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Abstract
Purpose of Review We review the known mechanisms of
sodium-sensitive hypertension in the metabolic syndrome
with a focus on preclinical models, differences between these
models, and methodological limitations. We also identify fu-
ture directions for a better understanding and treatment of this
common condition.
Recent Findings Rigorous methodologies to measure blood
pressure in preclinical models may clarify some of the incon-
sistencies in the literature. Renal, neural, hormonal, and car-
diovascular systems are dysregulated and contribute to elevat-
ed blood pressure. Local renin-angiotensin systems enhance
systemic hormone signaling to increase blood pressure.
Summary Since the original description of metabolic syn-
drome, investigators from many fields have contributed to
an increasingly complex and mechanistic understanding of
this common condition. These systems integrate to regulate
sodium transport in the kidney leading to hypertension and
enhanced sodium sensitivity. An array of non-uniform preclin-
ical models are used and support clinical studies to inform
which models are pathophysiologically relevant for further
mechanistic studies to guide targeted therapy.

Keywords High fat diet . Obesity . Insulin resistance .

Sodium sensitivity . Mineralocorticoid receptor

Introduction

What is the Metabolic Syndrome?

The metabolic syndrome, as defined by the International
Diabetes Federation, is a group of factors that includes visceral
adiposity, dyslipidemia, and hypertension [1]. The term, met-
abolic syndrome, was first coined by Haller [2] in 1977,
though a clustering of conditions predisposing to atheroscle-
rosis had been noted in the 1920s [3]. In 1988, Reaven [4]
posited insulin resistance as the central etiology of the meta-
bolic syndrome, or syndrome X. Today, the metabolic syn-
drome affects up to one-third of Americans [5].

What is Sodium Sensitivity?

The magnitude of rise or fall in blood pressure with increases
or decreases of sodium intake is termed sodium sensitivity and
is caused by a primary increase in renal sodium reabsorption.
In both humans and animal models, sodium sensitivity is
widely variable across individuals. Kawasaki and Bartter
demonstrated this wide variation in the first description of
sodium sensitivity in humans [6]. Despite this variability, in-
dividuals with the metabolic syndrome are more sodium-
sensitive than healthy controls.

Epidemiology of Sodium Sensitivity Hypertension
in the Metabolic Syndrome

Among factors in the metabolic syndrome, obesity and insulin
resistance are independently associated with hypertension. In
the GenSalt study, the metabolic syndrome was associated
with a ~40% increase in sodium sensitivity compared with
controls after multivariate adjustment [7]. In the
INTERSALT study [8], which observed epidemiologic trends
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in blood pressure and sodium intake across communities
throughout the world, each 10 kg increase in body weight
associated with an average of 3.0 and 2.2 mmHg increase in
systolic and diastolic blood pressure, respectively. The
Framingham study [9] estimated obesity, or adiposity, as a
major predictive factor for almost 75% of individuals with
hypertension, and the Trials of Hypertension Prevention study
[10] demonstrated dramatic reductions in blood pressure with
weight loss. Approximately one-half of patients with essential
hypertension have insulin resistance [11]. In turn, obesity and
insulin resistance-associated hypertension is more sodium-
sensitive than in hypertensive controls without obesity [12].

Sodium-Sensitive Hypertension in the Metabolic
Syndrome via Renal Sodium Transport

Based on Guyton’s theory, the final common pathway for all
forms of hypertension is decreased renal sodium excretion [13],
which expands the blood volume, and increases systemic blood
pressure to excrete excess sodium to achieve steady-state. While
increased vascular smooth muscle tone may acutely increase
blood pressure under many physiologic scenarios, including the
metabolic syndrome, compensatory sodium excretion must be
impaired to permit this increased blood pressure to persist (i.e.
hypertension). Evidence of many endocrine and metabolic path-
ophysiologic processes have been described in the metabolic
syndrome including enhanced general and renal sympathetic ner-
vous system activity [14, 15]; oxidative stress [16, 17] and in-
flammation [18] in the kidney; insulin activation of renal tubular
epithelial cells [19–22]; and/or activation of the systemic, or local
renin-angiotensin systems including enhanced mineralocorticoid
action [23–25]. The final common pathway for these mecha-
nisms is impaired glomerular filtration rate, or increased tubular
sodium reabsorption via expression or post-translational modifi-
cation of sodium transporters and/or their regulatory components
[26].

