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Abstract Hypertension is a highly prevalent condition which
has been established as a risk factor for cardiovascular and cere-
brovascular disease. Although the understanding of the relation-
ship between cardiocirculatory dysfunction and brain health has
improved significantly over the last several decades, it is still
unclear whether hypertension constitutes a potentially treatable
risk factor for cognitive decline and dementia. While it is clear
that hypertension can affect brain structure and function, recent
findings suggest that the associations between blood pressure and
brain health are complex and, in many cases, dependent on fac-
tors such as age, hypertension chronicity, and antihypertensive
medication use. Whereas large epidemiological studies have
demonstrated a consistent association between high midlife BP
and late-life cognitive decline and incident dementia, associations
between late-life blood pressure and cognition have been less
consistent. Recent evidence suggests that hypertension may pro-
mote alterations in brain structure and function through a process
of cerebral vessel remodeling, which can lead to disruptions in
cerebral autoregulation, reductions in cerebral perfusion, and lim-
it the brain’s ability to clear potentially harmful proteins such as
β-amyloid. The purpose of the current review is to synthesize

recent findings from epidemiological, neuroimaging, physiolog-
ical, genetic, and translational research to provide an overview of
what is currently known about the association between blood
pressure and cognitive function across the lifespan. In doing so,
the current review also discusses the results of recent randomized
controlled trials of antihypertensive therapy to reduce cognitive
decline, highlights several methodological limitations, and pro-
vides recommendations for future clinical trial design.
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Introduction

Hypertension is a highly prevalent condition, occurring in one
third of the world’s adults and two thirds of adults over age 65
[1, 2]. Already an established risk factor for cardiovascular
and cerebrovascular disease [3–6], emerging evidence sug-
gests that hypertension may also play an important role in
the development of cognitive decline, Alzheimer’s disease,
and vascular dementia [7–9]. Because hypertension is a mod-
ifiable risk factor, it represents a potentially important mech-
anism through which the prevention or delay of age-related
cognitive disorders may be possible. For this reason, under-
standing hypertension’s role in the development and progres-
sion of age-related cognitive decline and dementia has been a
research priority over the last two decades. Although a great
deal has been learned from epidemiological studies, there is
still little consensus about the effectiveness of treating hyper-
tension to prevent or slow cognitive decline. What is clear,
however, is that the connection between blood pressure (BP)
and cognitive function is biologically complex and still not
fully understood.
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The goal of this review is to provide an overview of the
research that has contributed to the understanding of the con-
nection between BP and cognitive function, paying particular
attention to recent findings. In doing so, this review will first
provide an overview of what is known about the connection
between hypertension, cognitive function, Alzheimer’s dis-
ease, and vascular dementia. Second, the neurobiological
changes associated with hypertension will be described, and
the research that demonstrates how these biological processes
influence neuronal function will be highlighted. Lastly, the
findings from clinical trials designed to assess the effective-
ness of antihypertensive agents for the prevention or delay of
cognitive decline will be summarized. Methodological con-
siderations and specific recommendations for future research
will also be discussed. Although this review focuses on the
topic of hypertension and cognitive function, the link between
low BP and cognition will also be discussed.

Hypertension and Cognitive Function

Cross-Sectional and Longitudinal Observational Studies

Over the last several decades, the link between hypertension
and cognitive function has been examined across many age
groups. Although much of this research has focused on under-
standing the relationship between BP and cognition in older
adults, the group most likely to experience cognitive decline,
studies which assess BP starting in middle-age and follow
participants forward until they reach older ages have also been
especially informative. Multiple epidemiological studies have
demonstrated that elevated BP in the 4th and 5th decades of
life, particularly untreated hypertension, increases the risk for
cognitive impairment 20–30 years later (see Table 1) [13•, 24,
25]. These findings have been further supported by longitudi-
nal studies which show that high midlife BP is associated with
increased cognitive decline over time [12, 21, 22•]. Because
confounding variables, such as education and socioeconomic
status, are less likely to affect cognitive change (compared to
baseline cognitive abilities) [28], studies which show an in-
creased rate of cognitive decline over time among hyperten-
sive adults provide especially strong evidence for the delete-
rious effects of high BP. As will be discussed below, several
studies have also identified hypertension duration and the tra-
jectory of BP levels over time as important determinants of
cognitive function later in life [11••, 23•].

