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Abstract
Purpose of Review The pathophysiology of preeclampsia is complex and not entirely understood. A key feature in preeclampsia
development is an immunological imbalance that shifts the maternal immune response from one of tolerance towards one
promoting chronic inflammation and endothelial dysfunction. As a key regulator of immunity, IL-10 not only has immunomod-
ulatory activity, but also directly benefits vasculature and promotes successful cellular interactions at the maternal-fetal interface.
Here we focus on the mechanisms by which the dysregulation of IL-10 may contribute to the pathophysiology of preeclampsia.
Recent Findings Dysregulation of IL-10 has been demonstrated in various animal models of preeclampsia. Decreased IL-10
production in both placenta and peripheral blood mononuclear cells has been reported in human studies, but with inconsistent
results.
Summary The significance of IL-10 in preeclampsia has shifted from a key biomarker to one with therapeutic potential. As such,
a better understanding of the role of this cytokine in the pathophysiology of preeclampsia is of paramount importance.
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Introduction

Preeclampsia (PE) is a pregnancy-specific disorder typically
characterized by elevated blood pressure and proteinuria in the
second half of pregnancy. The American College of Obstetrics
and Gynecology (ACOG) defines PE as new onset hyperten-
sion (systolic blood pressure ≥ 140 mmHg and/or a diastolic
blood pressure ≥ 90 mmHg), with either proteinuria (>
300 mg/24 h) or organ dysfunction after 20 weeks of gestation
[1]. It affects 5–8% of all pregnancies and is a major cause of
maternal and fetal morbidity and mortality [2].

PE can be classified based on gestational age as early-onset
(symptoms starting prior to 34 gestational weeks) or late-onset

(symptoms starting at or after 34 gestational weeks) [3]. Early-
onset PE is usually of placental origin and is commonly asso-
ciated with abnormal utero-placental perfusion, a greater prev-
alence of placental lesions consistent with maternal under-
perfusion [4], low birth weight/preterm births, and fetal growth
restriction [5]. Late-onset PE tends to be milder in severity and
is considered to be related to preexisting maternal conditions,
such as diabetes, obesity, and chronic kidney disease [6–8].

Role of IL-10 and Evidence of Its
Dysregulation in Preeclampsia

Overview of Pathophysiology of Preeclampsia

The proposed pathophysiological mechanisms pertinent to PE
are illustrated in Fig. 1. It involves two pathways resulting in
two distinct clinical presentations, both of which converge on
a common pathway of endothelial dysfunction, hypertension,
proteinuria, and end organ damage.

One of the pathways involves abnormal placentation
resulting in placental ischemia and inflammation, along
with the release of anti-angiogenic, pro-inflammatory,
and other substances into the maternal circulation, leading
to endothelial dysfunction [6, 9]. Abnormal placentation is
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a consequence of shallow trophoblast invasion of the ma-
ternal spiral arteries with subsequent insufficient arterial
remodeling. This results in inadequate delivery of oxygen
and nutrients to the placenta and fetus. The primary event
responsible for this is still unclear. One possibility is that
an inappropriate maternal immunologic reaction to the al-
logenic fetus, with the attendant lack of the expected shift
towards the Th2 phenotype, leads to a predominance of the
Th1 phenotype, resulting in insufficient trophoblast inva-
sion [10]. Alternatively, it is possible that abnormal tropho-
blast invasion and placental hypoxia may also play a role in
this shift, as evidenced by the release of anti-angiogenic and
other bioactive molecules into the maternal circulation under
hypoxic conditions [11]. In a reduced uterine perfusion pres-
sure (RUPP) model of PE, placental ischemia was associated
with decreased levels of IL-10 and concurrent increases in
angiotensin II type I receptor agonistic autoantibodies (AT1-
AA) and endothelial cell dysfunction [12••].

An exaggerated Th1 response negatively affects the devel-
oping fetus and may cause miscarriage, preterm birth, or var-
ious forms of fetal growth restriction [13]. Furthermore, this

response may exacerbate placental inflammation, with
the release of reactive oxygen species (ROS), and pro-
inflammatory cytokines such as TNF-α and IL-6, as
well as activation of cytotoxic T cells. The Th2 cellular
response is consequently further suppressed along with
a decrease in the number of regulatory T cells (Tregs)
and, hence, IL-10 levels. Placental tissue damaged by
hypoxia or inflammation releases anti-angiogenic/vaso-
active factors such as soluble fms-like tyrosine kinase-
1 (sFLT-1 or sVEGFR) and soluble endoglin (sEng),
stimulating AT1-AA and endothelin-1 (ET1) production,
while secreting lower levels of pro-angiogenic factors
such as vascular endothelial growth factor (VEGF) and
placental growth factor (PlGF) [14].