Despite what we have learned regarding the mechanisms of
sodium-sensitive hypertension, major guidelines for blood
pressure management do not define specific classes of antihy-
pertensive medications for individuals with the metabolic syn-
drome [27]. In this review, we will outline the advantages and
disadvantages of commonly used preclinical models, high-
light the known mechanisms of the sodium-sensitive hyper-
tension associated with parameters of the metabolic syn-
drome, and discuss current gaps in the literature and future
directions in this important field of research.

Preclinical Models of Obesity, Insulin Resistance,
and the Metabolic Syndrome

It is important to distinguish obesity and insulin resistance
from the metabolic syndrome, although all three are strongly
associated with hypertension [8, 28, 29]. The metabolic

syndrome represents a specific subset of individuals with in-
sulin resistance, a high, but not universal, prevalence of obe-
sity [30], and dyslipidemia. In the existing literature of pre-
clinical models, these distinct disease states are often used
interchangeably. For example, a high fat diet in mice is re-
ferred to as a mouse model of the metabolic syndrome and
leads to obesity, insulin resistance, sodium-sensitive hyperten-
sion, but not the dyslipidemia (elevated triglycerides) seen in
humans with the metabolic syndrome per se [31]. While this
may be inaccurate, the mechanisms of sodium-sensitive hy-
pertension in obesity, insulin resistance, and the metabolic
syndrome are likely shared based on common pathophysio-
logic features. However, several of the pathways we will dis-
cuss may be particularly relevant for a subset of these
conditions.

Preclinical Models of Sodium-Sensitive Hypertension
in the Metabolic Syndrome

There is little uniformity across species and models (e.g. a high
fat-fed dogs vs. high fat-fed C57Bl/6 mice vs. db/db mice) of
identified mechanisms of hypertension in the metabolic syn-
drome. We characterized changes in body weight, plasma insu-
lin, plasma lipid profile, urinary sodium excretion, and blood
pressure in C57BL/6 mice fed high fat and/or high fructose diets
previously associatedwith obesity and insulin resistance [32, 33].
While high fat-feeding faithfully recapitulated many features of
the metabolic syndrome, high fructose feeding in mice, unlike
rats, does not always induce obesity and insulin resistance.
Among mouse models of the metabolic syndrome, NZBWF1,
and KKAy/a strains develop obesity, insulin resistance, and ele-
vated blood pressure, but the mechanisms are unknown. Leptin
receptor-deficient db/db mice develop obesity and insulin resis-
tance, but hypertension is variable [34]. Of note, these mice also
develop diabetes with glycosuria and osmotic diuresis [35] that
can stimulate compensatory sodium reabsorption, thereby con-
founding the assessment of sodium excretion and the renin-
angiotensin-aldosterone system, a commonly ascribed pathway
in hypertension.

Although themajority of transgenic mice are produced on a
C57BL/6 background, these mice are well known to be resis-
tant to elevations in blood pressure compared with other
mouse strains or with rats [36]. Therefore, small changes in
blood pressure may translate to a clinically significant differ-
ence in humans. For example, patients with hypertension due
to Liddle’s syndrome, i.e., gain of function mutations in sub-
units of the epithelial sodium channel (ENaC), have an aver-
age mean arterial pressure 43 mmHg higher than controls
[37]. Transgenic mice on a C57Bl/6 background carrying sim-
ilar mutations do not have an elevated blood pressure on a
normal sodium diet and only a ~10 mmHg increase in mean
arterial pressure on a high sodium diet [38]. Similarly, some
patients with Gordon’s syndrome, another form of sodium-
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sensitive hypertension, have systolic blood pressures
>200 mmHg [39], but transgenic mice with mutant, inactive
with no lysine kinase 4 (WNK4), recapitulating this condition,
have a systolic blood pressure <10 mmHg higher than con-
trols, and only 13 mmHg higher than mice overexpressing
wild-type WNK4 [40].

We have observed a consistent, reproducible, small in-
crease in blood pressure in high fat-fed mice [31], as well as
increased sodium sensitivity [31, 41]. However, as reviewed
by Kennedy et al. [42], there are multiple, inconsistent studies
of hypertension in mouse models of the metabolic syndrome.
Table 1 summarizes experiments comparing high fat or
fructose-fed C57BL/6 mice to controls. In chronically high
fat-fed mice, blood pressure varied widely from −13 to
+37 mmHg [33, 43–60] compared to controls. Blood pressure
measurement in mouse models of the metabolic syndrome are
confounded by technical considerations such as dietary sodi-
um, phytoestrogen content, and feeding patterns [61].

