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Abstract The metabolic syndrome associates metabolic
abnormalities such as insulin resistance and dyslipidemia
with increased waist circumference and hypertension. It is a
major public health concern, as its prevalence could soon
reach 30% to 50% in developed countries. Aldosterone, a
mineralocorticoid hormone classically involved in sodium
balance regulation, is increased in patients with metabolic
syndrome. Besides its classic actions, aldosterone and
mineralocorticoid receptor (MR) activation affect glucose
metabolism, inducing insulin resistance through various
mechanisms that involve oxidative stress, inflammation, and
downregulation of proteins involved in insulin signaling
pathways. Aldosterone and MR signaling exert deleterious
effects on the cardiovascular system and the kidney that
influence the cardiovascular risk associated with metabolic
syndrome. Salt load plays a major role in cardiovascular
injury induced by aldosterone and MR signaling. Large
multicenter, randomized clinical trials testing the beneficial
effects of MR antagonists on cardiovascular events and
mortality in patients with metabolic syndrome are needed.
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Introduction

The metabolic syndrome includes a constellation of
metabolic disturbances that reflect the increasing preva-

lence of obesity. Various diagnostic criteria have been
proposed in the past 10 years by different organizations
such as the World Health Organization in 1999, the
European Group for the Study of Insulin Resistance in
1999, and the National Cholesterol Education Program
Adult Treatment Panel III (ATP III) in 2001 [1]. A
harmonization effort has resulted in the current definition
of metabolic syndrome, which now includes an increased
waist circumference, elevated triglycerides (≥1.7 mmol/L),
reduced high-density lipoprotein (HDL) cholesterol level
(≤1 mmol/L in males and ≤1.3 mmol/L in females),
elevated blood pressure (systolic blood pressure ≥130 mm
Hg or diastolic blood pressure ≥85 mm Hg), and elevated
fasting glucose (≥100 mg/dL or 5.6 mmol/L) [2••].

The metabolic syndrome is cause for important public
health concern. Its prevalence has increased over time. In
the National Health and Examination Survey (NHANES)
cohort, the prevalence between 1988 and 1994 was 29.2%
using ATP III criteria, and it reached 34.6% between 1999
and 2002. The metabolic syndrome is associated with a
well-recognized increase in cardiovascular risk [3]. A
recent meta-analysis that included 87 studies demonstrated
that patients with metabolic syndrome as defined by the
2001 and the 2004 revised National Cholesterol Education
Program had a relative risk of cardiovascular disease of
2.35 (95% CI, 2.02–2.73) [4•].

Elevated plasma aldosterone values have been found
in obese patients and in patients with the metabolic
syndrome. Aldosterone is a mineralocorticoid hormone
classically involved in sodium balance regulation, and it
could contribute to the hypertension associated with the
metabolic syndrome. Besides this action, aldosterone
exerts deleterious effect on the kidney and the cardio-
vascular system that could contribute to the increase in
cardiovascular risk associated with the metabolic syn-
drome [5]. A growing body of evidence has shown that
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aldosterone may also participate in the pathophysiology of
other components of the metabolic syndrome, such as
insulin resistance. The longitudinal follow-up of 2,292
participants of the Framingham Offspring Study under-
lined the importance of aldosterone in incident metabolic
syndrome. Among the various biomarkers studied, aldo-
sterone and plasminogen activator inhibitor-1 (PAI-1)
were the only biomarkers independently associated with
the occurrence of metabolic syndrome [6]. This review
discusses the implications of aldosterone in the patho-
physiology of the metabolic syndrome and in the increased
cardiovascular risk observed in these patients.

