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Abstract Management of acute right ventricular failure, both
with and without coexisting pulmonary hypertension, is a
common challenge encountered in the intensive care setting.
Both right ventricular dysfunction and pulmonary hyperten-
sion portend a poor prognosis, regardless of the underlying
cause and are associated with significant morbidity and mor-
tality. The right ventricle is embryologically distinct from the
left ventricle and has unique morphologic and functional
properties. Management of right ventricular failure and pul-
monary hypertension in the intensive care setting requires tai-
lored hemodynamic management, pharmacotherapy, and of-
ten mechanical circulatory support. Unfortunately, our under-
standing of the management of right ventricular failure lags
behind that of the left ventricle. In this review, we will explore
the underlying pathophysiology of the failing right ventricle
and pulmonary vasculature in patients with and without pul-
monary hypertension and discuss management strategies
based on evidence-based studies as well as our current under-
standing of the underlying physiology.
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Introduction

Right ventricular (RV) failure is a common complication of
pulmonary hypertension (PH) and is the major determinant of
morbidity and mortality among patient inflicted with the con-
dition [1]. Early RV dysfunction, manifesting as elevated
right-sided filling pressures with right-sided congestion and
fluid retention can occur with pulmonary hypertension of
any etiology (Table 1) according to the World Health Organi-
zation classification [2•]. Advanced RV failure, manifesting as
low cardiac output, elevated intracardiac filling pressures, and
cardiogenic shock are more commonly seen in patients with
pulmonary arterial hypertension (WHO group 1) and chronic
thromboembolic pulmonary hypertension (WHO group 4)
[2•, 3]. RV failure can also occur independently from changes
in the pulmonary vasculature, occurring in patients with RV
myocardial infarctions, myocarditis, cardiomyopathies, or
right-sided valvular dysfunction.

Traditional management in the intensive care unit is
often focused on optimization of the left ventricle. The
right ventricle is morphologically distinct from the left
ventricle and has differing adaptive responses to changes
in preload and afterload [4, 5]. Unlike the thick-walled,
conical ellipse shape characteristic of the left ventrical,
the right ventricle is a thin-walled crescent-shaped struc-
ture designed to deliver blood into the low-resistance,
high-compliance pulmonary vasculature [6]. Furthermore,
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there is an interplay between the left ventricle and right
ventricle as both ventricles share an interventricular sep-
tum and are continued by the same pericardium [7].
Thus, management options that prioritize optimization
of the left ventricle often come at the expense of right
ventricular function. Unfortunately, given the clinical
severity of the patient population, there are no random-
ized control trials studying different management op-
tions in patients with acute RV failure. Instead,

management of RV failure relies heavily on consensus
opinion obtained from extrapolation of evidence-based
data from less sick patient populations, as well as un-
derstanding the underlying physiologic principles of the
disease state. Here, we review the underlying patho-
physiology of right ventricular failure and its relation-
ship to pulmonary hypertension as well as the
pharmacomechanical management strategies currently
utilized in the intensive care unit.

Table 1 Fifth World Symposium on Pulmonary Hypertension classification of pulmonary hypertension

Group Subclassification

1 1 Pulmonary arterial hypertension 1.1 Idiopathic PAH

1.2 Heritable PAH

1.2.1 BMPR2

1.2.2 ALK-1, ENG, SMAD9, CAV1, KCNK3

1.2.3 Unknown

1.3 Drug and toxin induced

1.4 Associated with:

1.4.1 Connective tissue disease

1.4.2 HIV infection

1.4.3 Portal hypertension

1.4.4 Congenital heart disease

1.4.5 Schistosomiasis

1′ Pulmonary veno-occlusive disease and/or
pulmonary capillary hemangiomatosis

1″ Persistent pulmonary hypertension of the newborn

2 2 Pulmonary hypertension due to left heart disease 2.1 Left ventricular systolic dysfunction