Hypertension in the 6th and 7th decades has been associ-
ated with poorer overall cognitive function and cognitive de-
cline (see Table 2) [29, 32, 35, 47, 48]. Hypertension among
individuals in their 70s has also been identified as a risk factor
for mild cognitive impairment (MCI)—a state of subtle cog-
nitive decline that is believed to precede the onset of dementia
[34, 49]. In contrast, studies that include individuals in their

8th, 9th, and 10th decades of life have largely either failed to
find such an association [36, 46] or have found high BP to be
protective against cognitive impairment [38, 39]. Together,
these results suggest that the relationship between cognition
and BP in late-life may be age dependent [14]. Inverted U- or
J-shaped curves may most accurately represent the relation-
ship between BP and cognition among octogenarians and no-
nagenarians, as both low BP and extremely high BP (systolic
blood pressure (SBP) >160 mmHg) have been linked to cog-
nitive impairment in this age group [39, 44, 45, 50].

While individuals who develop hypertension earlier in life
are likely to be subjected to the deleterious neurological ef-
fects of hypertension for many decades, this is not the case for
individuals who develop hypertension much later. The strong
associations found between midlife hypertension and late-life
cognitive abilities support the notion that hypertension dura-
tion and chronicity in adulthood may be especially important
determinants of cognitive impairment in elderly individuals.
Perhaps the strongest support for this hypothesis comes from a
longitudinal study which found that a longer duration of time
between hypertension initiation and cognitive testing is asso-
ciated with reduced cognitive abilities independent of age
[11••]. In particular, longitudinal studies suggest that middle-
aged adults with prolonged hypertension and elevated systolic
blood pressure (SBP) over a period of 25–30 years are at an
exceptionally high risk for cognitive impairment later in life
[11••, 23•]. Thus, studies with a longer period between the
initiation of BP monitoring and subsequent cognitive assess-
ment may be better able to detect the effects of high BP on
neurocognitive outcomes. The trajectory of blood pressure
changes from midlife into older age may also be important,
as the combination of hypertension in midlife and low diastol-
ic blood pressure (DBP) in late-life has been associated with
smaller brain volumes and poorer cognitive outcomes among
older adults [51••]. Individuals who develop hypertension be-
fore middle adulthood may also be at particularly high risk for
cognitive impairment, as a number of studies have found as-
sociations between high BP, cognitive deficits, and reduced
academic functioning in children, adolescents, and young
adults [10, 52–56]. Irrespective of age, the cognitive domains
that appear most vulnerable to hypertension are executive
functioning and information processing speed. Both cognitive
processes rely heavily on the integrity of frontal and subcorti-
cal brain structures which may be most vulnerable to the ef-
fects of hypertension.

Blood Pressure Variability

BP fluctuates substantially over a 24-h period as a result of
factors such as postural change, circadian rhythm, and general
physiologic variability [57, 58]. Fluctuations in BP associated
with autonomic dysfunction, such as orthostatic hypotension,
become more prevalent with increasing age and may be
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associated with cognitive deficits [57, 59, 60]. Although a
number of studies have demonstrated a connection be-
tween orthostatic hypotension and cognitive function,
with worse performance in the setting of orthostasis
[61–64], others have failed to replicate this finding
[65–67]. Ambulatory blood pressure measurement
(ABPM) has been used in a number of studies to more
accurately capture short-term, daily BP variability, which
may reflect autonomic dysfunction or increased arterial
stiffness, among other etiologies. Using ABPM, elevated
24-h mean BP, 24-h BP variability, and reduced nocturnal
dipping (a natural reduction of night-time BP) have each
been identified as potential risk factors for cognitive im-
pairment [24, 68–70]. Because autonomic dysfunction oc-
curs in the early phase of several neurodegenerative dis-
orders [71], it is difficult to determine whether cognitive def-
icits found in individuals with potential sequelae of autonomic
dysfunction (e.g., BP variability and orthostatic hypotension)
are the result of underlying neurodegenerative changes or the
direct effect of transient drops in BP.