Mineralocorticoid Receptor Expression
and Aldosterone Effects

Aldosterone is a mineralocorticoid hormone mainly synthe-
sized by the zona glomerulosa of the adrenal gland in response
to angiotensin II, adrenocorticotropic hormone (ACTH), and
hyperkalemia. Adrenal secretion of aldosterone stimulated by
any of these agents is inhibited by natriuretic peptides such as
the atrial natriuretic peptide [7]. Aldosterone is classically
involved in transepithelial electrolyte transport of sodium and
potassium in the distal convoluted tubule of the kidney via its
action on the intracellular mineralocorticoid receptor (MR).
More precisely, aldosterone, via MR, activates the apical
epithelial sodium channel, ENaC, and the basolateral
Na+K+ATPase [5]. MR expression is not restricted to the
kidney but is widely distributed across a range of extra-
epithelial tissues such as heart, endothelial cells, vascular
smooth muscle cells, and kidney mesangial cells and

podocytes [5]. MR is also present in human adipocytes,
preadipocytes and differentiated adipocytes, and the localiza-
tion is nuclear and perinuclear [8•]. Besides its classic action
at the level of the distal tubule of the kidney, aldosterone and
MR signaling exert well-demonstrated deleterious effects on
the heart, blood vessels, and kidneys, such as glomerulo-
sclerosis and tubulointerstitial inflammation and fibrosis in
the kidneys, and cardiovascular inflammation, fibrosis, and
hypertrophic remodeling (extensively described elsewhere
[5]) (Fig. 1).

Interestingly, MR has the same level of affinity for
aldosterone as for the glucocorticoids (GC) cortisol and
corticosterone. Circulating GC levels are 1000-fold to
2000-fold higher than those of aldosterone (100-fold to
200-fold higher when plasma free levels are considered)
[9••]. Epithelial aldosterone selectivity is conferred by the
co-expression of MR and 11β-hydroxysteroid dehydroge-
nase type 2 (11βHSD2), which converts cortisol and
corticosterone into MR-inactive cortisone and 11-
dehydrocorticosterone [9••]. 11βHSD2 is highly
expressed in the kidney and in blood vessels but is absent
in the heart [10]. Low expression levels of 11βHSD2 are
observed in subcutaneous and omental adipose tissues
[11]. As a consequence, GC may represent the predomi-
nant endogenous ligand in adipose tissue and perhaps in
the heart. Under normal conditions, about 90% of non-
epithelial MR are occupied by GC [12], but the complexes
are presumably maintained inactive [13]. In the presence
of oxidative stress or inflammation of the vessel wall and
the heart, the GC-MR complexes become active, mimick-
ing the deleterious effect of aldosterone in these tissues
[13]. However, whether GC acts through MR in these

Fig. 1 Effects of aldosterone on
metabolic syndrome. Increased
plasma aldosterone levels are as-
sociated with obesity and meta-
bolic syndrome. In turn,
aldosterone has deleterious effects
on the liver; effects on adipocytes
and skeletal muscle that lead to
insulin resistance; effects on the
cardiovascular system that lead to
inflammation, oxidative stress,
hypertrophic remodeling, and en-
dothelial dysfunction; and effects
on the kidney that lead to glomer-
ulosclerosis, tubulointerstitial in-
flammation and fibrosis, and
podocyte dysfunction. The effects
of aldosterone on lipid metabolism
are more controversial. HDL—
high-density lipoprotein

↑↑
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conditions in the heart and in adipose tissue needs to be
demonstrated.

Plasma Aldosterone Levels, Obesity, and Metabolic
Syndrome

Aldosterone plasma levels and obesity are closely related.
In 1981, Tuck et al. [14] reported for the first time that
weight loss was associated with a decrease in plasma
aldosterone levels. In the PAPY (Primary Aldosteronism
Prevalence in Hypertension) study, Rossi et al. [15]
demonstrated that plasma aldosterone concentration is
independently correlated with body mass index (BMI) in
overweight patients (mean BMI, 27.4 kg/m2) with hyper-
tension. This association was also shown in normotensive,
overweight adults on a high-salt diet [16]. Goodfriend et al.
[17] measured visceral adipose tissue by CT, total fat mass
by dual-energy x-ray absorptiometry, insulin sensitivity,
and plasma aldosterone levels in 28 normotensive women
and 27 normotensive men. Plasma aldosterone was directly
correlated with visceral adipose tissue in women. After
weight loss, plasma levels of aldosterone decreased, but the
correlations between plasma aldosterone concentration and
visceral adipose tissue persisted in women [17].

Increased secretion of aldosterone in the context of
obesity could be related to classic determinants of aldoste-
rone secretion such as angiotensin II, but also may be
related to other stimuli such as insulin, complement C1q
TNF-related protein, fatty acid oxidation products, and
adipokines.