The second proposed pathway relates to preexisting condi-
tions in the mother, such as obesity, infection, autoimmune
disease, hypertension, diabetes, sickle cell anemia, extremes
in maternal age, and adverse obstetric history. Such conditions
can induce endothelial dysfunction, creating an immune im-
balance between pro- and anti-inflammatory factors, release of
free radicals, vascular damage, and further endothelial cell

Fig. 1 The role of immune system dysregulation in the pathophysiology
of preeclampsia. In the placental pathway, immune dysregulation may
cause abnormal placentation with an early stop in trophoblast invasion
of maternal blood vessels, or it may be that abnormal placentation and
placental hypoxia cause immune imbalance, with low levels of IL-10 and
a decrease in anti-inflammatory and increases in pro-inflammatory and
anti-angiogenic activities. Abnormal placentation, placental hypoxia and
inflammation will result in release of various active substances into the
maternal circulation causing vascular dysfunction, inflammation, and
thrombotic propensity, ultimately leading to preeclampsia symptoms.
On the other side, maternal preexisting conditions that cause endothelial

dysfunction, coupled with pro-inflammatory immune system imbalance,
lead to systemic maternal cell activation resulting in hypertension,
proteinuria, and/or organ dysfunction seen in preeclampsia.
Abbreviations: downwards arrow decreased, upwards arrow increased,
AT1-AA angiotensin II type I receptor agonistic autoantibodies, VEGF
vascular endothelial growth factor, sFlt-1 soluble fms-like tyrosine
kinase-1, sEng soluble endoglin, PlGF placental growth factor, Tregs
regulatory T cells, IL interleukin, TNF-α tumor necrosis factor alpha,
ROS reactive oxygen species, ET-1 endothelin-1, IFN-γ interferon
gamma, Th1 T helper type 1, Th2 T helper type 2, Th17 T helper type 17
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dysfunction. This combination eventually presents with
symptoms of preeclampsia [15].

Th2/Th1 Imbalance

A critical event in the pathophysiology of PE is an abnormal
maternal immune response. The main immune system regula-
tor is the CD4+ T helper cell that ultimately orchestrates other
cells associated with the immune response. These cells are
mainly composed of two distinct primary phenotypes, Th1
and Th2. The Th1 phenotype is characterized by the secretion
of pro-inflammatory cytokines such as TNF-α, IL-6, IL-8, IL-
1, and IFN-γ; the stimulation of effector cytotoxic T cells; and
the inhibition of both the Th2 response and humoral immuni-
ty. The Th2 response, mediated by the Treg subpopulation of
T cells, is characterized by the production of anti-
inflammatory cytokines, namely IL-4, IL-5, IL-10, IL-35,
and TGF-β; the inhibition of cellular cytotoxic T cells; the
inhibition of Th1 response; and a shift towards humoral im-
munity [16]. These opposing effects of the pro-inflammatory
Th1 and anti-inflammatory Th2 phenotypes allow for proper
homeostasis and control of inflammation.

Normal pregnancy is characterized by a shift towards Th2
relative to Th1 immunity; this is commonly referred to as
“Th2 polarization” (Fig. 2) [17, 18]. The heightened Th2 rel-
ative to the Th1 response during pregnancy corresponds with
critical placentation events. Normal pregnancy, for instance, is
associated with proliferation and increased numbers of Tregs,
the highest levels of which are seen during the second trimes-
ter, with decreasing levels after pregnancy [19]. Tregs act to
suppress Th1 and Th17 responses [20, 21] and also secrete IL-
10 [22], ensuring a Th2 predominant state. This shift is be-
lieved to protect the developing fetus from the maternal im-
mune system to ensure a state of controlled inflammation es-
sential for a successful pregnancy. One of the key cytokines in
the Th2 response is IL-10. IL-10 levels are increased during a
normal pregnancy and remain elevated until delivery [23].
Serum levels of IL-10 may be hormonally regulated and cor-
relate well with levels of progesterone and 17-β-estradiol. IL-
10 may be involved in the maintenance of pregnancy by stim-
ulating progesterone secretion from the corpus luteum [24,
25].

