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Abstract Insulin resistance (IR) is present in pathologies
such as diabetes, obesity, metabolic syndrome, impaired glu-
cose tolerance, hypertension, inflammation, cardiac disease,
and dyslipidemias. Population studies show that IR is multi-
factorial and has genetic components, such as defects in the
insulin-signaling pathway (as serine phosphorylation on insu-
lin substrate or decreased activation of signaling molecules)
and RAS/MAPK-dependent pathways. IR is connected to mi-
tochondrial dysfunction, overproduction of oxidants, accumu-
lation of fat, and an over-activation of the renin-angiotensin
system linked to the NADPH oxidase activity. In addition,
nitric oxide (NO), synthesized by nitric oxide synthases (en-
dothelial and inducible), is also associated with IR when both
impaired release and reduced bioavailability of all which lead
to inflammation and hypertension. However, increased NO
may promote vasculoprotection. Moreover, reduced NO re-
lease induces heat shock protein 70 kDa (HSP70) expression
in IR and diabetes, mediating beneficial effects against oxida-
tive stress injury, inflammation and apoptosis. HSP70 may be

used as biomarker of the chronicity of diabetes. Hsp72 (induc-
ible protein) is linked to vascular complications with a high-fat
diet by blocking inflammation signaling (cytoprotective and
anti-cytotoxicity intracellular role). Elucidating the IR signal-
ing pathways and the roles of NO and HSPs is relevant to the
application of new treatments, such as heat shock and thermal
therapy, nitrosylated drugs, chemical chaperones or exercise
training.
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Introduction

Insulin resistance (IR) and type-2 diabetes mellitus (t-2DM)—
together with other relatedmetabolic disorders, metabolic syn-
drome (MS) and obesity—are growing dramatically all over
the world. TheWHO estimates that, by the year 2030, approx-
imately 366 million people will be affected with diabetes [1].
The prevalence of a high-fat diet and low physical activity are
very important factors for those diseases to appear, contribut-
ing to the current pandemic of obesity and its associated com-
plications such as ischemic heart and vascular disease, neu-
ropathy, retinopathy, and nephropathy [2, 3, 4•].

Insulin exhibits diverse biologic functions in mammalian
cells and organs. Its classic physiological functions are main-
taining normal blood glucose levels through glucose uptake
and promoting glucose disposal in skeletal muscle and adi-
pose tissue as well as suppressing both the production and
storage of glucose in the liver [5].

IR, or the resistance to the metabolic action of insulin, is a
key event necessary to better understand the pathophysiologic
of both t-2DM and obesity [6].
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However, IR is not restricted to individuals with abnor-
mal glucose tolerance (GT) and IR-stimulated glucose up-
take, and it also occurs in non-obese individuals with
normal oral GT. Documented results from a population
study indicate that many individuals with associated met-
abolic disorders (e.g., dyslipemia and hyperuricemia) are
insulin-resistant and, in the general population, IR can be
found even in the absence of any mayor metabolic disor-
ders [7]. About 25 % of non-diabetic subjects exhibits IR
within the same ranges found in t2-DM patients. IR in
patients with t-2DM occurs many years before the onset
of diabetes and with the consequence of declined insulin
secretion. IR was observed in two-thirds of subjects with
impaired glucose tolerance (IGT) [7, 8].

In addition, other biologic actions for insulin have been
described. As recently recognized, one of its functions is the
modulation of nitric oxide (NO) bioavailability which, by in-
creasing NO production, promotes vasodilatation in the endo-
thelium [6, 9]. The effects of NO on cellular functions are
complex and appear to be contradictory: NOmay be cytotoxic
but can also protect cells from toxic injury acting as an anti-
oxidant, and it may activate or inhibit signal transduction path-
ways and gene transcription [10•]. Of special interest to this
review, many research works, both in vivo and in vitro, have
explained the pathophysiology role of NO in IR as well as in
development complications [9, 11].

Moreover, cells have been observed to exhibit different
mechanisms that protect them from diverse physiological
and environmental stressors. The induction of stress re-
sponse proteins (SRPs) is a conserved protection mecha-
nism that may slow the damaging effects of oxidative
stress (OS) and inflammation [12•]. These proteins are
represented by a group of chaperones in protein folding
as well as by heat shock proteins (HSP) [13]. HSPs solved
the problem of protein misfolding and aggregation by
preventing the irreversible aggregation of nonnative con-
formations [14].