Hyperreactivity of the renin-angiotensin system (RAS)
has been demonstrated in obese patients. Clinical studies
showed that weight loss is associated with a decrease in
aldosterone, as stated above, as well as a decrease in plasma
renin activity, angiotensinogen, and angiotensin-converting
enzyme (ACE) in obese patients [14, 18]. Interestingly,
adipose tissue contains the complete RAS [19], which
could contribute to the systemic increase in aldosterone
levels found in obese patients. Engeli et al. [18] demon-
strated in 70 obese women that a 5% weight loss was
associated with a reduction of angiotensinogen (27%), renin
(43%), and aldosterone plasma levels (31%); a decrease in
ACE activity in plasma (12%); and a decrease in
angiotensinogen expression in adipose tissue (20%).

Insulin resistance and hyperinsulinemia associated with
obesity and the metabolic syndrome may stimulate the
secretion of aldosterone. In vitro, insulin is able to stimulate
aldosterone secretion by rat zona glomerulosa cells in a dose-
dependent manner [20]. In agreement with this experimental
observation, clinical studies have shown a strong relationship
between plasma aldosterone levels and hyperinsulinemia in
obese and hypertensive patients [21, 22].

Experimentally, Jeon et al. [23•] demonstrated that
complement C1q TNF–related protein (CTRP)1 could also
be a part of the explanation of the link between obesity and
aldosterone synthesis. The authors demonstrated that in db/
db mice and in obese Zucker diabetic rats, the expression of
CTRP1 was increased in adipose tissue. CTRP1 was highly
expressed in the adrenal gland of Sprague–Dawley rats,
especially in the zona glomerulosa [23•]. In vitro, CTRP1
stimulated the production of aldosterone in human adreno-
cortical carcinoma cells (H295 cells). CTRP1 enhanced the
expression of the aldosterone synthase gene (CYP11B2) as
well as nerve growth factor–induced clone B (NGFIB) and
Nur-related factor 1 (NURR1), two transcription factors
that play critical roles in stimulating CYP11B2 gene
expression. In conclusion, CTRP1 could be a molecular
link between obesity and aldosterone production [23•].

Goodfriend et al. [24] postulated that exogenous fatty
acid oxidation products, or endogenous ones from adipo-
cytes, could stimulate aldosterone synthesis. The authors
characterized a peroxidation product of linoleic acid, 12,13-
epoxy-9-oxo-10(trans)-octadecanoic acid (EKODE), and
demonstrated that EKODE stimulated production of aldo-
sterone by isolated rat zona glomerulosa cells at concen-
trations between 1 and 30 μM. Above 50 μM, EKODE had
an inhibitory effect [24]. Interestingly, EKODE was
detected in plasma samples from 24 humans (12 normo-
tensive lean, 12 hypertensive obese), and in these individ-
uals, concentrations of EKODE correlated with plasma
aldosterone levels [25]. These studies suggest that adipo-
cytes may release free fatty acids that could stimulate
aldosterone synthesis independently of angiotensin II, after
being oxidized in the liver.

Ehrhart-Bornstein et al. [26] identified potent aldoste-
rone secretory stimulants from isolated human adipocytes.
In vitro, these adipokines stimulated aldosterone secretion
by adrenocortical cells. This effect was independent of
angiotensin II, as it persisted in the presence of valsartan, an
angiotensin receptor type 1 antagonist.

In parallel, experimental data support a pathophysio-
logic link between aldosterone and adipose tissue
development. In adrenalectomized rats, continuous infu-
sion of aldosterone over 12 days was associated with
increased body weight, related to adipose tissue hyper-
trophy [27]. In vitro, Caprio et al. [28] demonstrated that
aldosterone induced the expression of molecular markers
of adipose conversion such as adiponectin, leptin, and
resistin in 3 T3-L1 cells and 3 T3-F442A cultured in a
steroid-free medium. Aldosterone also induced an increase
in mRNA levels of peroxisome-activated receptor-γ
(PPARγ), a key transcriptional regulator of adipogenesis.
3 T3-L1 cell differentiation was blocked by MR but not by
GC receptor downregulation by siRNA [28]. This study
underlined the role of MR as a proadipogenic transcription
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factor that may mediate aldosterone effects on the
development of adipose tissue.

