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Abstract

Purpose of Review Increased arterial stiffness, an abnormal structural and functional change in the vascular wall, is a precursor
for hypertension, coronary heart disease, stroke, and associated cardiovascular disease (CVD). The aim of this paper is to review
the etiology of arterial stiffening and potential therapeutic approaches to modulate arterial fibrosis and stiffness.

Recent Findings The Framingham Heart Study demonstrated that arterial stiffness is an independent predictor of CVD and related
morbidity and mortality. Dysfunction of endothelial cells, vascular smooth muscle cells, extracellular matrix, and other functional
elements of the vessel wall contribute to underlying pathophysiology of increased arterial stiffness. An activated renin-angiotensin-
aldosterone system, oxidative stress, abnormal peri-vascular adipose tissue, inflammation, and increased sympathetic nervous
system activity are associated with the development and progression of arterial fibrosis, stiffening, and associated CVD.
Summary In this review, we will discuss the structural and function changes and mechanisms of the vessel wall in arterial
stiffness and provide potential therapeutic strategies.
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with increased arterial stiffness due to obesity, diabetes, aging,
and atherosclerosis, this elasticity is compromised. With in-
creased pulse wave velocity (PWV), reflected waves return
faster and merge with the forward wave in systole, resulting
in augmentation of systolic blood pressure and pulse pressure
[1]. The excessive arterial stiffening ascertained by an in-
creased PWYV is a consequence of structural and functional
changes in the vascular wall [1], and diverse variables such
as genetic determinants, obesity, insulin resistance, diabetes,
and aging are important risk factors in the pathogenesis of
excessive arterial stiffening [1]. Therefore, due to the impor-
tance of arterial stiffness in cardiovascular disease (CVD) and
its association with significant risk factors, in 2015 the
American Heart Association (AHA) Council for High Blood
Pressure Research recommended carotid—femoral PWV
(cfPWC) as the appropriate method to measure arterial stiff-
ness [2¢]. Here, we will focus on recent studies investigating
the pathophysiological processes and mechanisms promoting
arterial stiffening as well as the contemporary understanding
of potential therapeutic strategies.

Arterial Stiffness and Hypertension

Excessive arterial stiffness is associated with damage to
target organs such as the arteries, heart, and kidney [3].
The Framingham Heart Study found that increased arterial
stiffening is an independent predictor of CVD in the general
population, the elderly, and hypertensive patients [4]. A
1 m/s increase in PWYV increased the occurrence of CVD
events by 14%, CVD mortality by 15%, and all-cause mor-
tality by 15% [5]. Importantly, there is an important inter-
action between arterial stiffness and hypertension. In this
regard, arterial stiffness has been associated with brachial
blood pressure in pregnant women [6]. There are increases
in forearm vascular resistance in young men with first-
degree relatives suffering from essential hypertension [7].
Hypertension is associated with arterial dysfunction charac-
terized by changes in cytoskeletal organization, cell calcifi-
cation, inflammation, collagens, and arterial fibrosis [8].
These pathophysiological abnormalities induce arterial re-
modeling and reduce nitric oxide (NO)-mediated vasodila-
tor capacity [7]. Increased arterial stiffness may exist prior
to the development of hypertension. Recent research has
shown that diet-induced obesity is associated with increased
aortic stiffness prior to development of hypertension [9, 10].

Dysregulation of Vascular Cells
and Extracellular Matrix in Arterial Stiffness

The arterial endothelial cells (ECs) provide a barrier between

the elements of blood and the vessel wall and play an impor-
tant role in maintaining arterial homeostasis and normal
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physiological function partly through actions of EC-derived
vasodilatory or vasoconstrictory substances including NO,
prostacyclin, and endothelin 1. Recent research has
underscored the role of activated EC Na channels (EnNaC)
in promoting a stiff endothelium and associated impaired en-
dothelial NO synthase (eNOS) activation in aortic and
mesenteric arteries [11e, 12]. RAAS-mediated activation of
EnNaC induces serum and glucocorticoid-regulated kinase 1
(SGK1) activation which impairs ENaC ubiquitination/degra-
dation, leading to its accumulation in the plasma membrane,
and a net increase in Na* channel activity [11¢]. Increased
EnNaC expression and membrane abundance in ECs leads
to enhanced Na* influx, polymerization of G-actin to F-actin,
reduced EC eNOS activity and NO production, and the devel-
opment of arterial stiffening [13+, 14¢] (Fig. 1). Consistent
with this notion, our recent research in obese mice indicated
that inhibition of ENaC with very low doses of amiloride, an
EnNaC inhibitor, decreases oxidative stress, endothelium per-
meability, inflammation, arterial fibrosis, and aortic stiffness,
as well as cardiac diastolic dysfunction without affecting
blood pressure or Na* retention [11e, 12].