2.2 Left ventricular diastolic dysfunction

2.3 Valvular disease

2.4 Congenital/acquired left heart inflow/outflow tract obstruction
and congenital cardiomyopathies

3 3 Pulmonary hypertension due to lung disease and/or
hypoxia

3.1 Chronic obstructive pulmonary disease

3.2 Interstitial lung disease

3.3 Other pulmonary disease with mixed restrictive and obstructive pattern

3.4 Sleep-disordered breathing

3.5 Alveolar hypoventilation disorder

3.6 Chronic exposure to high altitude

3.7 Developmental lung disease

4 4 Chronic thromboembolic pulmonary hypertension

5 5 Pulmonary hypertension with unclear multifactorial
mechanisms

5.1 Hematologic disorders: chronic hemolytic anemia,
myeloproliferative disorders, splenectomy

5.2 Systematic disorders: sarcoidosis, pulmonary histiocytosis,
lymphangioleiomyomatosis

5.3 Metabolic disorders: glycogen storage disease,
Gaucher disease, thyroid disorders

5.4 Others: tumoral obstruction, fibrosing mediastinitis, chronic
renal failure, segmental PH

Adapted with permission from Simonneau et al. [2•]

BMPR2 bone morphogenic protein receptor type 2, ALK-1 activin-like receptor kinase 1, SMAD9 mothers against decapentaplegic 9, ENG endoglin,
CAV1 caveoln-1, KCNK3 potassium channel super family K member-3
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Pathophysiology of Right Ventricular Failure

Right ventricular cardiac output is dependent on RV contrac-
tility, preload in the form of venous return back to the right
ventricle, and afterload in the form of pulmonary vascular
resistance. Whereas the right ventricle is able to accommodate
acute changes in preload quite well, acute increases in
afterload, such as after a pulmonary embolism, are poorly
tolerated. Initial adaptive changes attempt to maintain RV
stroke volume. In response to an acute increase in afterload
or decrease in contractility, the right ventricle dilates in an
effort to increase RVend-diastolic volume and improve cardi-
ac output by the Frank-Starling mechanism. However, RV
dilation can lead to functional tricuspid regurgitation from
stretching of the tricuspid annulus [8]. With more severe dila-
tion, the contractile sarcomere can become disrupted leading
to hemodynamic collapse [9]. The rising RVend-diastolic vol-
ume and pressure leads to increased RV wall stress and re-
duced RV stroke volume [10]. As a result of the increase in RV
volume and pressure, the interventricular septum shifts toward
the LV, further distorting RV morphology and contractile effi-
ciency (Fig. 1).

When RVafterload increases more gradually, such as with
pulmonary hypertension, the RV compensates with myocar-
dial hypertrophy. In animal models, RV hypertrophy is ob-
served as soon as 96 h after an acute insult [11]. Myocardial
hypertrophy reduces wall stress in the face of rising RV end-
diastolic volume and pressure according to Leplace’s law
thereby maintaining adequate stroke volume [12, 13]. Despite
the adaptive remodeling, the compensatory mechanism of the
RV can be overwhelmed with minor perturbations in RV de-
mand or afterload. The RV hypertrophy comes at a cost as RV
hypertrophy directly leads to increased myocardial demand
setting up a supply-demand mismatch [9]. In patients with
advanced PH, acute RV failure can be triggered by disease
progression despite appropriate therapy but more commonly
occurs following an inciting event such as medication non-
compliance, systemic infection, upper respiratory infection,
anemia, arrhythmias, pulmonary embolism, or changes in
overall volume status (volume overload/depletion) (Table 2)
[14]. In addition, the stresses accompanied with elective and
nonelective surgery can trigger right ventricular failure [15].