Notably, diabetes and IR have been showed to induce HSP
[15]. Interestingly for our studies, HSP 70 kDa (HSP70) par-
ticipates in inflammation by inducing different inflammation-
related responses according to its location (intra- or extracel-
lular), which makes this protein a master regulator for control-
ling the immune system, inflammation and associated IR. It
was suggested that the extracellular HSP70/intracellular
HSP70 ratio may represent a better marker not only for the
immune-inflammatory status of many types of diseases such
as obesity-induced insulin insensitivity and diabetes, but also
for other inflammation-related states, e.g., atherosclerosis,
heart disease and obesity-related nonalcoholic fatty liver dis-
ease [16••].

The relationship between NO, HSP70 and IR has been
recently discussed [17••] and, for this reason, we deem appro-
priate to review their comments.

Insulin Resistance

IR has been described by Reaven (1988) as a common
phenomenon appearing after glucose uptake, and which
is characterized by a chronic hyperinsulinemia state with
subsequent impaired release of glucose. Into insulin secre-
tion compensatory responses, occurs deterioration on ITG
lead to IR continuous, increases or decreases, for have to
maintain euglycemia [18•]. If IR occurs before chronic
hyperglycemia development, the difference from IR in a
pre-diabetic state, results from OS activation by increased
glucose levels (pathway-selective IR) [19]. In IR, the im-
pairment of insulin ability to exert its effects on glucose,
protein and lipid metabolism in target tissues produced a
lower biologic response at physiological concentrations
because there is a decreased sensitivity such as insulin-
mediated glucose disposal [20, 21].

At present, evidence from large population studies shows
that IR is multifactorial [19, 22, 23, 24•], and has genetic
components [25–27] whose understanding exceeds the pur-
pose of this document.

The molecular and cellular mechanisms of IR are relevant
to understanding its pathogenesis as well as various associated
diseases such as diabetes, obesity, MS, IGT, hypertension,
inflammation, coronary artery disease and dyslipidemias
resulting from defects in both insulin secretion and action.
Insulin-resistant patients may develop overt t-2DMwhen pan-
creatic cells cannot produce enough insulin to maintain
euglycemia due to deficient glucose sensing [28].

Firstly, it should be noted the importance of signaling path-
ways in the biological actions of insulin mediated by intracel-
lular signaling transduction of protein kinase cascades [29].

In various tissues, such as vascular endothelium, skeletal
muscle, and adipose tissue, phosphatidylinositol-4,5-
bisphosphate 3-kinase (PI3K)-dependent insulin-signaling
pathways regulate vasodilator and metabolic actions of insu-
lin. However, mitogen-activated protein kinase (MAPK)-de-
pendent insulin-signaling pathways tend to promote pro-
hypertensive and pro-atherogenic actions of insulin [30••].

The PI3K-dependent insulin-signaling pathway is de-
veloped through insulin binding to the extracellular α-
subunits of its receptor and increasing the β-subunit tyro-
sine kinase activity which can phosphorylate insulin re-
ceptor substrates (IRS). The IRS proteins activate PI3K (a
lipid kinase) by interacting with the Src homology 2
(SH2) domains of the p85 regulatory subunit. PI3K phos-
phorylates phosphatidylinositol 4,5-bisphosphate, generat-
ing phosphatidylinositol 3,4,5-triphosphate (activating the
p110 catalytic subunit). The phosphoinositide produced
then will subsequently phosphorylate protein kinase B,
Akt, (a serine/threonine kinase), into phosphoinositide-
dependent kinase-1, atypical protein kinase C (PKC) and
other serine kinases [29, 31].
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Thus, IR can be caused by defects at multiple sites in the
insulin-signaling pathways, such as increased serine phos-
phorylation of IRS proteins, increased degradation of IRS
and activity of various phosphatases or decreased activation
of insulin receptor downstream-signaling molecules, includ-
ing Akt and atypical PKC [30••].

Other intracellular signaling system is the MAPK relat-
ed to cell growth, differentiation and survival [32]. MAPK
is activated through the renin-angiotensin system (RAS)
which not only activates MAPK but also RAF and
MAPK/extracellular signal-regulated kinase (MEK). The
small GTP protein RAS is activated by GTP exchange
factor Sos, which in turn is activated by binding of the
SH2 domain of Grb-2 to Shc [30••].