Aldosterone, Obesity, and Inflammation

Obesity is a pro-inflammatory state characterized by
systemic and adipose tissue inflammation. Obesity is
associated with increased production of pro-inflammatory
cytokines such as tumor necrosis factor α (TNF-α),
monocyte chemoattractant protein (MCP-1), IL-6, and a
decreased expression of adiponectin and PPARγ, as well as
an increased level of macrophage infiltration of adipose
tissue [29]. Systemic markers of inflammation such as C-
reactive protein (CRP), IL-6, PAI-1, P-selectin, and vascu-
lar cell adhesion molecule 1 (VCAM-1) are associated with
BMI in a large number of studies (covered in detail
elsewhere [29]). In a recent ancillary study of the
PREVEND (Prevention of Renal and Vascular End-Stage
Disease) study, Abbasi et al. [30] demonstrated that plasma
procalcitonin, a biomarker of inflammation, was associated
with BMI, metabolic syndrome, and insulin resistance in
the general population.

A growing body of evidence has demonstrated that
activation of MR contributes to the inflammatory state
associated with obesity. Guo et al. [31] showed that obese,
diabetic db/db mice had an increased gene expression of
proinflammatory cytokines, TNF-α, MCP-1, and pro-
thrombotic factor PAI-1, and decreased expression of
insulin-sensitizing factor, PPARγ, in retroperitoneal adi-
pose tissue, compared with lean, wild-type mice. Treatment
with the MR antagonist eplerenone prevented these changes
in gene expression. In addition, the authors demonstrated in
vitro that 3 T3-L1 cells treated with aldosterone exhibited
increased expression of TNF-α and MCP-1 and reduced
expression of PPARγ [31]. In ob/ob and db/db, obese mice,
Hirata et al. [32] demonstrated that treatment with epler-
enone significantly reduced macrophage infiltration and
reactive oxygen species production in adipose tissue. Taken
together, these results suggest that MR activation contrib-
utes to changes in adipose tissue that promote low-grade
inflammation.

No clinical study has been conducted in obese patients to
evaluate the effect of MR antagonists on inflammation. In
patients with type 2 diabetes complicated by nephropathy,
MR blockade reduced inflammatory markers [33]. In
hypertensive patients, our group has demonstrated that
treating hypertensive patients with eplerenone, compared
with an atenolol regimen, resulted in reduction of pro-
inflammatory mediators such as MCP-1, osteopontin, basic
fibroblast growth factor (bFGF), and IL-8, in addition to
reduced stiffness of subcutaneous small resistance arteries
[34•].

Aldosterone and Insulin Resistance

An association between glucose intolerance and aldosterone
level in patients with primary aldosteronism (PA) was
demonstrated 45 years ago [35]. More recently, in a cohort
of 85 patients with PA and 381 patients with essential
hypertension, Fallo et al. [36] demonstrated that patients
with PA had a significantly higher prevalence of metabolic
syndrome (defined by ATP III criteria) than patients with
essential hypertension (41.1% vs 29.6%, P<0.005). Within
the individual components of metabolic syndrome, the
prevalence of impaired fasting glucose was particularly
elevated in patients with PA compared with patients having
essential hypertension (27% vs 15.2%, P<0.005) [36]. The
relationship between insulin resistance and elevated plasma
aldosterone level is strengthened by the observation that
surgical or pharmacologic treatment of PA improves insulin
sensitivity [37]. The association between aldosterone level
and insulin resistance has been confirmed in several
populations of patients. In 356 essential hypertension
patients compared with 102 normotensive patients, a
significant association between plasma aldosterone concen-
tration and insulin resistance has been reported [21]. In 302
patients with class II–IV heart failure included in the
ALOFT (Aliskiren Observation of Heart Failure Treatment)
study, a positive correlation between fasting insulin and
plasma and urinary aldosterone levels was also demonstrat-
ed (r=0.22, P<0.01, and r=0.19, P<0.03, respectively)
[38]. When patients with aldosterone escape (20%) and
high urinary aldosterone excretion (34%) were compared
with the rest of the studied population, early-morning
fasting insulin, homeostasis model assessment of insulin
resistance (HOMA-IR), and insulin/glucose ratio (IGR)
were higher in the first group of patients [38]. In 84 healthy
patients, Garg et al. [39] showed an independent negative
correlation between the insulin sensitivity index, calculated
after a 75-gram oral glucose load, and stimulated aldoste-
rone, measured after 45 min of angiotensin II infusion
(3 ng/kg per minute).