Following a sudden insult, the adaptive changes of both
acute and acute on chronic RV failure often lead to a

Fig. 1 Pathogenesis of RV
failure
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destructive cycle of RV dysfunction begetting further RV
dysfunction that is often nonrecoverable. The RV dilation
following an acute rise in afterload or reduction in RV
contractility can lead to worsening tricuspid regurgitation
as described above. Furthermore, the rise in both volume
and pressure leads to elevated right atrial pressures and
dilation, predisposing to atrial arrhythmias and an increase
in previously inconsequential right to left interatrial
shunts through a patent foramen ovale. Atrial arrhythmias
and hypoxemia from a right to left shunt further worsen
the already tenous supply-demand mismatch established
by the increased RV wall tension and hypertrophy. As
compensatory mechanisms become overwhelmed, RV
stroke volume decreases leading to underfilling the LV
and a drop in systemic blood pressure. The drop in sys-
temic blood pressure decreases the aortic perfusion
pressure, further leading to a reduction in right coronary
artery perfusion and worsening RV ischemia. The RV is-
chemia further worsens RV function (Fig. 1). Effective

management of RV failure must therefore utilize pharma-
cologic and mechanical therapies that attempt to break
this vicious cycle while at the same time addressing the
u n d e r l y i n g d i s e a s e p r o c e s s t h a t l e d t o t h e
decompensation.

Pharmacotherapy in Acute Right Ventricular Failure

Themanagement of acute RV failure, especially with concom-
itant pulmonary hypertension, is complex. Patients with evi-
dence of multiorgan dysfunction should ideally be referred to
a quarternary care facility with experts in PH and RVmanage-
ment. Initial management should focus on hemodynamic
stabalization with simultaneous identification of precipitating
causes of RV decompensation. Common precipitating causes
and their therapies are outlined in Table 2. Tailored pharma-
cotherapy to improve RV function and systemic perfusion
should focus on optimizing ventilatory support and tissue

Table 2 Precipitants of right ventricular failure and treatment options

Precipitant Mechanism Treatment

Right ventricular infarct • Decreased right ventricular contractility • Percutaneous coronary intervention

• Systemic thrombolytics

• Transvenous pacing in select cases

Pulmonary embolism • Increase right ventricular afterload • Systemic anticoagulation

• Systemic or catheter-directed thrombolytics

• Embolectomy

Withdrawal of PH therapy • Rebound pulmonary vasoconstriction • Reinitiating therapy if appropriate

• Uptitration of infusion therapy

• Initiation of oral therapies

Infection • Systemic vasodilation leading to decreased RV perfusion • Antibiotics

• Increased myocardial work • Vasopressive medications

Arrhythmia • Tachycardia leading to increased myocardial demand • Rate control if negative inotropy is not contraindicated

• Loss of atrioventricular synchrony • Electrical or chemical cardioversion

• Ablation

Pregnancy • Increased blood volume • Diuresis

• Increased cardiac output • Supportive care

• Delivery

Anemia • Decreased RVoxygen delivery • Transfusion

• Parenteral iron

Surgery • Hemodynamic shifts with anesthesia • Judicious use of fluids at time of surgery

• Fluid shifts • Addition of vasoactive agent prior to induction of surgery

• Diuresis following surgery

• Atropine for anesthesia associated high vagal tone

Hypoxia • Hypoxic vasoconstriction • Supplemental oxygen

• Lung protective ventilation

Hypotension • Decreased right ventricular perfusion • Vasopressive medications

• Treatment of underlying cause of hypotension
(cardiogenic vs. noncardiogenic shock)
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oxygenation, preload, contractility, RV perfusion, afterload,
and rhythm control.

Ventilatory Support and Tissue Oxygenation

Adequate oxygenation is of vital importance in all cases of
shock; however, the issue is even more paramount in RV
failure. As described above, the failing RV is constantly strug-
gling with a supply-demand mismatch and even subtle tissue
hypoxia in the RV can exacerbate the vicious cycle described
in Fig. 1. Furthermore, alveolar hypoxia and hypoxemia in
pulmonary arterial blood cause hypoxic pulmonary vasocon-
striction, further increasing pulmonary vascular resistance and
RV afterload as well as inducing RV diastolic dysfunction
[16]. Supplemental oxygen should be applied to maintain
near-normal systemic oxygen saturations. Tissue hypoxia
can also be minimized by maintaining an adequate hemoglo-
bin level. Hypoxia worsens left ventricular oxygen delivery
and performance, and it is often extrapolated that hypoxia has
similar effects on the right ventricle [17]. Although never pro-
spectively studied, many centers prefer a hemoglobin concen-
tration of at least 10 g/dl [18]. However, it should be noted that
transfusion of stored blood or red blood cells does not always
result in significant improvement in oxygen-carrying capacity.