While a normal pregnancy exhibits a heightened Th2
immune response, PE is associated with an immune system
imbalance driven predominantly by a Th1-mediated re-
sponse [26, 27, 28••]. Multiple studies have reported a shift
towards the Th1 phenotype expressed by different PE cell
types, such as uterine and circulating natural killer cells
[27], placental [29], and fetal-derived macrophages [30],
uterine decidual T-lymphocytes [31], and peripheral blood
mononuclear cells (PBMCs) [32•, 33]. These cells have
decreased secretion of IL-10 and increased secretion of
pro-inflammatory cytokines. Saski et al. reported that

circulating as well as placental levels of regulatory T-
lymphocyte subsets are decreased in PE, further demon-
strating an abnormal Th1 shift [34].

The Role of IL-10

As a key immunosuppressive cytokine, IL-10 is secreted pri-
marily by Th2 cells, macrophages, natural killer cells,
granulocytes, dendritic cells, and by B cells stimulated by
auto-antigens. Additionally, stimulation of Toll-Like
Receptors (TLR) 4 and 9 by their respective ligands, along
with vitamin D3 receptor stimulation, enhanced IL-10 produc-
tion [35, 36]. Mesenchymal stem cells have also been shown
to secrete IL-10 [37]. Interestingly, the expression of this cy-
tokine and its cognate receptor has been reported in a number
of cell types in the decidua including, trophoblasts, stromal
cells, macrophages, and uterine natural killer cells [38].

IL-10 has three major beneficial roles in normal pregnancy
as one of the key cytokines in the Th2 cellular response: pro-
moting successful placentation, controlling inflammation, and
regulating vascular function. The relative deficiency of IL-10
contributes to the development of PE through these pathways.

Role of IL-10 in Placentation and Maintenance
of Pregnancy

IL-10 has important roles in trophoblast invasion, differentia-
tion, and proliferation by regulating vascular activity and
endovascular interactions at the maternal-fetal interface.
Placental levels of IL-10 are influenced in a gestational-
dependent manner, with the highest values found in early
pregnancy followed by a stepwise decrease leading up to term

Fig. 2 Immune system helper T cell regulatory response in preeclampsia
compared to normal pregnancy. Normal pregnancy is a state of increased
immune tolerance characterized by predominance of the regulatory Th2
response, with increased IL-10 cellular production and tightly controlled
inflammation. In preeclampsia, suppressed Th2 and increased Th1
responses cause pro-inflammatory and anti-angiogenic milieu at both
the placental and maternal systemic levels, resulting in widespread
maternal endothelial cell dysfunction and preeclampsia symptoms.
Abbreviations: Th1 Thelper 1, Th2 Thelper type 2
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[23]. IL-10 modulates the maternal reaction to paternal anti-
gens in the fetus and promotes fetal allograft tolerance by
inducing human leukocyte antigen G (HLA-G) expression
and inhibiting lysis by maternal NK cells [39]. However, IL-
10 is not essential for fetal survival or placental viability. IL-
10-deficient mice, for instance, exhibit altered fetal growth,
but otherwise have normal pregnancies [40]. Furthermore,
inhibiting IL-10 during the second half of pregnancy in mice
resulted in fetal growth restriction, but did not affect the dura-
tion of gestation or fetal outcome, illustrating the critical but
non-essential role of IL-10 in fetal growth [41]. IL-10 pro-
motes the maintenance of pregnancy as demonstrated by a
mouse model of preterm birth in which the administration of
human adipose-derived mesenchymal stem cells prevented
premature delivery by increasing serum levels of IL-10 [42].
There is evidence of an association between lower IL-10
levels caused by IL-10 gene promoter polymorphisms with
preterm births and recurrent pregnancy loss [43].

The mechanism(s) by which IL-10 affects trophoblast in-
vasion is still not clear. It has been shown, however, that IL-10
increases trophoblast resistance to Fas-mediated apoptosis
[39] and regulates the activities of both matrix metalloprotein-
ases [44] and serine proteases [45] in various cells. Resistance
to apoptosis may not only prevent fetal rejection, but also act
to promote trophoblast invasion and adequate vascular
perfusion.

Multiple investigators have demonstrated decreased pla-
cental levels of IL-10 in PE using a variety of methods.
Researchers have shown that placental explants [46] and cul-
tured placental trophoblasts [47] secrete less IL-10 in response
to hypoxia. This is consistent with studies demonstrating de-
creased IL-10 levels in placentas from PE patients [48, 49].
Decidual T lymphocytes, in a similar manner, produce less IL-
10 in PE compared to those of normotensive patients [31].
This consistent finding of decreased placental IL-10 levels
across studies provides strong evidence that reduced IL-10
levels in the placenta are a characteristic hallmark of PE.