Genetic Factors

Additional insights into the relationship between hyper-
tension and cognition have emerged through genetic stud-
ies. A polymorphism in the ACE gene, a gene which reg-
ulates BP through its effects on angiotensin-converting
enzyme (ACE) activity [72], has been linked to both cog-
nitive function [73] and the presence of neuroimaging ab-
normalities [74, 75]. Middle-aged and older adults who
carry an allele that codes for the high-activity variant (D)
of the ACE I/D polymorphism show greater levels of cog-
nitive impairment and cognitive decline [73, 76, 77•, 78].
Unexpectedly, other studies have found the low-activity
allele (I) of the ACE I/D polymorphism to confer in-
creased risk for dementia [79, 80]. Polymorphisms in an-
other gene, AGTR1, which codes for the angiotensin-II
type 1 receptor, also an important part of the regulation
of BP, have been associated with reduced prefrontal and
hippocampal volume [81], reductions in hippocampal vol-
ume over time, and poorer memory in older adults [82].
Additional evidence suggests that specific genetic variants
may interact with hypertension to promote or buffer
against the effects of elevated BP on cognitive function
and brain structural integrity. Two Alzheimer’s disease
risk genes that have also been associated with cognitive
function in nondemented individuals, Apolipoprotein E
(APOE) and Clusterin (CLU), appear to modify the effect
of hypertension on cognitive function [83]. For example,
multiple studies have found that hypertension is only as-
sociated with cognitive deficits in individuals who possess
a copy of the ε4 allele of the APOE gene [84, 85].

Dementia Risk and Hypertension

Alzheimer’s Disease

Several forms of cardiovascular disease have been identified
as risk factors for both Alzheimer’s disease and vascular de-
mentia [86–89], which together account for the majority of
dementia cases worldwide [90, 91]. Alzheimer’s disease, ce-
rebrovascular disease, and cardiovascular disease have shared
genetic contributions [92, 93], and approximately 50% of in-
dividuals diagnosed with Alzheimer’s disease display signifi-
cant cerebrovascular pathology on autopsy [94, 95]. Together,
these findings suggest that cardiovascular disease,
Alzheimer’s disease, and vascular dementia may have an
overlapping pathophysiology [96–98].

Despite significant evidence for the role of cardiovascular
disease in the pathogenesis and progression of Alzheimer’s
disease, the association between hypertension and
Alzheimer’s disease is still not well understood. Although a
consistent relationship between elevated DBP at midlife and
incident Alzheimer’s disease has been demonstrated [7, 99•,
100], evidence for an association between midlife SBP and
incident Alzheimer’s disease has been conflicting [100–104].
What is clear is that late-life hypertension does not appear to
be a risk factor for incident Alzheimer’s disease [88, 104, 105,
106•, 107–109]. In fact, multiple studies suggest that abnor-
mally low DBP in late-life may increase one’s risk for
Alzheimer’s disease [107, 110–114]. Some, but not all, have
argued that this inverse relationship between late-life DBP and
Alzheimer’s disease risk results from a tendency for BP to
decline concurrently with the onset and progression of demen-
tia [106, 115, 116]. Together, previous findings suggest that
the combination of high BP in midlife followed by low BP in
late-life may place individuals at especially high risk of devel-
oping Alzheimer’s disease. However, few studies have exam-
ined this hypothesis directly [117].

Vascular Dementia

Because hypertension is a known risk factor for cerebral small
vessel disease [118] and stroke [4], hypertension is often con-
sidered a risk factor for vascular dementia, a form of cognitive
decline resulting from small- or large-vessel cerebrovascular
disease [9, 119]. However, only a handful of studies have
directly examined the relationship between hypertension and
vascular dementia. Although previous research supports the
relationship between midlife hypertension and the develop-
ment of vascular dementia [8, 99•, 101, 120–122], it is unclear
whether there is an association between late-life hypertension
and vascular dementia, as findings have thus far been conflict-
ing [88, 105, 107, 123]. Compared to the associations between
midlife hypertension and incident Alzheimer’s disease, the
associations found between midlife hypertension and incident
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vascular dementia tend to be more robust and consistent [8,
101, 120]. However, because patients are more likely to de-
velop mixed Alzheimer’s and vascular dementia than pure
forms of one or the other, this distinction may not be
meaningful.

Pathophysiology of Hypertension as It Relates
to Cognitive Decline

Evidence from Neuroimaging and Biomarker Studies

Neuroimaging has played a pivotal role in advancing the under-
standing of howBP influences cognitive function and underlying
brain structure. Results from studies that have examined the re-
lationship between BP and brain volume are largely consistent
with findings from the BP and cognition studies. High SBP has
been associated with smaller regional and total brain volumes
[124–128] and reductions in brain volume over time [129]. The
relationship between high DBP and brain volume is less consis-
tent, however [125, 127, 128, 130]. In elderly populations, low
SBP [131, 132] and low DBP [132, 133] have been associated
with reduced brain volume and cortical thickness, suggesting that
the relationship between BP and brain volume may be age de-
pendent [12, 134, 135]. A pattern of hypertension in midlife
followed by hypotension in late-life appears to be especially
harmful [51••], particularly in brain regions affected in the earliest
phase of Alzheimer’s disease [136•].