Endotracheal intubation should be avoided unless it is ab-
solutely clinically indicated as patients often respond poorly to
the sedatives needed for intubation leading to systemic hypo-
perfusion and hemodynamic collapse [19]. Positive pressure
ventilation also increases intrathoracic pressure and impedes
right ventricular preload. If intubation is unavoidable, vasoac-
tive agents should be started in advance to maintain vascular
tone. Induction agents that maintain vascular tone and con-
tractility such as etomidate are often preferred [20]. Positive
pressure ventilation with high tidal volumes, plateau pres-
sures, and positive end-expiratory pressures can similarly lead
to increased RV afterload as can the hypercapnea that occurs
with low tidal volume ventilation [21, 22]. Therefore, ventila-
tory settings should be set to maintain adequate oxygenation
and ventilation with the lowest increase in intrathoracic pres-
sure. This can usually be achieved with the use of low to
moderate tidal volumes (6–8 cc/kg) and moderate levels of
positive end-expiratory pressures (<12 cm H2O) [22].

Optimization of Preload

Finding the optimal fluid balance is paramount in patients
with RV failure, as both hypovolemia and hypervolemia can
impair RV function and organ perfusion. Early canine models
of RV failure suggested that volume loading improved both
RV stroke volume and systemic perfusion [23]. Earlier studies
and clinical experience suggested that aggressive volume
loading may have improved hemodynamics in acute pulmo-
nary embolism and RV infarct [24, 25]. However, it soon

became apparent that overaggressive and unmonitored vol-
ume administration had detrimental effects. More contempo-
rary studies support volume loading only in patients with
underfilled right ventricles with low central venous pressures
[26]. Volume status can often be difficult to assess by jugular
venous assessment, as many patients have high-grade tricus-
pid regurgitation and a large Ba^ waves from atrial contraction
against a noncompliant RV. Central venous pressure monitor-
ing and/or pulmonary artery catheters can be used to obtain a
more accurate assessment of intracardiac filling pressures;
however, caution must be used when using prolonged pulmo-
nary artery catheters in this population owing to the higher
rates of right ventricular arrhythmia and pulmonary hemor-
rhage [27]. The majority of patients with RV failure will pres-
ent with fluid overload, and net fluid removal with loop di-
uretics with or without thiazide diuretics is often needed [13].
Generally, an intermediate central venous pressure goal of
between 6 and 12 mmHg is targeted.

Right Ventricular Contractility and Perfusion

In the setting of cardiogenic shock or systemic hypoperfusion,
augmentation of cardiac contractility with inotropic support is
necessary. Several intravenous medications are available to
increase contractility, all with varying affects on systemic vas-
cular resistance, pulmonary vascular resistance, and
chronotropy. When selecting an inotropic agent, care must
be taken to avoid systemic hypotension which can further
impair right ventricular perfusion as well as to avoid undue
tachycardia which can increase RV workload and impair RV
filling [28].

As is often the case, patients with right ventricular failure
and pulmonary hypertension present with systemic hypoten-
sion which limits the ability to use inodilator therapies such as
dobutmine and milrinone in isolation. Norepinephrine is a
catecholamine vasopressor that increases cardiac contractility
by activating β-1 receptors while at the same time acts as
vasocontrictor via α-1 receptors [29]. By acting as a
vasocontrictor, norepinephrine is often better tolerated in pa-
tients with relative hypotension. Epinephrine and dopamine
are alternative catecholamine vasopressors that can be used;
however, these agents tend to cause more tachycardia which is
often poorly tolerated. A major limitation of catecholamine
vasopressors is that they tend to increase pulmonary vascular
resistance at higher doses [30]. However, these studies have
not been pursued in PH patients specifically.

