the method of weight loss
had no bearing on relative reductions of VAT versus SAT
[183]. In contrast, lifestyle modification that includes both
healthy eating and aerobic exercise has been associated with
preferential loss of VAT in obese and non-obese persons
[184–186]. Of note, aerobic exercise for VAT reduction needs
to be strenuous with more sessions per week than generally
recommended for CVD risk reduction [173, 187].

Obesity is a major barrier to regular aerobic exercise [188].
Fearing negative comments, obese children are reluctant to
participate in physical activities [189]. Similarly, obese adults
tend to avoid exercise due to embarrassment in gyms and bias
from fitness professionals. Morbidly obese patients may only
be able to walk short distances, as the metabolic cost of walk-
ing on flat ground at moderate speed is close to their anaerobic
threshold. Bariatric surgery-induced weight loss is a key step
that may break the downward spiral from increase in body
weight to steady decrease in physical activity [190].

Pharmacologic Reduction of Systemic
Inflammation

The Justification for the Use of Statins in Prevention: an in-
tervention Trial Evaluating Rosuvastatin (JUPITER) reported
that lowering systemic inflammation with a statin reduced the
incidence of major CVD events in patients with hs-CRP levels
≥ 2 mg/L, LDL cholesterol < 130 mg/dL, and no history of
CVD [191]. The reduction in CVD events was twofold greater
than that expected from the concomitant reduction in LDL
cholesterol. The effect of colchicine, another commonly used
anti-inflammatory therapy, on the risk of subsequent CVD
events is currently being assessed in two randomized placebo
controlled trials [192]. A targeted approach to the reduction of
systemic inflammation was used in the Canakinumab Anti-
inflammatory Thrombosis Outcome Study (CANTOS)
[193]. Ten thousand patients with prior MI and hs-CRP ≥
2 mg/L were randomized to three doses (50, 150, and
300 mg daily) of canakinumab, a monoclonal IL-1β antibody
or to placebo. At a median follow-up of 3.7 years, patients
receiving 150 mg of canakinumab experienced a 15% lower
risk of major CVD events than patients receiving placebo
[193]. Patients with hs-CRP < 2 mg/L while receiving
canakinumab experienced a 31% lower risk of major CVD
events, whereas patients with hs-CRP ≥ 2 mg/L did not expe-
rience any risk reduction [194]. The redundancy of inflamma-
tory signaling pathways may thwart the pharmacological ap-
proaches to lessen obesity-related systemic inflammation and
metabolic disorders. Canakinumab lowers the risk of CVD
events but does not prevent the progression from pre-
diabetes to diabetes [195].
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Conclusion

Accumulation of VAT mediates obesity-associated low-grade
systemic inflammation and CVD risk. In the absence of spe-
cific circulating markers for VAT, BMI is currently used as a
surrogate for VAT. Adherence to an intensive aerobic exercise
program is requisite for reduction of VAT-associated low-
grade systemic inflammation and CVD risk. Bariatric surgery
may allow morbidly obese patients with VATaccumulation to
undertake intense aerobic exercise. The redundancy of
obesity-related inflammatory signaling pathways presents a
challenge to development of pharmacologic approaches to
inhibiting low-grade systemic inflammation and thus
preventing CVD in obese patients.
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