An association between hypertension and the development of
Alzheimer’s disease has also been supported by research that
examines Alzheimer’s disease biomarkers directly. Compared
to the brains of normotensive individuals, the brains of individ-
uals with a history of hypertension show greater levels of β-
amyloid plaques, atrophy, and neurofibrillary tangles [102,
137]. Similarly, hypertension has been identified as a risk factor
for cortical fibrillar β-amyloid deposits [97, 138, 139] and re-
duced glucose metabolism in Alzheimer’s disease-specific brain
regions [138, 140] using positron emission tomography (PET) in
the brains of cognitively normal middle-aged and older adults.
Consistent with these findings, one study found that individuals
with abnormal plasma β-amyloid levels and elevated BP at mid-
life have an especially high risk of developing Alzheimer’s dis-
ease later in life [7].

Hypertension has also been associated with several defin-
ing features of vascular dementia and cerebral small vessel
disease, including WMH volume [12, 118], WMH progres-
sion [141•, 142], lacunar infarction, and cerebral microbleeds
[5, 143–145]. Supporting the relationship between high BP
and white matter pathology, findings from observational stud-
ies [142] and clinical trials [128, 146] suggest that treatment of
hypertension reduces WMH progression. Even before the de-
velopment of overt neuroimaging abnormalities, hypertension
appears to be associated with reduced white matter

microstructural integrity in both young and old individuals,
suggesting white matter may be especially vulnerable to the
deleterious effects of hypertension [147–150].

Hypertension and Vascular Remodeling

Emerging evidence suggests that sustained elevations in BP
may cause cerebral vessel remodeling in a manner which pro-
motes pathological brain changes and subsequent cognitive
decline. To preserve the steady low-pressure blood supply to
the periphery and protect end-organ microcirculation from
pulsatile stress associated with hypertension, a rearrangement
in vessel wall material in the form of hypertrophic remodeling
of the media and vascular smooth muscle cells occurs
[151–153]. This enlargement in media size causes a reduction
in lumen diameter, leading to increased vascular resistance
and vessel wall stiffening [154]. Arterial stiffening, in turn,
increases arterial pulse wave velocity and pulsatile pressure,
which over time causes rarefaction of downstream capillaries
and further inward remodeling of vessel walls [155–157].
Hypertension promotes intracranial atherosclerosis in large
intracranial arteries [157, 158] and arteriolosclerosis in smaller
arterioles supplying subcortical white matter and deep gray
matter brain structures [159]. Arteriolosclerosis is a process
characterized by a loss of tunica media smooth muscle cells,
fibro-hyaline deposits, and thickening of the vessel wall,
resulting in increased microvascular resistance. Because the
brain requires high levels of continuous perfusion throughout
systole and diastole [160], increases in vascular resistance
leave cerebral arterioles vulnerable to hypoperfusion when
systemic BP is reduced [154, 159]. As described below, hy-
poperfusion has been associated with several neurovascular
changes [98], which together may disrupt cognition [161].

Autoregulation and Cerebral Perfusion

The brain requires a high volume of consistent blood flow to
sustain adequate perfusion. However, the brain’s ability to main-
tain steady low-pressure blood flow in the context of changing
systemic BP—a process known as cerebral autoregulation—can
be disrupted as a result of chronic hypertension [162, 163•]. After
prolonged exposure to high BP and elevated pulsatility, a shift
occurs in the brain’s autoregulatory capacity whereby higher
systemic BP is required to maintain the same level of cerebral
perfusion [164]. Hypertension is believed to alter cerebral auto-
regulation by inducing changes in arteriole endothelial and vas-
cular smooth muscle cells that diminish cerebrovascular reactiv-
ity [165] and increase myogenic tone, respectively [166]. Not
only do these vascular changes shift the cerebral autoregulatory
curve in a manner which reduces resting cerebral blood flow, but
the brain also becomesmore susceptible to hypoperfusion during
periods of low systemic BP [167] or during periods of normal BP
in chronically hypertensive individuals [168]. These
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hypertension-induced changes to cerebral autoregulation and
perfusion may explain why individuals with chronic hyper-
tension in midlife and low BP in late-life show significant
reductions in brain volume [51••, 136•] and greater levels of
cognitive deficits [117].