At the skeletal muscle level, the RAS/MAPK-dependent
pathway is caused by hyperglycemia which increases insulin
to levels similar to those of non-resistant pathways of insulin-
signaling (pathway-selective IR) [33].

IR in skeletal muscle is a critical feature, because this is the
major site of induction of peripheral IR, and its early defect
leads to the initial development of IGT (reduced ability to
dispose of an oral glucose load) in prediabetes and subse-
quently to overt t-2DM [34].

Interestingly, relevant evidences consider that IR, SM, di-
abetes and obesity are linked with mitochondrial dysfunction
[30••, 35], which is associated with decreased mitochondrial
number, abnormal morphology, lower levels of oxidative en-
zymes and lower ATP synthesis [24•, 36•, 37••].

In addition, the mutations of mitochondrial DNA (mtDNA)
and decreased gene expression are possible causes for the
variability of baseline mitochondrial function seen in insulin’s
primary target tissues: skeletal muscle cells, adipocytes, and
hepatocytes [38].

Skeletal muscle IR has been proposed in various studies,
both in humans and animal models, that show possible alter-
ations in oxidative mitochondrial function (decreased oxida-
tive phosphorylation) and mitochondrial morphology (dimin-
ished mitochondrial biogenesis), as well as a decrease in the
activity of the respiratory chain [39••, 40].

Moreover, the reactive oxidative species (ROS) formed in
mitochondria hydroxyl radical (OH−), singlet oxygen (O), an-
ion superoxide (O2

−), NO and peroxynitrite (NOOO−), all of
which can damage cells and macromolecules (proteins, DNA,
and lipids) by different pathways resulting in mitochondrial
dysfunction [41].

Numerous systemic and cellular dysfunctions can contrib-
ute to ROS overproduction, such as hyperglycemia, dyslipid-
emia, endoplasmic reticulum (ER) stress, advanced glycation
end-products (AGE), nitric oxide synthases (NOS), lipid per-
oxides, and activate reduced insulin actions [42, 43]. This
overabundance of oxidants is associated with the multifacto-
rial etiology of IR, primarily in skeletal muscle tissue [44]. OS
may also be linked to lipid-induced ER stress contributing to

IR through activation of serine kinases such as c-Jun N-termi-
nal kinase (JNK), increasing serine phosphorylation of IRS
proteins [30••, 45]. ROS stimulates pro-inflammatory signal-
ing by activation of IκB kinase (IKK-β) that phosphorylates
IRS into serine residues [46].

Several studies suggest that defects in lipid metabolism
leading to an impairment mechanism for IR, both in human
subjects and rodents, reduces insulin-stimulated glucose dis-
posal [47, 48].

Moreover, free fatty acids (FFAs) stimulate Toll-like recep-
tor (TLR)-mediated inflammatory signaling, which activates
IκB kinase and JNK. It also stimulates the production of other
cytokines, including tumor necrosis factor-alpha, interleukin-
1beta, and interleukin-6 [49].

More recently, it has been suggested that lipid-induced mi-
tochondrial dysfunction and consequent increases in ROS, in
turn, activate various serine kinases that phosphorylate IRS
proteins, promote intracellular accumulation of diacylglycerol
(DG) and activate PKC, which increase serine phosphoryla-
tion of IRS proteins leading to IR [50].

Other mechanisms have been implied, such as lipid activa-
tion of nicotinamide adenine dinucleotide phosphate hydro-
gen (NADPH) oxidase activity through the downstream pro-
duction of ceramides, and signaling by pathways that con-
verge on necrosis factor-beta (NFkβ) [51, 52].

Several investigations have demonstrated that excess of
angiotensin II (ANG II) action both in vivo and in vitro in-
duces a state of whole-body and skeletal muscle IR. These
investigations present the concept that over-activation of the
RAS, in particular ANG II acting via angiotensinogen 1 (AT1)
receptor linked to NADPH oxidase activity, can mediate skel-
etal muscle IR, at least in part via a mechanism involving the
production of superoxide ions [53, 54].

Several recent reports support the concept that exposure of
mammalian skeletal muscle to an OS results in stimulation of
the serine kinase p38MAPK, and that the occurrence of stress-
activated p38MAPK signaling is associated with diminished
stimulation of insulin signaling and glucose transport activity
[55]. Finally, diverse findings have shown that IR associated
with endothelial dysfunction is accompanied by decreased
PI3K-NO pathway [56].