Feeding patterns will be different between high fat-fed and
control groups due to the dramatic difference in the caloric
content and, presumably, taste of diets. Differences in food,
and therefore sodium, intake can significantly confound the
interpretation of blood pressure data. Similarly, blood pressure
is acutely regulated by fasting, another potential confounder if
diets are particularly unpalatable [62]. Mouse models based
on fructose-spiked drinking water also dramatically decrease
sodium intake, as the mice will also eat less food.

Multiple groups have validated [63, 64] or invalidated [65,
66] tail-cuff plethysmography. Its low cost and relative sim-
plicity may perpetuate its use, though radiotelemetry systems
are generally accepted as the gold standard. A thorough dis-
cussion of protocols for blood pressure measurement is be-
yond the scope of this review, but Van Vliet [61] provides
an elegant summary on the justification and protocols for ra-
diotelemetric blood pressure measurement. One limitation of
plethysmography in studying blood pressure in models of the
metabolic syndrome is the inability to measure pressure in
active, unrestrained mice. Obese mice are often less active,
and we observed that changes in blood pressure with locomo-
tion are a significant contributor to differences in blood pres-
sure between control and high fat-fed mice. Thus, mouse
models, and certainly other species, require standardization
to study the mechanisms of hypertension in the metabolic
syndrome. Published results should detail dietary constituents,
locomotion, and methods of blood pressure measurement.

Mechanisms of Sodium-Sensitive Hypertension
in the Metabolic Syndrome

Renal Sodium Reabsorption in the Metabolic Syndrome

Within the kidney, several tubular sodium transporters are
potential mediators of the observed impaired sodium

excretion. Huang et al. [41] demonstrated that deletion of se-
rum and glucocorticoid kinase 1, a kinase that activates the
ENaC, prevented high fat diet-induced hypertension, but this
kinase can also modulate sodium transporters proximal to the
aldosterone-sensitive distal nephron [67–69]. Using
microperfusion, we examined sodium transport in isolated
cortical collecting ducts, and found no difference in sodium
flux between low fat and high fat-fed mice, excluding the
ENaC, thiazide-sensitive sodium-driven chloride bicarbonate
exchanger, and pendrin as potential mediators. We also ex-
cluded ENaC activity as a mechanism for impaired natriuresis
and increased blood pressure of high fat feeding as benzamil, a
pharmacologic inhibitor of ENaC, had no differential effect on
sodium excretion or blood pressure in low fat- vs. high fat-fed
mice [31]. Based on these data, high fat feeding likely in-
creases sodium transport in upstream segments of the neph-
ron. In mice, insulin-mediated activation of insulin receptor
substrate 2 in proximal tubule cells stimulates sodium reab-
sorption [70], although these experiments have not been per-
formed in a model of insulin resistance. Davies et al. [71]
showed that high fat feeding of mice increases sodium-potas-
sium-2 chloride cotransporter (NKCC2) phosphorylation and
decreases AMP kinase act ivi ty. Sodium-chloride
cotransporter (NCC) expression is increased in obese
Zucker rats [48], and its activity is stimulated by insulin
infusion in Sprague Dawley rats [72]. These findings
provide a basis for future experiments using genetic
knockouts or pharmacotherapies to measure the contribution
of upstream transporters in mediating the effect of high fat diet
on the kidney tubule.

Role of the Sympathetic Nervous System in Sodium-Sensitive
Hypertension of the Metabolic Syndrome

Several investigators have demonstrated a role for the systemic
and renal sympathetic nervous system in hypertension of the
metabolic syndrome. Data from obese individuals [73, 74] and
animal models, including carbohydrate- and high fat-fed mice
[75], rats [76], and dogs [77, 78] demonstrate increased pro-
duction of catecholamines and blood pressure sensitivity to
vasopressors and alpha adrenergic blockade. Hyperleptinemia,
associated with obesity and the metabolic syndrome, permis-
sively stimulates the sympathetic nervous system and increases
blood pressure [79, 80], despite selective resistance to its an-
orexigenic effects. Melanocortin 4 receptors (MC4R) likely
mediate leptin-dependent effects on blood pressure. Using a
combination of leptin receptor deficient mice and MC4R
knockout mice, Rahamouni et al. [81] elegantly demonstrated
that both leptin and insulin centrally activate renal sympathetic
nerve activity via MC4R. Concordant observations were made
using MC4R agonists in mice and humans [81–83] and antag-
onists in mice [84, 85] and spontaneously hypertensive rats
[86]. In contrast, melanocortin 4 receptor knockout mice and
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humans with inactivating mutations develop obesity,
hyperinsulinemia, and hyperleptinemia, but not hypertension
[87–89].