Dobutamine is a strong β-1 and β-2 agonist which in-
creases myocardial contractility and also reduces both right
ventricular and left ventricular afterload by reducing pulmo-
nary vascular resistance and systemic vascular resistance, re-
spectively [29]. A major limitation of dobutamine is tachycar-
dia and hypotension, both which may be poorly tolerated es-
pecially among patients with coexisting pulmonary
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hypertension. Milrinone, a phosphodiesterase-3 inhibitor,
works downstream from the β-adrenergic receptor and acts
by increasing cyclic AMP levels. Milrinone has less of a
chronotropic response than dobutamine while still augment-
ing cardiac contractility and vascular vasodilation [13, 29].
Milrinone is useful in patients with preserved systemic pres-
sures but must be used with caution or concomitantly with a
systemic vasopressive agent in patients with low systemic
blood pressures, as the systemic vasodilation caused by
milrinone may exacerbate right ventricular ischemia.

An ideal vasopressor will increase systemic vascular resis-
tance more than pulmonary vascular resistance, thereby still
supporting right ventricular perfusion. Vasopressin acts pre-
dominantly through the V1a receptor in vascular smooth mus-
cle leading to vasoconstriction and elevation in systemic vas-
cular resistance [29]. Rat studies suggest that vasopressin may
actually lower pulmonary vascular resistance via the localized
release of nitric oxide [31]. An added benefit of vasopressin is
that its efficacy remains intact in the presence of profound
hypoxia and acidemia, both of which are common in ad-
vanced RV failure [29]. Phenylephrine is another pure vaso-
pressor which acts on α-adrenergic receptors in the periphery.
Phenylephrine has been shown to increase aortic and right
ventricular coronary driving pressure in both animal studies
and humans and may promote RV perfusion allowing for re-
covery of the right ventricle [32, 33]. Vasopressin or phenyl-
ephrine can be used in combination with inotropic agents in
patients with RV failure and hypotension.

Afterload Reduction

The right ventricle responds poorly to even minimal, acute
increases in afterload, and function can recover quite rapidly
with an acute reduction in RVafterload in select patients such
as after pulmonary endarterectomy or lung transplantation
[34, 35]. Selective pulmonary vasodilators can be used in
the acute setting to reduce RV afterload; however, caution
must be used to avoid systemic hypotension. In general, pul-
monary vasodilators should only be used after optimization of
RV perfusion and cardiac output. Also, caution must be used
when initiating vasodilators in the setting of elevated pulmo-
nary capillary wedge pressures to avoid pulmonary edema
[28]. Agents can be subdivided according to their mechanism
of action and route of administration.

Inhaled nitric oxide (NO) is a powerful pulmonary vasodi-
lator that works by increasing production of cyclic guanosine
monophosphate (cGMP). NO is rapidly inactivated by hemo-
globin and therefore has a short half-life meaning that it is easy
to titrate. The short half-life does necessitate the need for a
continuous delivery system [36]. Inhaled NO improves hemo-
dynamics and RV performance in a variety of clinical settings
including postsurgical pulmonary hypertension, acute pulmo-
nary embolism, RV myocardial infarction, acute RV failure

following left ventricular assist device implantation, and car-
diac transplantation [37–41]. Prolonged use of NO can lead to
accumulation of toxic metabolites, reactive nitrogen species,
and methemoglobinemia [42].