Nitric Oxide Linked to Insulin Resistance

NO appears as regulator of cell and tissue function throughout
body. NO is a molecule synthesized by NOS enzymes from L-
arginine, NADPH and O2 as substrates that consequently pro-
duced L-citrulline, nicotinamide adenine dinucleotide (NAD)
and H2O, in the cy toso l [57 • ] . NO also shows
intramitochondrial production regulated by mitochondrial
NOS (mtNOS) and non-enzymatic reactions with O2 and
ubiquinol (UQH2) [58]. Compared with other reactive
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species, NO has a rather high diffusion distance in biological
systems given its lipophilic nature, neutral charge, and relative
low reactivity [59].

In the mitochondrial matrix, NO reacts with the superox-
ide ion (O2

−) giving peroxynitrite (ONOO−) which is a pow-
erful cytotoxin that is easily diffusible from the
intramitochondrial space, unlike what occurs with NO [60].
NO such as ONOO− is a pro-oxidant potentially leading to
oxidative stress and cellular damage by oxidizing and
nitrating lipids, proteins and DNA, and it impairs mitochon-
drial function at high levels [61].

However, the effects of NO on cellular functions are com-
plex and appear contradictory. Originally, it was described as a
cytotoxic agent [62]. This molecule may be cytotoxic but it
may also protect cells from toxic injury by acting as an anti-
oxidant, and it may activate or inhibit signal transduction path-
ways and gene transcription [10•, 63]. Another key function of
NO is the regulation ofmitochondrial respiration inhibitingO2

consumption and modulating O2 gradients in cells and tissues
by regulating hemoglobin action [64•]. Moreover, NO is most
well-known as a potent regulator of blood flow, similar to the
endothelial-derived relaxing factor (EDRF) [65].

NO is generated in many locations by the different NOS
isoforms, and it is the local production which determines the
physiological actions [66]. The NOS-3 or eNOS, is most
abundant in vascular endothelium but it is also found in
cardiomyocytes, neurons, epithelial cells, adipocytes, and
hepatocytes [67, 68•]. The iNOS or NOS-2, which has the
highest capacity to generate NO, is inducible and expressed
in multiple cells, such as macrophages, in response to in-
flammatory stimuli by cytokines, lipopolysaccharides and
other immunologic agents. Expression of iNOS is regulated
at the transcriptional and posttranscriptional level by signal-
ing pathways that involve agents such as factor NFkβ or
MAPK [66]. Last, the NOS-1 or nNOS is expressed mostly
in neurons, skeletal muscle and epithelial cells. nNOS is a
Ca2+/calmodulin-dependent isoform that can be activated by
agonists of the N-methyl-D-aspartate receptor [69]. In con-
trast, the nNOS and eNOS are constitutively expressed, but
their activity is regulated by the intracellular calcium con-
centration. Thus, iNOS as well as NO are involved in a
variety of acute or chronic disease states such as inflamma-
tion, ischemia-reperfusion, diabetes, cancer, neurological dis-
eases, and aging [59, 70].

In renal disease, there is important evidence from animal
investigations showing that experimentally induced chronic
iNOS inh i b i t i on c au s e s g l ome ru l a r i s c h em i a ,
glomerulosclerosis, tubulointerstitial injury, proteinuria, and
systemic and glomerular hypertension [71]. Total NO produc-
tion decrease in renal disease likely evidences the endothelial
dysfunction and NO renal production, contributing to the pro-
gression of chronic kidney disease itself [72•]. Recent studies
from our group suggest an even more critical cytoprotective

role for NO in the developing kidney. More specifically, it has
been implied in the regulation of renal and glomerular hemo-
dynamics, natriuresis, blunting of tubuloglomerular feedback
(TGF), inhibition of tubular sodium reabsorption, and modu-
lation of renal sympathetic nerve activity [73].

Another investigation revealed that NO induces apoptosis
through mechanisms associated with decreased activity of mi-
tochondrial electron transport chain, and release of mitochon-
drial cytochrome-C into cytosol [74].