Granger et al. were the first to demonstrate a role for renal
nerves in this form of hypertension. For this study, authors
demonstrated that high fat feeding in mongrel dogs decreased
sodium excretion and increased blood pressure, but that bilat-
eral renal denervation abrogated these effects [90]. The devel-
opment of clinical renal denervation technology has made
possible the targeting of renal nerves. for the treatment of
hypertension. In the first reported phase 3 clinical trial,
SYMPLICITY III, there was a trend toward improvement in
blood pressure in obese vs. non-obese individuals, but further
studies are needed to determine if this therapy vs. sham con-
trol is more efficacious in individuals with metabolic
syndrome-related hypertension [91].

The mechanisms by which obesity and/or insulin resistance-
mediated renal sympathetic nerve activity increases renal sodium
transport will be an interesting area for future research. Classic
studies have demonstrated that renal nerves regulate sodium-hy-
drogen exchanger 3 [92, 93] and NKCC2 [93, 94] via norepi-
nephrine, renin, angiotensin II, and nitric oxide [95–97]. More
recently, Ellison and colleagues have shown that norepinephrine
activates the NCC [98]. The contribution of sympathetic nerves
to activity of specific renal transporters within the metabolic syn-
drome will be the next frontier in this field.

Role of Oxidative Stress and Inflammation
in Sodium-Sensitive Hypertension of the Metabolic Syndrome

Obesity stimulates systemic and renal oxidative stress in mice
[17] and rats [16]. By inhibiting nitric oxide signaling, oxida-
tive stress results in endothelial dysfunction, resistance vessel
constriction, and increased sodium reabsorption. The sodium-
potassium-2 chloride cotransporter [99] is disinhibited by
declining nitric oxide, as is oxidative stress-response kinase-
1, indirectly activating sodium-potassium-2 chloride
cotransporter [100]. Both hypertension and inflammation
are reduced with infusion of tempol, a free radical scavenger,
in high fat-fed rats [18].

Recent studies by Harrison et al. [101, 102] have implicat-
ed TH1 and TH17 cell infiltration in the renal parenchyma as a
direct mechanism to enhance both proximal and distal sodium
transport. Moreover, Obesity is known to modulate these
same lymphocyte subtypes [103]. It remains to be explored
to what degree these inflammatory mechanisms contribute to
hypertension in the metabolic syndrome.

Role of Insulin in Sodium-Sensitive Hypertension
of the Metabolic Syndrome

A compelling case has been made that insulin resistance pro-
motes hypertension in the metabolic syndrome through

compensatory hyperinsulinemia. Physiologic concentrations
of insulin increase renal sodium reabsorption in rats [104],
dogs [105], and humans [106]. Yet, insulin infusion does not
increase blood pressure in mice or humans [107, 108]. In
addition, genetic causes of obesity, e.g., deletions or mutations
in MC4R or leptin, are not associated with hypertension de-
spite insulin resistance and concomitant hyperinsulinemia
[34].

Given the robust and long-standing association of insulin
and blood pressure, absence of evidence is not evidence of
absence. There are several potential reasons for an association
between insulin levels and blood pressure without tangible
proof of causality. Several investigators have hypothesized
that insulin increases renal sodium reabsorption either directly
or indirectly due to vasodilation [109]. A natural experiment
that could answer this question is the measurement of renal
sodium reabsorption with the use of diet-induced insulin re-
sistance (e.g., high fat diet) in vascular endothelial specific
insulin receptor knockout mice. However, to our knowledge,
this experiment has not been reported.

Another important area of knowledge is the impact of in-
sulin resistance (and the resultant metabolic milieu) on
insulin-mediated blood pressure regulation. Deletion of renal
tubular insulin receptors have demonstrated a paradoxical in-
crease in blood pressure and decreased nitric oxide production
in otherwise insulin-sensitive mice [110, 111], though consti-
tutive deletion that may have alter tubule development in utero
[112]. We are currently studying renal tubular insulin receptor
knockout mice to address the contribution of insulin signaling
in the kidney to hypertension of the metabolic syndrome.
Brands and colleagues published compelling data on the role
of insulin to stimulate renal sodium transport under conditions
of type 1 diabetes mellitus, i.e., hypoinsulinemic hyperglyce-
mia [105]. Whether a putative role for insulin in hypertension
requires overt diabetes rather than the metabolic syndrome is
currently unknown.