Urbanet et al. [8•] directly studied insulin sensitivity in
adipose tissue from patients with PA and healthy patients
who requested abdominoplasty. In vitro, in cultured
adipocytes, basal and insulin-stimulated glucose uptake
was unaffected by physiological concentrations of aldoste-
rone (1–100 nM) but was impaired by pharmacologic levels
(10 μM). This effect was not prevented by eplerenone, but
rather by RU486, suggesting that aldosterone acts in this
case, in vitro, through GR activation [8•]. Unfortunately, in
this study, insulin sensitivity was tested in adipocyte
cultures without differentiating healthy controls from
patients with PA.

In conclusion, impaired glucose metabolism as a result
of insulin resistance appears to be one of the important
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links between aldosterone levels and metabolic syndrome.
In fact, a strong relation was shown between genetic
variants of the CYP11B2 gene, which encodes for aldoste-
rone synthase, and glucose plasma levels, both fasting and
after an oral glucose challenge [40].

Mechanisms of Aldosterone-Induced Insulin Resistance

Aldosterone can impact insulin action through different
mechanisms, which include oxidative stress, inflamma-
tion, and modulation of expression of insulin-signaling
proteins.

Oxidative Stress and Inflammation

Kraus et al. [41] demonstrated a direct effect of aldosterone
on murine brown fat tissue. Aldosterone impaired insulin-
induced glucose uptake by about 25% in a dose-dependent
manner, and induced the expression of the proinflammatory
adipokine leptin and of MCP-1 [41].

In two models of obese mice (ob/ob and db/db), Hirata et
al. [32] demonstrated that treatment with eplerenone, an MR
antagonist, reduced the high levels of glucose, HOMA-IR,
and plasma triglyceride concentration, and increased adipo-
nectin levels. Reductions of macrophage infiltration, defined
as F4/80 positive cells in visceral fat sections, and reactive
oxygen species production were also observed after treat-
ment of obese mice with eplerenone. The effect of
aldosterone on oxidative stress was confirmed in vitro using
3 T3-L1 adipocytes treated with aldosterone. The increased
intracellular levels of thiobarbituric reactive acid substances
(TBARS) and greater expression of reduced nicotinamide
adenine dinucleotide phosphate (NADPH) oxidase subunits
p22 and p47 were decreased by pretreatment of 3 T3-L1
cells with eplerenone, and by transfection of MR-siRNAs.
These results are in agreement with an MR-mediated effect
on obesity-related insulin resistance partly through induction
of oxidative stress and inflammation [32].

In a transgenic model of renin-angiotensin-aldosterone
system (RAAS) activation and insulin resistance, the Ren2
transgenic rat, Lastra et al. [42] extended these observations
to nonadipose tissues such as skeletal muscle. The authors
demonstrated that treatment with spironolactone, an MR
antagonist, improved systemic insulin sensitivity as evalu-
ated by an intraperitoneal glucose tolerance test and skeletal
soleal muscle glucose uptake in the presence of insulin in
Ren2 rats. These effects were associated with a decrease of
NADPH oxidase activity; decreased expression of the
NADPH subunits NOX2, p22phox, p47phox; and a
decrease in membrane lipid peroxidation in the soleus
muscle of Ren 2 rats compared with Sprague–Dawley
control rats. In agreement with the reduction of glucose
uptake in this model, expression of insulin signaling

proteins such as IRS-1, Akt, and GLUT4 was reduced in
the soleus muscle of Ren2 rats. In conclusion, in this
model, insulin resistance is partly mediated via MR
signaling through increased oxidative stress, and is due to
reduced expression of proteins involved in insulin signaling
[42].