Vascular smooth muscle cells (VSMCs), which are the ma-
jor cellular component of the arterial wall, are also involved in
the genesis of arterial fibrosis and stiffness. Vascular flow-
mediated NO diffuses into neighboring VSMCs and activates
guanylyl cyclase/cyclic guanosine monophosphate signal
pathways, resulting in vascular relaxation (Fig. 1). This pro-
cess is compromised in conditions of obesity, aging, and in-
sulin resistance. For example, VSMCs in Zucker obese
insulin-resistant rats manifest greater concentrations of reac-
tive oxygen species (ROS), impaired activation of the NO/
cyclic guanosine monophosphate/protein kinase G pathway,
and increased cell stiffness [15]. VSMCs are capable of oste-
oblast trans-differentiation by promoting alkaline phosphatase
activity, the formation of mineralized nodules, and osteocalcin
expression in VSMCs [16]. Thus, VSMC calcification is an-
other important contributor in the development of excessive
arterial stiffness.

Changes in extracellular matrix (ECM), composition, and
arterial structure play an important role in reduction of arterial
compliance and increased arterial stiffness. Transforming
growth factor beta 1 (TGF-31)/Smad signaling can stimulate
synthesis of ECM proteins including collagens and fibronectin
[17]. Increased TGF-1 increases synthesis and accumulation
of ECM proteins partly by associated increases in matrix me-
talloproteinases (MMPs) [18], which degrade elastin [18].
Excessive arterial stiffening is a complex property that is also
mediated by abnormal ECM and matrix-cell interactions [19].
For instance, VSMC dysfunction changes the adhesive inter-
actions with the ECM during active relaxation and contrac-
tion. Moreover, modulation of the elasticity of the cortical
cytoskeleton occurs in parallel with changes in VSMC adhe-
sion properties [20, 21]. Further, modulation of the elasticity
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Fig. 1 Schematic diagram illustrating EC and VSMC dysfunction in
arterial stiffness. Risk factors such as RAAS activation induce
activation of SGK1 that increases EnNaC expression and membrane

of the cortical cytoskeleton occurs in parallel with changes in
VSMC adhesion properties [20, 21]. Angiotensin II (Ang II)
induces VSMCs to synthesize collagen, fibronectin, and ECM
proteins, as well as activation of the ECM-modifying MMPs
[16]. These data underscore the importance of interactions
between cellular components and the ECM in the pathogene-
sis of arterial stiffening.

Pathological Mechanisms of Excessive Arterial
Stiffness

Activated RAAS

Enhanced systemic and tissue RAAS activation induce arterial
stiffening. Cell-specific RAAS signaling in ECs, VSMCs, and
macrophages are involved [22]. Evaluation of the role of vas-
cular RAAS signaling has been facilitated recently by the
availability of vascular cell-specific knock out (KO) rodent
models [23-25]. Indeed, both Ang II and aldosterone directly
induce abnormal arterial stiffening by activation of nicotin-
amide adenine dinucleotide phosphate (NADPH) oxidase
(NOX) and inhibition of NO bioavailability [26].
Importantly, regulation of RAAS in the vasculature is in-
creased by consumption of western diets, which contribute
to arterial fibrosis and increased arterial stiffness [1]. Recent
research indicates that aldosterone and diet-induced obesity
increase EnNaC expression and activation, leading to reduced
NO production that is associated with increases in EC cortical
stiffness [11¢, 12]. There is also an interaction between specif-
ic interactive components of the RAAS. For instance, im-
provement of Ang Il-induced arterial stiffness by mineralo-
corticoid receptor (MR) antagonist and suppression of

abundance in ECs, leading to enhanced Na* influx, polymerization of
G-actin to F-actin, reduced eNOS activity, NO production, and the
development of arterial stiffness

aldosterone-induced arterial dysfunctional by inhibition of
Ang II receptor 1 (AT-1R) are consistent with the notion of
arterial cross-talk between the Ang II and aldosterone signal-
ing [27, 28]. Recent research suggests that the RAAS is in-
volved in regulating parathyroid hormone, which increases
the concentration of calcium in the blood and promotes arte-
rial stiffening [29]. Ang II is likely an acute modulator of
parathyroid hormone and directly induces release of parathy-
roid hormone via the AT-1R, whereas aldosterone is thought
to be a chronic modulator of parathyroid hormone via indirect
and direct mechanisms [29].