Role of IL-10 in Modulation of the Inflammatory
Response

The maternal innate immune system can be activated through
TLR3 stimulation by pathogens or necrotic debris, leading to
activation of the adaptive immune system with a Th1 predom-
inance, as is observed in PE [50•]. Stimulation of TLR3 in IL-
10-deficient mice with polyinosine-polycytidylic acid (Poly
I:C), a ds-RNA receptor agonist, resulted in an exaggerated
PE-like phenotype compared to their wild type counterparts
[50•]. Uncontrolled inflammation occurs at the placental level
and in the maternal vasculature, with the potential to expand to
other maternal organs.

IL-10 works to suppress inflammation and the cellular im-
mune response while promoting a humoral immune response.

The anti-inflammatory effect(s) of IL-10 is achieved through
binding of IκBα which inhibits the release and translocation
of NFκB [35, 49, 51], an important regulator of cytokine
secretion. By inhibiting NFκB binding, IL-10 prevents the
synthesis and secretion of various cytokines, such as TNF-α,
IL-1β, IL-6, IL-8, IL-12, and granulocyte-macrophage
colony-stimulating factor (GM-CSF). Pro-inflammatory cyto-
kines stimulate the differentiation and activation of inflamma-
tory cells in both the innate and the adaptive arms of the
immune system. IL-10 also reverses the downregulation of
suppressor of cytokine synthesis-3 (SOCS3), a negative regu-
lator of the JAK-STAT signaling pathway of cytokine synthe-
sis in PBMCs and neutrophils [52–54]. This may be an addi-
tional mechanism which promotes the pro-inflammatory phe-
notype of mononuclear cells observed in PE patients.

IL-10, in addition to inhibiting pro-inflammatory cytokine
production, also reduces inflammation by stimulating Treg
differentiation and proliferation, with subsequent increased
secretion of anti-inflammatory cytokines (IL-4, IL-5, IL-10,
and TGF-β). IL-10 promotes Treg population growth by stim-
ulating the expression of the transcription factor, Forkhead
box protein 3 (Foxp3) in CD4+ T cells [55]. Decreased per-
centages of Tregs in both the peripheral blood and placenta
have been reported in women with PE [56, 57], as well as in
animal models of PE [58]. The induction of endogenous Tregs
by a super agonistic CD28 monoclonal antibody (mAB) sup-
pressed inflammation, lowered circulating levels of vasoactive
factors, reduced hypertension, and increased IL-10 levels in
the RUPP model of PE [59••]. Administration of Tregs from a
normal pregnancy into pregnant rats in the RUPP model of
PE, similarly, resulted in reduced blood pressure and de-
creased levels of the inflammatory mediators, IL-17, TNF-α,
and AT1-AA, all of which have been shown to increase blood
pressure during pregnancy. Interestingly, IL-10 levels were
not significantly different between groups [60]. Intra-
peritoneal administration of IL-10 was associated with an in-
creased number of Tregs and resulted in milder PE symptoms
in pregnancies complicated by placental ischemia in rats
[12••].

As IL-10 favors a Th2 phenotype over that of Th1, a defi-
ciency of IL-10 leads to a predominantly Th1/Th17 response
[56]. This Th1 response tends to further inhibit Th2 activity
and increase activated CD4+ Th1 cells, which themselves se-
crete pro-inflammatory cytokines, increase cytotoxic CD8+

cells, contribute to humoral immunity dysfunction with auto-
antibody production, and activate cells of the innate immune
system. Adoptive transfer of activated CD4+ T cells obtained
from RUPP pregnant rats caused PE-like features in normal
pregnant rats, characterized by decreased IL-10 levels, in-
creased AT1-AA, and elevated ET-1 and ROS levels [61].
Similarly, adoptive transfer of activated Th1-like splenocytes
into pregnant BALB/c mice resulted in PE-like symptoms
[62]. Stimulation of B cells with activated Th1 cells, along
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with decreased influence of Tregs, may be responsible for
AT1-AA production. Infusion of agonistic AT1-AA causes
hypertension with a concurrent decrease in IL-10 and eleva-
tions in TNF-α in pregnant mice and rats [63, 64••].
Conversely, B cell depletion in RUPP rats was associated with
a decrease in blood pressure [65]. These findings suggest that
reduced IL-10 culminates in a Th1 predominant state, leading
to many of the characteristic PE symptoms.