However, cell types such as endothelial cells from the mi-
crovasculature are resistant to induction of apoptosis by NO
[75]. Low concentrations of NO provide protection in various
cells by inhibiting certain caspases [76]. A potent
antiapoptotic activity of NO has been proposed as alternative
mechanism of inducing HSP70, by means of NO mediated
modification in intracellular antioxidants levels [77, 78•].

On the other hand, primary NO production is also stimu-
lated in response to insulin. Many evidences show that mito-
chondrial NOS activity may change from NO to O2

− genera-
tion in response to hyperglycemia [79••, 80•]. Insulin induces
NO production by increasing expression and/or activation of
eNOS [70, 81].

The insulin-signaling pathway in vascular endothelium-
regulating production of NO has been elucidated. Insulin-
stimulated activation of eNOS is mediated via the PI3K
branch of the signaling cascade, which later phosphorylates
and activates Akt into PKC. Akt directly phosphorylates
eNOS into Ser1177 [64•, 82•]. Interestingly, insulin stimulates
the protein complex formation consisting of eNOS binding to
calmodulin and to HSP90. This requires HSP90 binding to
eNOS which facilitates insulin-stimulated activation of
eNOS by phosphorylation into Ser1177. The insulin-induced
eNOS activation is calcium-independent [83]. In addition,
RAS/MAP-kinase branch of insulin-signaling pathways does
not affected significantly to activation of eNOS in response to
insulin [84].

Furthermore, ceramide (which is increased in obesity) pro-
motes the disruption of the eNOS–Akt complex from HSP90,
which normally increases eNOS activity by promoting the
displacement of caveolin-1 from eNOS [85].

eNOS activity is also regulated by other posttransla-
t ional modificat ions including acylat ion and S-
nitrosylation [86]. Also, insulin stimulates NO production
in vascular smooth muscle cells (VSMC) in a PI3K-
dependent manner where it activates guanylate cyclase.
NO attenuates production of pro-inflammatory cytokines,
decreases expression of vascular cell adhesion molecules,
inhibits VSMC proliferation, offers resistance to apopto-
sis, and attenuates platelet aggregation and monocyte ad-
hesion to vascular wall [4•, 6].

Moreover, inactivation of NO during the enhanced
ROS production vasculature can significantly reduce NO
bioavailability (maladapted endothelial phenotype) with
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abnormal vasoreactivity associated with elevated expres-
sion of pro-inflammatory and pro-thrombotic factors and
increased OS [70].

Many research works, both in vivo and in vitro, have ex-
plained the patho-physiological role of NO in IR as well as in
developing complications. Original studies show that insulin-
mediated vasodilation is dependent on NO and that insulin-
mediated skeletal muscle vasodilation contributes to insulin
sensitivity in humans [79••, 87, 88••].

Decreased NO generation and/or bioavailability may be the
pathological link between NO, obesity and diabetes, rather
than an excessive NO production. The endothelial dysfunction
is associated with hypertension in both conditions [89].
Insulin-resistant subjects with obesity, exhibit attenuated
insulin-vasodilation in muscle smooth cells under NO im-
paired effects [90].

The role of NO in regulating metabolic actions of insulin
was evidenced by the presence of IR and hypertension in
eNOS knockout mice (eNOS −/−) [91•]. These findings sug-
gest that endothelium-derived NO has additional and direct
metabolic effects on mitochondrial function and induces de-
fects in endothelial function characterized by reduced NO bio-
availability [92].

This metabolic improvement was at least partially due to
eNOS-mediated activation of MAPK in the liver, which sup-
pressed hepatic gluconeogenesis. Hence, the activity of eNOS
uncoupling in the liver may be important for regulating sys-
temic glucose metabolism [93•].

This OS and inflammatory cytokines may contribute to IR
states affecting different PI3K and MAPK pathways through
most independent and interdependent mechanisms in the en-
dothelium. The balance between PI3K/Akt/eNOS/NO and
MAPK/Endothelin-1vascular actions of insulin caused by
ROS and RAS led to impaired both vascular and metabolic
actions of insulin [93•]. Thus, impaired eNOS phosphoryla-
tion derived IR was shown to be responsible for diminished
glucose uptake in the skeletal muscle of mice subjected to
nutrient excess [94•].

Some studies, showing lower NO bioavailability in cul-
tured cells, isolated arteries, animal models, and humans
with diminished eNOS phosphorylation under conditions
of nutrient excess and obesity, for example, elevated FFAs
[95, 96•, 97].