Effects on the Insulin Signaling Pathway

Wada et al. [43] demonstrated that direct exposure of 3 T3-
L1 adipocytes to aldosterone for 16 h slightly reduced the
amount of insulin receptor and markedly decreased the
expression of insulin receptor substrate (IRS) 1 and 2 in a
dose-dependent manner, as well as insulin-induced phos-
phorylation of Akt1, Akt2, and p44/42 mitogen-activated
protein kinase (MAPK). Treatment with aldosterone for
16 h reduced insulin-induced glucose uptake in a dose-
dependent manner. The amount of glucose transporters Glut
1 and Glut 4 was not affected by exposure of 3 T3-L1
adipocytes to aldosterone. These effects were prevented by
pretreatment with RU486, a selective GR antagonist, and
N-acetylcysteine, but not by eplerenone. Wada et al. [43]
also demonstrated that aldosterone induced phosphorylation
of IRS1 at Ser307 that is inhibited by rapamycin (a
mammalian target of rapamycin [mTOR] pathway inhibi-
tor) and BMS345541 (an IκB kinase β [IKKβ] inhibitor),
but not by SP600125 (a c-Jun N-terminal kinase [c-JNK]
inhibitor), nor by calphostin C (a protein kinase C [PKC]
inhibitor). Proteasome inhibitors (lactacystin and MG132)
prevented aldosterone-induced degradation of IRS1 and
IRS2, but had no effect on glucose uptake. In conclusion,
the authors demonstrated that aldosterone induces the
degradation of IRS1 and IRS2 via GR-mediated production
of reactive oxygen species and activation of IKKβ and
mTOR [43].

In other cell types, such as vascular smooth muscle
cells, aldosterone exerts comparable effects on IRS1.
Hitomi et al. [44] demonstrated in primary culture of
vascular smooth muscle cells from rats that aldosterone
suppressed insulin signaling through the degradation of
IRS1. This effect was inhibited by eplerenone, N-
acetylcysteine, and the c-Src inhibitor PP1. The degrada-
tion of IRS1 was prevented by pretreatment with MG132,
a proteasome inhibitor. In conclusion, in vascular smooth
muscle cells, aldosterone decreases IRS1 expression via an
MR-dependent pathway through the generation of oxida-
tive stress.

Aldosterone Effect on Hepatic Function

Aldosterone also has an impact on other components of the
regulation of glucose metabolism, such as hepatic gluco-
neogenesis. Aldosterone application in vitro to mouse
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primary cultured hepatic cells was associated with in-
creased gene expression of glucose-6-phosphatase (G6Pa-
se), fructose-1,6-biphosphatase, and phosphoenolpyruvate
carboxykinase in a dose-dependent manner. The increased
gene expression of G6Pase was not suppressed by
pretreatment with spironolactone (1 μM) but was sup-
pressed by RU-38486 (10 μM), suggesting that the effect of
aldosterone on G6Pase expression was mediated through its
interaction with GR [45].

In vivo, in a murine model of a high-fat, high-fructose diet
(HFFD) characterized by elevated blood pressure, dyslipide-
mia, impaired glucose tolerance, and nonalcoholic steatohe-
patitis (NASH), Wada et al. [46•] recently demonstrated that
treatment with spironolactone improved serum fasting
glucose concentration, insulin levels, and HOMA index.
The glucose area under the curve (AUC) decreased by
17.9% in the glucose tolerance test and by 33.7% in the
insulin tolerance test in HFFD mice receiving spironolactone
compared with untreated HFFD mice. The HFFD mice had a
significantly higher concentration of glucose at any time
point during the pyruvate tolerance test; this was improved
by treatment with spironolactone. Thus production of hepatic
glucose is increased in HFFD mice, and there is upregulation
of hepatic-mRNA expression of proinflammatory cytokines
such as TNF-α, IL-6, and MCP-1, and the gluconeogenic
enzyme phosphoenolpyruvate carboxykinase. Treatment
with spironolactone reduced expression of all of these genes
in HFFD mice. This study demonstrated another level of
action of aldosterone in the metabolic syndrome, involving
hepatic gluconeogenesis [46•].