This immune system imbalance may result in release of
pro-inflammatory cytokines and in immune cell type signa-
tures that lead to immune activity against the fetus and to
vascular dysfunction. Studies have reported decreased circu-
lating IL-10 levels and increased TNF-α and IL-6 levels in PE
[66, 67]. While the data regarding circulating levels of IL-10
have yielded discordant results, decreased secretion of IL-10
and increased secretion of pro-inflammatory cytokines were
reported more consistently in activated PBMCs [33, 68, 69].

The role of IL-10 deficiency during pregnancy has been
analyzed in various animal models. Inhibition of IL-10 by a
recombinant mAB resulted in PE features in pregnant baboons
[70•]. PE-like symptomswere induced in IL-10-deficient mice
in several ways, including stimulation of TLR3 with poly I:C
[50•], exposure to hypoxic environmental conditions [71], and
injection of sera from women with severe PE, the latter
representing a blueprint of the preeclampsia secretory milieu
[72•]. IL-10-deficient mice thus represent a good in vivo sys-
tem for the study of PE because IL-10 deficiency predisposes
them to an exaggerated pro-inflammatory response, as well as
to impaired angiogenesis during pregnancy. Supplementation
with recombinant IL-10 (rIL-10) improved the symptoms as-
sociated with PE in RUPP rats [12••], desoxycorticosterone
acetate (DOCA)-induced pregnant rats [73], and a poly I:C-
induced IL-10 knock out (KO) model of PE [50•]. As IL-10
deficiency contributes to chronic inflammation that instigates
many of the components of PE pathology, IL-10 is considered
a potential therapeutic target. New treatment options focused
on increasing levels of IL-10 have been investigated in animal
models of PE [74–76].

It is important to emphasize the extent and degree of in-
flammation in the pathophysiology in PE.While normal preg-
nancy is viewed as a state of controlled inflammation, which
in some measure is beneficial for appropriate placentation, PE
is marked by an exaggerated inflammatory response, with a
relative deficiency of anti-inflammatory compared to pro-
inflammatory activity.

Role of IL-10 in Vascular Function

In addition to the indirect effects of IL-10 on vascular function
through the inhibition of secretion of pro-inflammatory cyto-
kines, decrease in inflammation, and prevention oxidative
stress caused by inflammation, IL-10 also directly influences
the vasculature. Evidence in support of this has been provided

by IL-10 knockout mice which are prone to hypertension and
the development of vascular dysfunction without any addi-
tional inflammatory stimuli.

IL-10 also acts to directly modulate endothelial nitric oxide
synthase (eNOS) activity by preventing eNOS uncoupling,
which results in increases in nitric oxide (NO) levels [77].
IL-10 increases the production of NO from human saphenous
vein endothelial cells in a dose-dependent manner. This effect
can be blocked by the use of nitric oxide synthase inhibitor,
NG-nitro-l-arginine methyl ester (L-NAME), as well as an
antibody against IL-10 [78]. Interleukin-10 KO mice have
impaired endothelium-dependent vascular relaxation of isolat-
ed carotid arteries and increased levels of superoxide anion
[79, 80].

Inflammation upregulates the protein expression of induc-
ible NOS (iNOS), leading to high levels of NO. Nitric oxide,
in the presence of a pro-oxidative environment, reacts with
superoxide to form the potent oxidant, peroxynitrite, which
subsequently nitrates tyrosine residues on proteins. This se-
quence of events results in reduced bioavailability of NO. IL-
10 is known to prevent ROS generation by regulating the
activities of NOX1, NOX2, and p22,phox important subunits
of the NADPH oxidase complex and superoxide anion pro-
duction [81, 82]. IL-10 deficiency is associated with increased
NOX activity, which leads to increased generation of ROS.
Taken together, IL10 deficiency leads to inflammatory-based
iNOS upregulation, ROS formation, and eNOS downregula-
tion. The net result is decreased bioavailability of NO and
consequent impairment of endothelium-dependent vascular
relaxation.

The aforementioned oxidative environment, particularly
that due to peroxynitrite production, also leads to a heightened
state of vasoconstriction mediated by the upregulation of
COX2, which increases thromboxane A2 levels in the vascu-
lature. Young, but not old, IL-10 KO mice have increased
expressions of iNOS and COX2 in their aortas compared to
age-matched WT controls [83]. Both of these inducible en-
zymes are regulated by NFκB [84]. One of the known actions
of IL-10 is inhibition of NFκB activity. Ultimately, both in-
creased vasoconstriction and impaired vascular relaxation in
the setting of IL-10 deficiency result in hypertension.