Oxidative Stress

Elevated oxidative stress promotes arterial stiffening and
CVD. For example, in 386 elderly patients with essential
hypertension, superoxide dismutase and antioxidant status
are significantly reduced with an increased branchial-ankle
artery PWV [30]. Chronic supplementation with a mito-
chondrial antioxidant (MitoQ) represses oxidative stress
and improves vascular function in healthy aging individuals
[31]. NOX is one of the important enzymes and plays a key
role in the generation of ROS in arterial tissue. For instance,
aldosterone induces expression of p47phox through both
MR-dependent and AT-1R-dependent mechanisms, and ex-
pression of the p22phox subunit and the NOX2 isoform is
MR-dependent in vascular tissues [32]. The signaling path-
ways of the mitochondrial monoamine oxidase, cyclooxy-
genase 2, and p66Shce signaling are also involved in Ang II-
induced activation of NOX induction and oxidative stress in
arterial tissues [33]. Some other sources of ROS include
peroxisomal (3-oxidation of fatty acids, arachidonic acid
metabolism, xanthine oxidase, microsomal P-450 enzymes,
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and pro-oxidant heme molecule that have been recognized
to contribute to arterial stiffening and hypertension [18].
Therefore, increased ROS and oxidative stress impair de-
oxyribonucleic acid, lipid, protein, as well as mitochondrial
function. Recent data further support that increased ROS
decreases bioavailable NO and thus impairs arterial relaxa-
tion [34]. Recent research has also shown that enhanced EC-
specific MR activation promotes oxidative stress, vascular
fibrosis, increased arterial stiffness, and impairment of
flow-mediated mesenteric artery relaxation [25].

Peri-vascular Adipose Tissue and Inflammation

Peri-vascular adipose tissue (PVAT) is a special local deposit
of adipose tissue and has functions in mechanical protection
and controlling vessel tone [35]. Data from the Framingham
Offspring and Third Generation cohorts found that elevated
PVAT volume is associated with increased thoracic and ab-
dominal aortic dimensions and abnormal increased arterial
stiffness even after adjusting for age, sex, and body mass
index [36]. Indeed, adipose tissue is an endocrine organ and
releases various biological activities including adipokines
[37]. PVAT produces some protective substances such as
adiponectin, which helps maintain normal physiological arte-
rial function [38, 39]. However, in individuals with obesity
and insulin resistance, there is increased release of pro-
inflammatory adipokines including interleukin-6, interleu-
kin-8, and tumor necrosis factor alpha, as well as toll-like
receptor-4 [18]. Activated nuclear factor kappa B (NF-kB) is
regarded as an important mechanism on increased arterial
stiffening. While p50 and p65 subunits of NF-kB are main-
tained in the cytoplasm, phosphorylation of NF-«B promotes
translocation of the heterodimer to the nucleus and release of
pro-inflammatory cytokines [18]. Macrophages are an impor-
tant driver of vascular inflammation and associated increased
arterial stiffness. Typically, macrophage polarization is tradi-
tionally dichotomized into M1 phenotypes (F4/80" CD11c")
and M2 phenotypes (F4/80" CD11¢” CD301" Argl”
CD206") [18]. Pro-inflammatory M1 phenotypes are associ-
ated with an increase of vascular inflammatory responses,
while macrophage M2 phenotypes are involved in anti-
inflammatory responses and tissue repair [40]. Interestingly,
cell-specific macrophage MR KO displays an increase in M2
polarization and CV protective effects [41]. Our recent data
show that diet-induced obesity causes an increase in macro-
phage infiltration, M1 phenotype polarization, and associated
increased aortic stiffness. Importantly, cell-specific ECMR
KO prevents these pathophysiological changes [25].

Sympathetic Activity

The role of increased sympathetic nervous system activity in
arterial stiffness and hypertension is increasingly recognized.
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Elevated sympathetic outflow is associated with increases in
circulating catecholamines, urinary norepinephrine, and mus-
cle sympathetic nerve activity in obese non-hypertensive in-
dividuals [42]. Autonomic ganglionic blockade decreases aor-
tic augmented pressure and PWV in women [43]. Sympathetic
activation can be mediated by reflex mechanisms including
arterial baroreceptor impairment, oxidative stress, inflamma-
tion, and psychological stress, as well as obstructive sleep
apnea [18]. There is an interaction between activated RAAS
and sympathetic nervous system activation. For example, el-
evated Ang Il induces permeability of the blood-brain barrier
and sympathetic activation that increases renin secretion and
Na* retention [44]. Aldosterone infusion increases muscle
sympathetic activation and impairs baroreflex responses
[45], whereas inhibition of MR with spironolactone prevents
chlorthalidone-induced sympathetic activation in individuals
with hypertension [46].