Aldosterone, Metabolic Syndrome, and Lipid
Metabolism

Clinical studies have provided ambiguous results regarding
the relationship between aldosterone levels and lipid metab-
olism. In 30 patients with metabolic syndrome, Goodfriend et
al. [22] demonstrated a strong negative correlation between
plasma aldosterone level and HDL cholesterol level. The
patients with the lowest HDL had the highest BMI, so
obesity could drive the observed association between
aldosterone and HDL cholesterol [22]. This association was
confirmed in another study conducted in 356 people in the
Seychelles, and the association persisted after adjustment for
BMI [47]. However, in 2,891 participants in the Framingham
Offspring Study, plasma aldosterone levels were not inde-
pendently correlated with HDL cholesterol [48]. Small
interventional studies have yielded contradictory results
regarding the effects of MR antagonists on lipid metabolism.
In 16 patients with type 2 diabetes, Joffe et al. [49] described
a significant reduction in triglyceride levels after 6 weeks of
treatment with eplerenone, without any change in total or

HDL cholesterol concentrations. In contrast, a study by
Matsumoto et al. [50], conducted in 33 patients with type 2
diabetes complicated by diabetic nephropathy, did not show
similar results.

In a rodent model of metabolic syndrome induced by
HFFD and in obese mice, treatment with spironolactone
was associated with decreases in triglycerides and total
cholesterol [46•]. This finding was confirmed for circulating
triglycerides in other studies involving obese mice treated
with eplerenone [31, 32]. However, in SHR/NDmcr-cps rats
(a rat model of metabolic syndrome), no significant
reduction of triglyceride levels could be found with
eplerenone administration [51].

Aldosterone, the Cardiovascular System, and Metabolic
Syndrome

Increased plasma aldosterone levels observed in the
metabolic syndrome could affect cardiovascular struc-
tures and the kidney, and may participate in the increased
cardiovascular risk of these patients. Two large clinical
trials, EPHESUS (Eplerenone Post–Acute Myocardial
Infarction Heart Failure Efficacy and Survival Study)
[52] and RALES (Randomized Aldactone Evaluation
Study, using spironolactone in heart failure patients)
[53], confirmed the beneficial effect of adding MR
antagonists to standard therapy including ACE inhibitors
and angiotensin II receptor blockers; overall mortality, rate
of cardiovascular hospitalization, and cardiovascular death
were reduced, compared with rates for patients who
received standard medical therapy. Clinical trials are still
needed to test the efficacy of MR antagonists in reducing
cardiovascular risk in metabolic syndrome patients with-
out heart failure.

In a high-salt environment, aldosterone induces in-
flammation and oxidative stress in the vascular wall, in
the heart and the kidney. These in turn lead to
cardiovascular fibrosis and hypertrophy, glomeruloscle-
rosis, tubulointerstitial fibrosis, and podocyte dysfunction
[5]. It has been clearly demonstrated in the past that
administering mineralocorticoid and salt to uninephrec-
tomized rats [54, 55] or Wistar rats [56] induces severe
vascular and cardiac hypertrophy and fibrosis. These
effects were prevented by spironolactone, an MR antago-
nist, independently of blood pressure [56]. In addition,
MR antagonist treatment of stroke-prone spontaneously
hypertensive rats (SHR) prevented cardiac and vascular
remodeling and endothelial dysfunction [57]. Oxidative
stress and inflammation play a central role in the
deleterious effects of aldosterone and MR signaling on
the cardiovascular system. Increased oxidative stress and
inflammation in the heart and vessels has been reported in
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rats treated with deoxycorticosterone acetate (DOCA) and
salt [58, 59] or aldosterone and salt [56]. Vascular
inflammation and oxidative stress precede the develop-
ment of cardiac and vascular fibrosis [60]. Treating rats
that are hypertensive due to aldosterone and salt with
apocynin, an NADPH oxidase inhibitor [57], prevented
the cardiovascular remodeling and fibrosis; the same result
occurred in uninephrectomized aldosterone/salt hyperten-
sive rats treated with pyrrolidine dithiocarbamate (PDTC)
or N-acetylcysteine [60]. In a DOCA/salt hypertensive rat
model, our group demonstrated that administering an
endothelin receptor type A (ETAR) antagonist reduced
cardiac collagen deposition [61]. In addition, in aldoste-
rone/salt hypertensive rats, an ETAR antagonist prevented
cardiovascular fibrosis and vascular remodeling [62] and
reduced oxidative stress and expression of intercellular
adhesion molecule-1 (ICAM-1) in the vascular wall [63].
These studies emphasize the role of an activated endothe-
lin system in mineralocorticoid-induced cardiovascular
damage. Effects on the kidney were demonstrated by
Greene et al. [64], who showed that aldosterone induced
renal injury independently of angiotensin II and demon-
strated that the antiproteinuric effect of angiotensin II
blockade in the remnant-kidney rat were reversed by
aldosterone infusion. In addition, administering aldoste-
rone and salt to normotensive rats [65] and to unineph-
rectomized rats [66] induced renal injury characterized by
proteinuria, mesangial matrix expansion and cell prolifer-
ation, glomerulosclerosis, tubulointerstitial inflammation,
and podocyte changes. Increased oxidative stress markers
and inflammation were also described in the kidney in
these models [65, 66]. Indeed, treatment with Tempol, an
antioxidant, prevented kidney damage induced by aldo-
sterone and salt [65, 66]. Taken together, these studies
emphasized the deleterious effects of aldosterone on the
heart, the vessels, and the kidney through induction of
oxidative stress and inflammation.