It appears that IL-10 acts as a direct antagonist of TNF-α
and ET-1 activities, both of which act to inhibit expression of
eNOS [85]. IL-10 inhibited ET-1-mediated vascular dysfunc-
tion in rodent blood vessels [85]. Administration of IL-10 to
DOCA/saline-treated (PDS) rats decreased plasma levels of
ET-1 which led to a consequent fall in their blood pressures
[73]. TNF-α has been shown to impair endothelium-
dependent vascular relaxation and enhance vasoconstriction
in isolated aortas of pregnant rats [86, 87]. Furthermore, infu-
sion of TNF-α into IL-10 KO mice impaired acetylcholine-
induced relaxation compared to that seen in the saline-infused
IL-10 KO mice. The same effect was not observed in WT
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mice infused with TNF-α. The impaired relaxation was sig-
nificantly reversed with the co-administration of IL-10 in the
TNF-α-treated mice, suggesting that IL-10 inhibits the actions
of TNF-α [77]. Similarly, treatment of primates with an anti-
IL-10 mAB caused increased resting mean arterial pressure
(MAP) suggesting impaired vasodilatation. The MAP-
elevating effect of the anti-IL-10 mAB was not observed with
co-administration of anti-TNF-α. This implies that the blood
pressure effect of anti-IL-10 mAB may be mediated via
TNF-α [70•]. IL-10 additionally is able to inhibit angiotensin
II-mediated oxidative vascular stress, both in vivo and in vitro,
thereby preventing the negative effects of AT1-AA [88].
Based upon these findings, it is evident that IL-10 exerts mul-
tiple beneficial effects on the vasculature, and its relative de-
ficiency might trigger the sequence of impaired relaxation,
increased vasoconstriction, and inflammation in the blood
vessel wall causing endothelial dysfunction and symptoms
of PE.

Historical Perspective

IL-10 initially was viewed as a potential predictive marker of
PE. However, prior studies assessing circulating IL-10 levels
have reported inconsistent results. Some studies have reported
increased levels [89–91], while others have indicated de-
creased levels [66, 67, 92], and still other non-significant dif-
ferences in IL-10 levels between PE and normotensive pa-
tients [28••, 93]. Since IL-10, as a cytokine, is predicted to
have paracrine and autocrine effects, its placental and decidual
secretion has also been evaluated. Most of the studies have
reported decreased placental levels of IL-10, both in vivo and
in vitro [48, 94]. A few, however, have reported elevated
levels [90], whereas others have indicated no difference
[95]. Previous in vitro studies measuring IL-10 production in
placental explants or in cultures of trophoblasts have found
reduced placental/trophoblast secretion of IL-10 under hypox-
ic conditions [46, 96, 97]. Furthermore, Makris et al. failed to
show a correlation between serum IL-10 levels and either
placental IL-10 mRNA or positive villous staining for IL-10
[98]. These conflicting findings relate to the variability in both
experimental design and techniques of IL-10 determination
among the studies and will be addressed in the ensuing
discussion.

Many authors have evaluated IL-10 gene promoter
polymorphisms as potential genetic links to PE. The three
main IL-10 polymorphisms associated with PE are IL-10-
1082 G/A, IL-10-592 A/C, and IL-10-819 T/C, all three of
which have been associated with decreased IL-10 produc-
tion. Although many recent studies have shown positive
correlations of these polymorphisms with PE [99–102],
the overall results have been inconsistent. Zhang et al., in
a recent meta-analysis of 13 individual studies, concluded

that there was insufficient evidence of a significant as-
sociation between IL-10-1082 G/A or IL-10-819 T/C
polymorphisms [103] and PE. Lee et al. [104], in a
separate meta-analysis of 1082 G/A, 819 C/T, and 592
polymorphisms, concluded that these polymorphisms are
unlikely to influence susceptibility to PE. Researchers
have gained valuable insight into the indispensable role
of IL-10 in PE pathophysiology with the development
of PE animal models. IL-10-deficient mice, consequent-
ly, have been used as the basis for several PE models,
namely those induced with sera from PE patients [72•],
hypoxia [71], and poly I:C [50•]. Dysregulation of IL-
10 has also been shown in other animal models of PE,
including the RUPP [12••, 59••], NOS inhibition (L-
NAME) [74, 105], and lipopolysaccharide-induced [75,
106] rat models, as well as the BPH/5 mouse model of
PE [58].