NO and other nitrogen species generated from iNOS could
also regulate systemic metabolism [98]. In the liver, iNOS
expression is very important for regulating insulin sensitivity.
Overexpression of iNOS may cause hepatic IR, hyperglyce-
mia and hyperinsulinemia, and the use of an iNOS-specific
inhibitor (L-NIL) reversed hyperglycemia, hyperinsulinemia
and IR in ob/ob mice [99•]. Since iNOS is induced by inflam-
matory signals, it frequently coincides with increased super-
oxide generation. iNOS induces IR through mechanisms such
as nitrosative posttranslational modifications of proteins in the

insulin-signaling pathway. Increases in iNOS expression in
skeletal muscle of obese mice are associated with increased
S-nitrosation of the insulin receptor, IRS and Akt. Another
mechanism is by promoting proteasomal degradation which
decreases the abundance of IRS in presence of iNOS and NO
donors [100].

In obesity, pro-inflammatory macrophages of adipose tis-
sue are the main cells responsible for iNOS expression and
may propagate the inflammatory signaling involved in IR
[101]. Furthermore, lack of iNOS does not evidence induced
IR, which suggests that not all insulin-resistant states are alike.
The mice lacking the iNOS isoform show IR that appears
associated with a sympathetic, α-adrenergic mechanism
[102] Fig. 1.

Heat Shock Proteins Linked to Insulin Resistance

HSPs, well-known chaperones, are a family of polypep-
tides that assist the damaged molecule in regaining its
functional conformation. HSPs are synthetized in re-
sponse to different stressors (heat shock, hypothermia,
hypoxia, free radicals, ischemia, ethanol, ultraviolet radi-
ation, viral infection, and others) [14]. HSPs protect pro-
teins, lipids and nucleic acids from damage by reducing
oxidation, and are, therefore, cytoprotective. They also
modulate cell function and gene expression, and contrib-
ute to protein homeostasis [12•].

The major functions of HSPs are protection against apo-
ptotic exchanges, assistance in folding of nascent polypep-
tides, prevention of misfolding and aggregation of nonnative
conformations, and aiding protein folding [13]. Other func-
tions include suppressing pro-inflammatory cytokines and
repairing ion channel, preserving mitochondria, membranes,
ER and nucleus, and participating in intracellular transport
[15, 103].

The most important HSP families are HSP40, HSP60,
HSP70, HSP90-kDa, and the small heat shock proteins
[103]. HSP70, the most ubiquitous and highly conserved,
helps proteins adopt native conformation after misfolding.
Also, they protect nascent translating proteins, promote the
organellar transport of proteins and reduce toxic aggregates.
The inducible HSP 72 and 73 kDa forms are found at the
highest level [104, 105]. Protein folding regulated by HSP70
is a complex ATP/ADP-dependent process [13].

HSP expression is regulated in multiple organs during de-
velopment [106]. In the kidney, for example, HSP72 and
HPS90 have individual characteristic distribution with differ-
ential responses to challenges [107••]. Particularly relevant to
our area of knowledge, HSP70 is involved in the adaptive
response of the human kidney to congenital unilateral
ureteropelvic junction obstruction (UPJO), a condition involv-
ing abnormal nephrogenesis with renal injury, leading to
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vasoconstriction, macrophage infiltration, OS and
tubulointerstitial fibrosis and apoptosis [108]. In another in-
vestigation, we have shown that HSP70 may provide
cytoprotection against diverse factors, such as protection
against tubulointerstitial fibrosis, independent from changes
in blood pressure; this includes decreased OS linked to upreg-
ulation of HSP70 expression [109]. Furthermore, HSP70 ex-
pression is associated with the inhibition of renal tubule epi-
thelial cell apoptosis during recovery from low-protein feed-
ing, as mentioned above [110].

Different types of cells release HSP70, which has an im-
portant signaling role in the inflammatory and immune re-
sponse [111]. Regarding cellular OS and mitochondrial apo-
ptosis, these can be prevented by HSP70 expression [112].

NADPH oxidases are an important link in the inflammato-
ry mechanism as they catalyze the production of superoxide
and other ROS, both recognized as major causes of cellular
damage with subsequent disease [113]. In a previous study,
we showed that NADPH oxidase activity can be reverted with
paricalcitol, a vitamin D3 analogue, onmitochondrial fractions
from animal kidney treated with this inducer [114•].