Prostacyclins, including epoprostenol, treprostinil, and
iloprost, increase the synthesis of cyclic adenosine
monophsophate (cAMP) leading to vasodilation. Prostacy-
clins, both in their intravenous form and in their inhaled form,
can improve RV performance by reducing pulmonary vascu-
lar resistance. Whereas inhaled prostacyclins are selective and
only lead to vasodilation in aerated lung segments, intrave-
nous prostacyclins are less selective leading to a global reduc-
tion in systemic vascular resistance and can lead to worsening
hypoxia from ventilatory-perfusion mismatch in patients with
pulmonary disease [43]. Inhaled epoprostenol is generally the
preferred agent in the ICU setting given its short half-life and
ease of use [28]. Inhaled epoprostenol improves pulmonary
artery pressures and cardiac index comparably to inhaled ni-
tric oxide in patients with right heart failure after heart and
lung transplantation and may be more effective at reducing
afterload in patients with pulmonary hypertension [44–46].
Inhaled prostacyclins are generally more cost-effective than
inhaled nitric oxide and have become the preferred inhaled
pulmonary vasodilator in many centers.

Once stabilized with either intravenous or inhaled pulmo-
nary vasodilators, patients can be transitioned to oral agents
including phosphodiesterase type 5 (PDE5)-inhibitors such as
sildenafil, or tadalafil, endothelin receptor antagonists such as
ambrisentan, bosentan, or macitentan or in select patients with
pulmonary arterial hypertension or inoperable chronic throm-
boembolic pulmonary hypertension, the novel soluble
guanylate cyclase stimulator, riociguat [47–49, 50•, 51•]. It
must be emphasized that these agents have only been studied
in patients with chronic disease, and limited data is available
on their use in the setting of acute RV failure. Small studies
suggest that PDE5 inhibitors may facilitate NO weaning and
minimize rebound pulmonary hypertension following discon-
tinuation of inhaled pulmonary vasodilators [52]. PDE5 inhib-
itors can also improve RV performance and pulmonary vas-
cular resistance in patients with RV failure following left ven-
tricular assist device implantation [53].

Rhythm Control

The failing RV is extremely sensitive to atrial tachyarrhyth-
mias and atrioventricular dyssynchrony. Animal studies sug-
gest that augmentation of right atrial contraction to enhance
RV filling is an important adaptive response to improve RV
function [54]. Accordingly, loss of atrioventricular synchrony
is poorly tolerated. Patients who regain atrioventricular syn-
chrony after placement of temporary dual-chamber or atrial
pacing that leads following right ventricular infarct have im-
proved hemodynamics and occasionally complete reversal of
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hypotension and shock [55, 56]. The tachycardia associated
with the majority of atrial tachyarrhythmias is poorly tolerated
as this increases RV workload and further worsens the con-
stant supply demand mismatch present with RV failure. Beta
blockers and calcium channel blockers should be avoided in
acute RV failure as they impair ventricular contraction. Digi-
talis can be considered for rate control; however, rate control
alone is often not enough, especially in patients with
coexisting pulmonary hypertension, and a rhythm control
strategy must often be utilized [13]. Aggressive use of antiar-
rhythmic medications, most commonly amiodarone and/or
early electrical cardioversion, is often needed. Radiofrequency
ablation of easily targeted atrial arrhythmias such as isthmus-
dependent atrial flutter can also be considered; however, peri-
procedural morbidity and mortality are high, and atrial ar-
rhythmias tend to recur [57, 58].

Percutaneous and Surgical Interventions in Acute Right
Ventricular Failure

When right ventricular failure is refractory to pharmacothera-
py, percutaneous and surgical interventions can be considered
to unload the failing right ventricle for palliation, as a bridge to
recovery, or in select patients, as a bridge to heart or simulta-
neous heart-lung transplantation [59, 60].