Recent scientific interest in IL-10 has been related primar-
ily to investigating whether IL-10 can be utilized as a thera-
peutic modality, either directly [12••, 107••] or through IL-10
upregulation using different methods, such as the upregulation
of Tregs [59••], administration of human umbilical cord-
derived mesenchymal stem cells (HU-MSCs) [64••, 75,
106], or dietary micronutrient and omega-3 supplementation
[74].

Human Studies

Recent studies evaluating the role of IL-10 in PE are presented
in Table 1. Researchers continue to investigate the signifi-
cance of cytokine profiles in PE. Ferghuson et al. conducted
a large cohort study assessing the levels of inflammatory and
oxidative stress markers at various times during pregnancy.
The individual levels of IL-10 were not significantly different
between preeclampsia and normotensive patients. However,
when the cytokine patterns were examined together, they
showed a distinct pattern across gestation. The authors con-
cluded that the early second trimester appears to be the opti-
mal time point for measurement of these markers. This time
point coincides with important events at the level of the pla-
centa [28••]. The results of both Tangeras et al. and Taylor
et al. were consistent with those of the Ferghuson study.
However, studies continue to provide inconclusive data, with
some showing increased [117] and others showing decreased
[66, 118] IL-10 levels. The variability of outcomes and incon-
sistencies of the data were likely influenced by significant
discrepancies in study design, including different patient eth-
nicities, IL-10 detection methods, various PE phenotypes, and
the gestational ages at which the samples were obtained.
Furthermore, IL-10 has a short plasma half-life, which
may contribute to these outcomes. Other major sources of
IL-10 may contribute to its circulating levels. This, in turn,
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may explain the lack of correlation between placental/
PBMC production and systemic IL-10 levels. Increases in
IL-10 levels in select PE patients may be a compensatory
r e s p o n s e s e c o n d a r y t o t h e v i c i o u s c i r c l e o f
hyperinflammation and vascular oxidative stress. Based
on the above considerations, measurement of serum IL-10
may not be a suitable early predictor of PE [119].
Considering that the relationships among pertinent interleu-
kins more accurately represent maternal-related events in
PE, emphasis should be placed on the ratios of these inter-
leukins rather than upon individual cytokines.

Local IL-10 production, whether via the placenta or acti-
vated PBMCs, maymore accurately reflect the role of IL-10 in
PE. Recent studies have consistently demonstrated decreased
placental IL-10 production [37, 94, 115]. Studies investigating
PBMCs in PE have shown mostly reduced IL-10 secretion in
both stimulated and unstimulated cells [32•, 33, 68, 120].
However, contradictory findings have also been reported, with
increased IL-10 secretion along with other pro-inflammatory
cytokines [116].

Animal Studies

A host of animal models have been developed to study the
pathophysiology of and the possible therapeutic approaches to
PE. Although there is a wide variety of animal models from
which to choose, this review focused primarily on those
models that emphasize IL-10 dysregulation. Kalkunte et al.,
in 2010, developed a serum-based murine model of PE in
which sera from PE patients were administered to IL-10 KO
mice. These mice developed symptoms similar to those
found in PE, including placental hypoxic injury, and in-
creased levels of sFlt-1 and sEng. TheWTmice treated with
the PE sera did not demonstrate the classic PE phenotype.
This study also reported that the PE sera induced in vitro
dysregulated cross-talk between first trimester trophoblast
and human umbilical vein endothelial cells that could po-
tentially lead to altered spiral artery remodeling [72•].

Lai et al. evaluated the important role IL-10 in a murine
hypoxia-induced PE model. They showed that low oxygen
levels induced more severe PE-like symptoms when associat-
ed with IL-10 deficiency. Furthermore, anti-angiogenic fac-
tors, apoptotic pathways, and placental injury were all present.
Interestingly, these symptoms were reversed with IL-10 ad-
ministration, emphasizing the protective role of IL-10 in
hypoxia-induced PE [71].

Chatterjee et al., in 2011, demonstrated that activation of
the innate immune response via TLR3 promoted the switch to
the Th1 phenotype during pregnancy, resulting in increased
blood pressure, endothelial dysfunction, and proteinuria. This
sequence of events was found only in pregnant mice. They
also showed that deficiency of IL-10, along with TLR3T
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activation, worsened the PE-like phenotype and that exoge-
nous IL-10 treatment demonstrated a protective effect [50•].

Potential Therapeutic Options in PE Involving
Interleukin-10

Due to a better understanding of the mechanisms underlying
the pathophysiology of PE, a number of recent studies evalu-
ating the potential therapeutic approaches towards PE have
been performed (Table 2).