While ischemia may occur in some cases, the brain is more
likely to be subjected to chronic oligemia (i.e., mild reductions
in blood flow) as a result of hypertension. Chronic oligemia
may, in turn, lead to endothelial dysfunction, acidosis, oxida-
tive stress, and unmet metabolic energy demands that can
impair neuronal function [98, 169, 170]. Oligemia may also
downregulate the synthesis of proteins necessary for synaptic
plasticity and memory formation [170], and promote neuronal
tau phosphorylation, β-amyloid oligomerization, and the up-
regulation of amyloidogenic APP [171–175]. Each of these
neurophysiological changes likely contributes to the develop-
ment of Alzheimer’s disease and cerebral amyloid angiopathy
(CAA). Evidence suggests that β-amyloid accumulation may
also occur as a result of hypertension-induced upregulation of
the receptor for advanced glycation end products (RAGE),
which controls the shuttling of β-amyloid from the blood
across the endothelial barrier into the brain [176•].

Endothelial Dysfunction, Altered Functional Hyperemia,
and Oxidative Stress

By promoting endothelial dysfunction, hypertension is also be-
lieved to disrupt the coordinated coupling among neurons, glia,
and cerebral blood flow in themicrovasculature [177].Uncoupling
of this system, known collectively as the neurovascular unit, can
impair the homeostatic process of functional hyperemia, whereby
increases in CBF occur in coordination with increases in neuronal
activity to ensure the delivery of adequate levels of oxygen and
glucose and facilitate the removal of metabolites [178–180].
Support for these findings comes from animal research, which
has demonstrated that hypertension-induced vascular oxidative
stress resulting from upregulation of reactive oxygen species
(ROS)-producing enzyme NADPH oxidase impairs the
endothelium-dependent expression of vasodilators and vaso-
constrictors necessary to maintain neurovascular coupling
[165, 181, 182].

Antihypertensive Clinical Trials to Improve
Cognition

Given the apparent association between BP and cognitive
function, efforts have been made to determine whether im-
proved BP control can be used to delay cognitive decline
and reduce dementia risk. To date, evidence from large place-
bo-controlled, randomized clinical trials (RCTs) has been con-
flicting [183, 184••]. A 2009 Cochrane Review of random-
ized, double-blind, placebo-controlled trials concluded that

there is currently no convincing evidence for the neuroprotec-
tive effects of antihypertensive use in late-life [184••].
Although several large placebo-controlled RCTs, such as the
Perindopril Protection Against Recurrent Stroke Study
(PROGRESS) [185], the Systolic Hypertension in Europe
(SYST-EUR study) [186], and the Heart Outcomes
Prevention Evaluation (HOPE) study [187] have found anti-
hypertensive agents to be protective against cognitive decline
and dementia, just as many trials have failed to replicate this
finding [188–192]. Thus, it is unknown whether BP control
alone is enough to reduce the risk of cognitive decline. It is
possible that the neuroprotective effects of antihypertensive
agents may result from drug-specific neurobiological changes
as opposed to (or in addition to) BP lowering [193, 194]. In
support of this idea, a meta-analysis of RCTs which compared
the neuroprotective properties of different antihypertensive
drug classes found angiotensin receptor blockers (ARBs) to
be superior to β-blockers, diuretics, and ACE inhibitors for
preventing cognitive decline [195].