Vitamin D receptor (VDR) produces HSP70/AT1 expres-
sion, collaborating with protection at renal structural and func-
tional levels. We have proposed that low AT1 expression
through VDR induction could be a consequence of heat shock
response through HSP70-mediated cell protection [115•].

Moreover, HSP70 plays a role in controlling VDR concen-
trations within the cell [116•]. Adams et al. suggested that
HSP70-related intracellular vitamin D-binding proteins act
as regulators of vitamin D (VD) metabolism [117]. Thus,
HSP70 and VD are linked by controlling the expression of
protein and VDR in the cell [108].

Here, evidence suggests that VD affects directly and/or
indirectly pancreatic beta cell dysfunction, IR, systemic in-
flammation and t-2DM [118•]. VD and VDR play important
roles in the cardiovascular system and in IR given that one of
vitamin D’s pleiotropic effects is its interaction with RAS
components [119]. Hence, the upregulation of islet RAS genes
in combination with VD insufficiency can result in an increase
in IR and subsequent tissue inflammatory mechanisms [120].

There is much evidence that VD insufficiency seems to
lead to heart failure, left ventricular hypertrophy, hyperten-
sion, chronic vascular inflammation and MS. A deficiency
or insufficiency of serum VD may be predictive of IR in indi-
viduals with prediabetes [121•].

In this sense, diabetes and associated OS increase HSP
production in response to various inducers [122, 123]. Thus,
levels of HSP70 expression increase under stress conditions.
The induction of HSPs leads to metabolic improvement in
diabetic rodents, monkeys, and in humans because it helps
to enhance lipid accumulation in liver and adipose tissue, in-
flammatory signaling and IR [124, 125••, 126].

From a correlation of eHSP70 with IR, pancreatic β-cell
dysfunction and reduced insulin sensitivity, it was observed
cellular death through the activation of NADPH oxidase iso-
forms leading to OS due to its chronically systemic pro-
inflammatory effect [127•, 128].

In diabetes, the HSP levels differ according to the tissue,
i.e., levels are higher in some tissues and lower in others
[129••, 130••]. The eHSP70 (extracellular) and iHSP70
(intracellular) levels in subjects with diabetes compared with
healthy subjects turned out to be different [130••].

iHSPs, e.g., iHSP72 and iHSP73, show low levels in insu-
lin sensitive tissues, such as skeletal muscle, heart, liver and

Fig. 1 Effect of nitric oxide as a
mediator of the insulin resistance
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monocytes in both type-1 and type-2 diabetes, and they are
protective and anti-inflammatory. iHSP levels are inversely
correlated with glucose disposal, IR, inflammatory cytokines,
GLUT4 levels and mitochondrial function. eHSP70 is pro-
duced in response to low-grade inflammation related to a
pro-inflammatory response, decreased expression of iHSP70
and reduced insulin sensitivity [130••].

In addition, iHSP is anti-inflammatory by inactivation of
NF-κB while eHSP70 causes adverse effects [131]. The im-
paired induction of iHSPs emerges as a consequence of the
deactivation of heat shock factor 1 (HSF1). iHSF1 is
deactivated through inhibiting the phosphorylation of HSF1
by glycogen synthase kinase-3β (GSK-3β) that would pro-
mote the activation of inflammatory c-JUNK and NF-κB
[132]. Interestingly, HSP90 represses HSF1 and, therefore,
selective Hsp90 inhibitors activate HSF1-dependent transcrip-
tion in insulin signaling [133].

Krause et al. suggest that the eHSP70/iHSP70 ratio may
be determinant to trigger a chronic pro-inflammatory state
that leads to IR and t-2DM development, and that is a mark-
er for the immune-inflammatory status in many others dis-
eases [134••].

Additionally, increased HSP70 in noninsulin-sensitive
diabetic tissues like the endothelium, have been reported
to be linked to inflammation from an advanced diabetic
state. Here, it was shown that HSP70 is increased in the
circulation of diabetic patients and correlates positively
with the chronicity of the disease [135•]. This data also
suggest that HSP70 may have the potential to be used as a
biomarker in diabetes.

A recent study showed that HSP72 (an inducible HSP70
form) is related to vascular complications associated with a
high-fat diet inducing IR. HSP72 promotes vasodilation and

inhibits cell proliferation thrombosis by augmenting angioten-
sin-(1–7) via eNOS expression [136••].