A recent clinical trial involving PE patients showed that
vitamin D administration augmented the efficacy of anti-
hypertensive drug treatment in severe PE patients. This effect
was accompanied by increased IL-10 and decreased TNF-α
levels in these patients [121••]. This suggests that vitamin D
may enhance the effects of anti-hypertensive treatment
through beneficial modulation of pro- vs anti-inflammatory
cytokines in PE patients.

At least five different animal model studies have shown
an advantageous role of exogenous administration of IL-10
in pregnancy-induced hypertension. Tinsley et al. demon-
strated that continuous intraperitoneal administration of re-
combinant human IL-10 attenuated the PE-like phenotype
with DOCA-induced hypertension in pregnant rats [73].
The positive effects of IL-10 treatment during gestation
included normalized blood pressure, endothelial function,
urinary protein excretion, number of pups per litter, as well
as decreased plasma levels of ET-1 and serum levels of
IFN-γ, reduced placental levels of IFN-α, and lower
aortic/placental platelet-endothelial cell adhesion molecule
(PECAM) expression. A similar study using rIL-10 in a
poly I:C-induced mouse model of PE resulted in signifi-
cantly decreased blood pressure, increased aortic relaxa-
tion, decreased PECAM expression, and diminished pla-
cental TLR3 levels [50•]. These findings were corroborated
by the same group in 2015 [107••]. This latter study further
demonstrated that co-treatment with rIL-4/IL-10 prevented
PE-related proteinuria, as well as the increased incidence of
fetal demise in Poly I:C treated pregnant mice, whereas the
use of either cytokine alone had no effect on these param-
eters. Harmon et al. evaluated the effects of IL-10 supple-
mentation using mini-osmotic pumps in the RUPP rat mod-
el of PE [12••]. This treatment resulted in a significant drop
in blood pressure, a rise in circulating levels of IL-10 and
Tregs, and an elevation in placental levels of TGF-β when
compared to those seen in the RUPP controls. Furthermore,
the numbers of circulating CD4+ T cells, levels of TNF-α
and IL-6, placental levels of ET-1 and AT1-AA, and pla-
cental oxidative stress were decreased. None of the studies
reported any adverse effects of these interventions on the
fetuses.

In addition to exogenous IL-10 treatment, human um-
bilical cord mesenchymal stem cells (Hu-MSC) also have
been used as treatment in animal models of PE. Fu et al.,
Zhang et al., and Wang et al. all evaluated the effective-
ness of MSC administration in an endotoxin/LPS/AT1-
AA-induced-induced rat model of PE [64••, 75, 106].
Treatment using MSCs significantly ameliorated hyper-
tension, proteinuria, and the numbers of white blood cells
in the LPS-induced rats. This effect was also associated
with decreases in pro-inflammatory TNF-α and IL-1β
levels and with an increased level of anti-inflammatory
IL-10 [75]. Zhang et al. assessed the effects of Hu-MSC
in an AT1-AA-induced hypertension pregnant rat model
and demonstrated that intravenous infusion of Hu-MSCs
attenuated the hypertension in pregnant rats, with a con-
comitant increase in circulating IL-10 [64••].

Dong et al. reported that simvastatin treatment significantly
raised VEGF and IL-10 levels while reducing sFlt-1, TNF-
alpha, and malondialdehyde (MDA) levels compared to the
untreated group in a L-NAME-induced rat model of PE [105].
A recent study reported that the stimulation of Tregs with a
CD28 antibody reduces inflammation; downregulates ET-1,
AT-AA, and ROS pathways; and lowers hypertension in the
RUPP rat model of PE [59••]. These effects may be attribut-
able in part to the observed increase in IL-10 production as a
result of Treg stimulation. The study also reported an im-
provement in fetal weights.

Nutritional supplementation of omega-3 fatty acids, vita-
min B12, and folic acid has also been shown to reduce inflam-
mation in pregnancy-induced hypertension and to improve the
symptoms of PE in an L-NAME-induced rat model of PE,
accompanied by increases in both mRNA and protein levels
of placental IL-10 [74, 122].

Conclusion

PE is not the result of a single causative factor or pathophys-
iological pathway, but rather a complex entity with multiple
etiological components contributing to its development and
progression.We have addressed in this review the integral role
of IL-10, a critical cytokine and key regulator of the immune
system, its biologic effects, and its association in the context of
PE. We conclude that immune system dysregulation, particu-
larly related to IL-10 production, may present a setting that
promotes PE development and progression. Therapeutic ap-
proaches aimed at IL-10 upregulation may offer promising
treatment options in the clinical management of PE.
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