Controlled Right to Left Shunts

As described above, the struggling right ventricle responds
poorly to increases in afterload. Early observational studies
suggested that patients with patent foramen ovale had im-
proved survival in the setting of pulmonary hypertension
[61]. Accordingly, considerable attention has been given to
both percutaneous and surgical creation of controlled right to
left shunts that can instantaneously reduce right ventricular
afterload. In patients with advanced pulmonary arterial hyper-
tension, balloon atrial septostomy leads to a decrease in right
ventricular end-diastolic pressure, increase in systemic arterial
oxygen saturation, increase in cardiac index, and improved
functional status [62]. In select patients with pulmonary hy-
pertension, atrial septostomy can improve symptoms and
serve as a bridge to heart-lung transplantation [63]. While
limited studies have suggested that balloon atrial septostomy
may be useful in patients with pulmonary hypertension and
preserved RV function, its role in patients with RV failure
appears less certain and can lead to systemic hypoxemia and
RV ischemia [64]. Similarly, closing a patent foramen ovale in
the setting of acute right ventricular failure is contraindicated
as the shunt acts as a compensatory pressure offload for the
right ventricle. Alternatively, the Potts shunt, a communica-
tion between the pulmonary artery and descending aorta has
been shown to improve RV function and functional status in

patients with congenital transposition of the great arteries and
RV failure [65]. In pulmonary arterial hypertension, both sur-
gical and percutaneous creation of the Potts shunt has been
shown to improve functional status and prolong survival [66,
67].

Right Ventricular Support Devices

Mechanical circulatory support for the failing right ven-
tricle can serve as an important bridging strategy in pa-
tients for whom there is hope of right ventricular recovery
or who are candidates for transplantation. Mechanical cir-
culatory support comes in many different forms, but all
serve to unload the right ventricle, thereby decreasing the
workload of the right ventricle leading to a more favor-
able supply-demand profile allowing the ventricle to rest
and recover. Right ventricular assist devices (RVAD) in
the form of centrifugal pumps can be surgically implanted
(CentriMag, Thoratec Corporation, Pleasanton, CA) or
percutaneously inserted (TandemHeart, Cardiac Assist,
Pittsburg, PA) with or without an oxygenator and divert
blood from the vena cava or right atrium to the pulmonary
artery or left atrium, effectively bypassing the right ven-
tricle. Right ventricular assist devices have been success-
fully used in patients with RV failure following right ven-
tricular infarct, postcartiotomy shock, cardiac transplanta-
tion, and left ventricular assist device implantation
[68–71].

The Impella RP (Abiomed Inc, Danvers, MA) is a novel
percutaneous, axial flow, investigational device designed to
support the right ventricle with a single vascular access. The
Impella RP is introduced through the femoral vein and posi-
tioned across the tricuspid valve and pulmonic valve and can
provide greater than 4 l of flow from the right atrium to the
pulmonary artery [72]. In patients who develop RV failure
within 48 h after left ventricular assist device implantation,
postcardiotomy shock or after myocardial infarction, implan-
tation of the Impella RP was associated with a 73 % 30-day
survival [73]. A randomized control trial is still needed to
better evaluate the efficacy of the Impella RP.

Veno-arterial extracorporeal membrane oxygenation (VA-
ECMO) drains deoxygenated blood from the venous circula-
tion, runs it through an oxygenator, and returns oxygenated
blood to the arterial system. VA-ECMO can be implanted
either surgically or percutaneously and bypasses both ventri-
cles and thus provides biventricular support. By avoiding the
pulmonary circulation, VA-ECMO is often preferred in pa-
tients with pulmonary hypertension and pulmonary emboli
or in pulmonary hypertension with hypoxia from a reversable
cause as a bridge to recovery [74]. Major limitations to VA-
ECMO include high rates of bleeding, vascular complications,
thromboembolism, and immobility.
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Conclusion

Right ventricular failure and decompensated pulmonary hy-
pertension are common challenges in the intensive care unit
that require prompt recognition and tailored therapies. Al-
though limited by a paucity of large-scale randomized control
trials, current treatment strategies, based on evidence-based
studies and physiologic principles, target RV support and re-
covery with pharmacologic agents and/or mechanical
unloading of the right ventricle. Ultimately, recovery depends
on timely identification and treatment of the underlying cause
of decompensation. When recovery is not possible, heart or
heart-lung transplantation remains an option in selected
patients.
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