However, other data indicated that the expression of
HSP72 decreased in t-2MD patients with IR when HSP72
was restored through various methods, such as HSP72 trans-
genic, HSP72 inducer administration or long-term hyperther-
mia [137•].

Therefore, an essential role of HSP72 would be blocking
inflammation signaling [138] and preventing IR in genetic
obesity or high-fat diet, suggesting cytoprotective and anti-
autotoxicity roles for intracellular HSP70 [139•]. Similarly, a
beneficial effect of HSP70 on IR has been reported in trans-
genic animals [140].

Other findings in patients with polycystic ovary syndrome
revealed that serum HSP70 was positively correlated with
high levels of C-reactive protein and TNF-α [141••].

Atalay et al. reported impaired rise in HSP70 in exercising
diabetic animals, while there was an increased mRNA expres-
sion in the subjects [142]. However, increased levels of
HSP70 and HSP60 have been reported, respectively, in the
kidney and liver of diabetic animals [132].

It should be noted that increased HSP70 expression would
be initiated by NO-induced chronic elevation (NO-HSP70
cycle) [143••]. If elevated levels of HSP70 are continued, as
in heat therapy, they would eventually enhance the phosphor-
ylation of AKT, AMPK, and eNOS. Thus, more NO is pro-
duced, improving vasomotricity and vasoprotection in IR and
diabetes [144•].

The function of HSP70 can be debilitated due to glycation,
which blocks its protein refolding ability [145•].

Therefore, a vicious cycle is created in which
inflammation-induced IR leads to lower HSPs and fur-
ther inflammation. Here, Hooper et al. proposes that

Fig. 2 Implication of Hsp70 as a
mediator of the insulin resistance
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impaired HSP activity is a key event in the pathogenesis
of t-2DM [143••].

Finally, IR and diabetes are associated with impaired NO
release from endothelial cells mediated by both eNOS and
iNOS induction leading to inflammation and atherosclerosis
associated to OS [135•, 146].

Reduced NO release from endothelial cells have an oxidiz-
ing effect which increases HSP70 expression during IR, dia-
betes and MS [17••]. This data suggests that HSP70 may be
used as a biomarker, and that the changes in its ratio value may
be applied for the management of inflammatory response
[135•, 143••]. Also, HSP70 shows beneficial effects on an
IR state by protecting cells from damage due to oxidative
stress injury, inflammation and apoptosis [147•].

However, increased NO promotes vasculoprotection which
is attributed to the actions of VD. As mentioned above,
HSP70 and VD are linked by controlling the expression of
protein and VDR. These findings suggest relevant pathways
of interplay between VD and IR, MS and t-2DM [148•] Fig. 2.

Further studies are required to continue elucidating the
events in IR signaling pathways and to provide more clear
insights about the roles of NO and HSPs in the development
of these diseases.

Also, it is necessary to investigate the actions of chemical
chaperones as potential pharmacological applications [149],
new nitrosylated drugs [150], rinse solution containing poly-
ethylene glycol 35 for liver graft protection against ischemia-
reperfusion injury [151••], exercise training and the potential
benefits of heat [144•] and thermal therapy [152••, 153]
against metabolic diseases.

Conclusions

According to the collected evidence, IR and diabetes are as-
sociated with impaired NO release from endothelial cells me-
diated by both eNOS and iNOS induction and lead to inflam-
mation, atherosclerosis, and oxidative stress. Reduced NO
release from endothelial cells has an oxidizing effect which
increases HSP70 expression during IR, diabetes, and SM.
This data suggest that HSP70 may be used as a biomarker
and the changes in its ratio value for the management of in-
flammatory response. Also, HSP70 has beneficial effects on
the IR state, protecting cells from damage due to oxidative
stress injury, inflammation, and apoptosis. In addition, in-
creased NO promotes vasculoprotection attributed to actions
of vitamin D. HSP70, as well vitamin D, are both linked
through controlling expression such as protein and vitamin
D receptor. These findings suggest relevant pathways of inter-
play between vitamin D, IR, SM, and t-2DM. Further studies
are required to continue elucidation the events in IR signaling
pathways and to provide more clear insights about the roles of
NO and HSPs in development of these diseases.
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