Assessment Methods of Arterial Stiffness

There are three noninvasive measurements for measuring ar-
terial stiffness including assessment of pulse transit time, anal-
ysis of wave contour in the arterial pulse, and, direct detection
of arterial geometry and pressure. Aortic PWV is widely
regarded as the gold standard in detecting arterial stiffness.
cfPWYV is recommended as an appropriate method to measure
arterial stiffness as established in 2015 by the American Heart
Association Council for High Blood Pressure [2¢]. New tech-
nologies such as atomic force microscopy also provide a pow-
erful investigative tool in detecting cell’s and tissue’s stiffness
at the nano-scale as shown in our recent studies [11¢, 25]. The
European Society of Hypertension (ESH)/European Society
of Cardiology (ESC) further suggest that a threshold value
(12 m/s) in PVW is recommended as an indicator of increased
arterial stiffness [47].

Therapeutic Strategies in Excessive Arterial Stiffness

Life style modifications comprising exercise, consumption of
low sodium, and better dietary habits are effective methods for
the prevention and management of increased arterial stiffness
and hypertension but patient compliance is one of the con-
cerns in long-term management [48, 49]. Although several
studies have shown suppression of arterial stiffness with anti-
hypertensive medication, the magnitude of lowering arterial
stiffness is variable among antihypertensive drugs [S0-52]. In
this regard, inhibition of RAAS using angiotensin converting
enzyme (ACE), AT-1R, and MR antagonists appears to be
superior compared to other antihypertensive medications
[53-56]. Targeting the MR is emerging as a useful approach
in combination therapy that reduces arterial stiffness [57-59].
This is also supported by studies showing reversal of the in-
creased arterial stiffness in chronic kidney disease patients
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after undergoing renal transplantation [60] and in subjects
with aldosterone producing adenomas after adrenectomy
[61]. These beneficial effects on arterial stiffness are indepen-
dent of blood pressure-lowering effects [52]. These findings
suggest that reversibility of arterial stiffness by blood pressure
independent effects may also be attributable to local remodel-
ing effects of these drugs on large artery stiffening [62]. A
combination of ACE inhibitors and AT-1R antagonists caused
significant decrease in PWV in chronic kidney patients [63].
Calcium channel blockers, diuretics, and beta blockers are less
effective in reducing arterial stiffness compared to ACE inhib-
itors and AT-1R antagonists perhaps because of less impact on
fibrosis and vascular remodeling [64—68]. In this regard,
targeting EnNaC is an attractive strategy. Indeed, very low
doses of amiloride, an ENaC inhibitor, can substantially de-
crease dietary obesity-related vascular and cardiac fibrosis
[11e, 12]. In addition, deletion of ECMR decreases arterial
stiffness in an amiloride-sensitive manner [25]. Preliminary
studies also support a role for Ang Il in development of arterial
stiffness in mice through stimulation of EnNaC. We have also
observed that xanthine oxidase inhibition reduces diet-
induced increased aortic fibrosis and stiffness [69]. The clin-
ical relevance of these finding is supported by studies demon-
strating greater effectiveness of a combination of low-dose
amiloride and spironolactone but not by the use of individual
drugs [70]. One of the limiting factors of amiloride is an in-
crease in potassium levels. The development of amiloride an-
alogues [71, 72] with effectiveness at lower concentration
with more specificity towards ENaC in preventing arterial
stiffness is being pursued.

Conclusions

Increased arterial stiffness is an important precursor and risk
factor for hypertension and CVD. Dysregulation of structure
and function of ECs, VSMCs, and ECM contribute to the
pathogenesis of arterial stiffening and fibrosis. Activation of
RAAS and sympathetic nervous activity, increases in oxida-
tive stress, abnormal PVAT, tissue inflammation, and sympa-
thetic outflow are all associated with the development and
progression of arterial fibrosis, stiffening, and CVD. A better
understanding of the underlying mechanisms increasing arte-
rial stiffness should provide new insights for future therapeutic
strategies for CVD.
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