Role of Systemic and Local Renin-Angiotensin Systems
in Sodium-Sensitive Hypertension of the Metabolic Syndrome

The renin-angiotensin-aldosterone system plays a pathophys-
iologic role in hypertension of the metabolic syndrome both
directly, by increasing of renal sodium reabsorption, and indi-
rectly, via many of the pathways previously described. In
obese mice [113, 114] and humans [115], adipocytes increase
their production of angiotensinogen. Genetic deletion of
angiotensinogen in adipocytes lowers plasma angiotensin II
and systolic blood pressure in mice, and weight loss lowers
angiotensin II in humans [116].

Aldosterone, via the mineralocorticoid receptor, may play a
critical role in the magnitude of hypertension in the metabolic
syndrome. Aldosterone levels correlate with obesity in dogs
[117] and humans [118], possibly via adipocyte-derived
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angiotensinogen or adipocyte-derivedmineralocorticoid releas-
ing factors [119]. Drugs inhibiting the mineralocorticoid recep-
tor are effective antihypertensive agents in individuals with the
metabolic syndrome [56] independent of the reduction of insu-
lin resistance associated with mineralocorticoid receptor block-
ade [120]. Moreover, high fat-fed mice do not exhibit elevated
aldosterone, and have only mildly elevated blood pressure de-
spite obesity and insulin resistance [31]. Whether mineralocor-
ticoids are needed to more accurately model hypertension of
the metabolic syndrome in mice is unknown.

Angiotensin II and aldosterone also influence the vascula-
ture to induce or maintain hypertension, possibly by reducing
nitric oxide bioavailability [121]. Activation of the mineralo-
corticoid receptor in vascular endothelial cells can raise blood
pressure prior to a detectable increase in sodium reabsorption
[122], and vascular smooth muscle cell-specific mineralocor-
ticoid receptor deletion lowers blood pressure [123].

Local renin-angiotensin systems may play a distinct role in
hypertension of the metabolic syndrome. The intrarenal renin-
angiotensin system appears to amplify the effect of systemic
angiotensin II [124] on sodium transport and blood pressure.
Whether ablation of this intrarenal axis is sufficient to ameliorate
the hypertension seen in diet-induced or genetic models of the
metabolic syndrome is unknown. The local renin-angiotensin
system in adipocytes can stimulate the sympathetic nervous sys-
tem via leptin, or production of aldosterone-releasing factors
[119]. Adipocyte-specific knockout of angiotensinogen protects
mice from elevated systemic angiotensin II and high blood pres-
sure in a diet-induced model of the metabolic syndrome [113].
Massiera et al. [114] demonstrated that adipocyte-derived
angiotensinogen contributes to growth of adipose tissue, and
increase of circulating angiotensinogen and systemic blood pres-
sure. Moreover, renin-angiotensin system inhibitors decrease
obesity and hyperinsulinemia in male NZO/BL6 F1 rats, a ge-
netic model of insulin resistance [125].

While this evidence provides a rationale for renin-
angiotensin system blockade in patients with the metabolic
syndrome, few studies have specifically addressed the use of
these agents in obese individuals. One notable study is the
TReatment in Obese Patients with HYpertension (TROPHY)
trial [126], which compared the efficacy of an ACE inhibitor,
lisinopril, or a diuretic, hydrochlorothiazide, given at various
doses to obese and hypertensive individuals. The number of
individuals who responded to this antihypertensive regimen
was greater with lisinopril (40% versus 33%, P < 0.05), al-
though plasma glucose improved in the lisinopril group and
worsened in the hydrochlorothiazide group [126].

Conclusion

Obesity, insulin resistance, and the metabolic syndrome en-
gender hypertension through multiple pathways in preclinical

animal models, and very likely in humans as well. Renal,
neural, hormonal, and cardiovascular systems integrate infor-
mation to maintain blood pressure despite the substantial
stressors that occur in daily life (e.g., eating, fasting, breathing,
and locomotion). This integration and interdependence greatly
complicate the study of hypertension associated with the met-
abolic syndrome. Yet, important work from an equally diverse
group of investigators has progressively mapped out the
mechanisms of this condition. Increased standardization with-
in species would improve the reproducibility of data. In addi-
tion, differences in the dominant pathophysiologic pathway
within and across species limit the translational power of
any one pathway in elucidating hypertension in humans with
the metabolic syndrome. Thus, knowledge gleaned from hu-
man studies or human samples will be critical in directing
future investigation of mechanisms within preclinical models.
Despite these challenges, hypertension in the metabolic syn-
drome has a profound impact on global human health,
highlighting the need for further study.
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