The increased level of aldosterone associated with
metabolic syndrome could play a role in cardiac and renal
disease. The rat model of metabolic syndrome, SHR/
NDmcr-cp (SHR/cp), is characterized by hypertension
(derived from a background of SHR) and obesity due to a
nonsense mutation in the leptin receptor gene. In this
model, metabolic abnormalities include hyperinsulinemia,
dyslipidemia, and hypertriglyceridemia, all of which are
consistent with metabolic syndrome [67]. Gross et al. [68]
demonstrated that, compared with streptozotocin-treated
rats, SHR/cp exhibited marked structural kidney lesions
such as podocyte damage and mesangial matrix expansion.
Circulating aldosterone levels and glomerular expression of
serum and glucocorticoid-inducible kinase 1 (Sgk1),
reflecting MR signaling, were increased in SHR/cp rats
compared to SHR. Treatment of SHR/cp rats with epler-

enone and Tempol, an antioxidant, improved podocyte
injury and proteinuria and decreased urinary 8-hydroxy-2′-
deoxyguanosine (8-OHdG) and expression of NADPH
subunits. Taken together, these results show that in the
metabolic syndrome, aldosterone signaling contributes to
podocyte injury via oxidative stress [67].

Salt load plays a critical role in cardiovascular and renal
injury induced by aldosterone and/or MR signaling in the
metabolic syndrome. In SHR/cp rats, Matsui et al. [51]
demonstrated that left ventricular diastolic dysfunction was
observed only in salt-loaded conditions. Salt-load SHR/cp
also exhibited severe hypertension, perivascular fibrosis,
overproduction of reactive oxygen species, and upregulation
of Sgk-1 (reflecting MR signaling in the heart), compared
with SHR and SHR/cp on a normal-salt diet. Administration
of eplerenone or the antioxidant superoxide dismutase
mimetic Tempol prevented a high-salt diet from inducing
left ventricular diastolic dysfunction and oxidative stress in
SHR/cp. These results suggest that SHR/cp do not exhibit
cardiovascular dysfunction or oxidative stress and fibrosis
with a normal-salt diet. However, the metabolic syndrome in
this rat model is a predisposing condition for salt-induced
cardiac dysfunction and vascular fibrosis via MR signalling,
possibly through the increased levels of oxidative stress [51].
In the kidney, a salt load induced advanced glomeruloscle-
rosis and tubulointerstitial fibrosis, podocyte damage, in-
flammation, and oxidative stress in SHR/cp, compared with
SHR/cp receiving a normal-salt diet and SHR on a high-salt
diet. Tempol and eplerenone significantly improved these
abnormalities. Tempol reduced the expression of renal Sgk1,
which may suggest that oxidative stress plays a role in MR
activation in this model [69].

Conclusions

The metabolic syndrome and obesity are associated with
increased plasma aldosterone levels. Aldosterone, in turn,
plays a role in adipocyte function, local and systemic
inflammation, and insulin resistance. High concentrations
of aldosterone could also contribute to cardiovascular and
renal injury, especially in a high-salt environment, and to
the increased overall cardiovascular risk of these patients.
However, a large interventional trial testing the efficacy of
MR antagonists in reducing the cardiovascular risk of
patients with metabolic syndrome is needed to confirm
these experimental observations.
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