The ability to draw conclusions about the effectiveness of BP
interventions for the reduction of cognitive decline has been
limited by brief study durations and insufficient power to detect
effects. Cognitive decline, even in the course of neurodegenera-
tive disease, is a relatively gradual process, and as described
above, elevated BP in midlife may be the most important deter-
minant of risk for subsequent cognitive and decline and demen-
tia. Thus, midlife may be the most critical window during which
BP control must begin. Extended treatment and follow-up pe-
riods and larger sample sizes will likely be needed to reliably
detect the effects of BP lowering on cognitive measures. By
comparison, neurodegenerative and dementia-specific bio-
markers (e.g., hippocampal atrophy and CSF-tau) may be more
sensitive to treatment-related effects, but their validity as interme-
diate endpoints remains a subject of debate [196, 197]. Future
studies may also benefit frommaking use of a more comprehen-
sive cognitive battery. The Mini-Mental State Examination
(MMSE), which has been used to assess cognitive abilities in
the majority of previous trials, is notoriously insensitive to cog-
nitive change, especially in domains of executive functioning
and processing speed, making it an especially poor choice for
detecting cognitive change in this context [198, 199].
Additionally, effect sizes in previous BP-lowering trials may
have been attenuated because participants receiving antihyper-
tensive medication often saw only minor reductions in BP com-
pared to participants given placebo. This limitation is addressed
in an ongoing trial (SPRINT-MIND) to evaluate the neuropro-
tective effects of reducing BP to below a specific level (i.e.,
below 120 mmHg) using one or more antihypertensive agents
[200•]. The parent trial to this study (SPRINT) has already dem-
onstrated improved cardiovascular outcomes in the setting of this
tighter blood pressure control [201]. However, the ability of this
trial to show benefit in cognitive outcomes will be limited by
short follow-up.
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Conclusions and Future Directions

It is clear that hypertension can affect brain structure and func-
tion in a manner that increases one’s risk of cognitive decline
and dementia. Hypertension, high SBP, and high DBP during
midlife have been most consistently linked to late-life cogni-
tive decline and incident dementia. However, hypertension
has been associated with early-life and midlife cognitive def-
icits as well. Although the association between late-life hyper-
tension and cognitive function is less clear, particularly among
octogenarians and nonagenarians, limited evidence suggests
that mildly elevated BP in late-life may be protective against
cognitive decline, especially for individuals with a history of
longstanding hypertension. Hypertension duration may be an
especially important determinant of cognitive decline, as evi-
dence suggests that the damaging neurological effects of hy-
pertension may be cumulative. Few studies have assessed BP
longitudinally, and even fewer have attempted to retrospec-
tively determine how lifetime duration of hypertension relates
to cognitive function. Given the increasing prevalence of hy-
pertension among younger individuals [202], assessing the
cumulative effects of elevated BP over the lifespan will be
especially important to understanding how BP may influence
neurodevelopment and neurodegeneration [203].

Recent advances in neuroimaging and physiologic and hemo-
dynamic monitoring have allowed for an improved understand-
ing of the mechanisms through which hypertension affects
neurocognitive function. Hypertension, especially in midlife,
has been identified as a risk factor for cerebral atrophy, white
matter microstructural damage, and cerebral small vessel disease.
Evidence suggests that hypertension contributes to the develop-
ment and progression of such neurological changes by promot-
ing vessel wall remodeling and endothelial dysfunction, which
results in autoregulatory deficits. These changes to the
neurovascular unit leave the brain vulnerable to hypoperfusion
resulting from drops in systemic BP. Although evidence exists to
support this model of hypertension-induced cerebrovascular
changes, much is still unknown about how these pathophysio-
logical processes directly influence cognitive function and pro-
mote Alzheimer’s and vascular dementia in humans.

Additional insights into the role circulatory changes play in
cognitive decline will likely come from the study of other
markers of vessel function. For example, pulse pressure, a
measure of arterial stiffening, which increases with age and
exposure to hypertension [160], can be used as an additional
method to quantify the effects of vascular pathology resulting
from chronic hypertension. Elevations in pulse pressure have
been associated with cognitive impairment [204, 205], cogni-
tive decline [205], cerebral small vessel disease [142, 206],
and Alzheimer’s disease biomarkers [207]. Compared to BP,
pulse pressure is believed to more precisely quantify the ex-
posure of target organs such as the brain to potentially harmful
pulsatile energy resulting from arterial stiffening [208].

A more nuanced understanding of the relationship between
BP and neural function will likely be needed before antihy-
pertensive therapies can be effectively employed as an inter-
vention to reduce cognitive decline. Given that many individ-
uals who develop hypertension do so before late-life and ex-
perience the harmful effects of hypertension for decades, it is
unclear whether specific antihypertensive agents will be able
to modify the trajectory of cognitive decline within the span of
a multi-year trial. If the effects of hypertension on the brain are
cumulative, interindividual differences in the duration and se-
verity of previous hypertension must be considered in future
trial design. Because the effects of BP on cognition appear to
differ with age, future clinical trials may also benefit from
limiting enrollment to specific age groups. Other factors such
as race, sex, genetics, and the presence of cerebrovascular
morbidity have each been identified as effect modifiers in
observational studies and should, therefore, be considered
when designing future antihypertensive trials.
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