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The stress-signaling protein, adenosine monophos-
phate–activated protein kinase (AMPK), regulates a 
variety of pathways in cells that 1) increase the provi-
sion and utilization of energy-providing substrates such 
as glucose and fatty acids, 2) inhibit energy-requiring 
pathways such as cholesterol biosynthesis and protein 
synthesis, and 3) increase the transcription of genes 
involved in energy metabolism and mitochondrial bio-
genesis. In the heart, AMPK therefore becomes very 
important in protecting against ischemia-reperfusion 
injury and regulating substrate metabolism in the face 
of changes in workload. This review summarizes the 
regulation of AMPK activity in the heart and discusses 
the effects of AMPK activation.

Introduction
Adenosine monophosphate–activated protein kinase 
(AMPK) is increasingly recognized as a vital signaling 
molecule in the cellular response to stress. Originally two 
proteins were described: 3-hydroxy-3-methylglutaryl-
CoA (HMG-CoA) reductase kinase, inhibiting cholesterol 
synthesis, and acetyl-CoA carboxylase (ACC) kinase, 
stimulating fatty acid metabolism by decreasing the con-
version of acetyl-CoA to malonyl-CoA. The structure 
of the two proteins was found to be identical and it was 
revealed that this protein, which is sensitive to changes in 
the energy state of the cell, plays a central role in regulat-
ing metabolism [1].

Metabolic and Molecular  
Regulation of AMPK
AMPK is a serine/threonine kinase that plays a major role 
in the response of mammalian cells to metabolic stress 
(Fig. 1). As the name indicates, AMPK activity increases in 

response to increases in the intracellular content of AMP, 
which generally occur as a result of hydrolysis of adenos-
ine triphosphate (ATP). As noted above, AMPK inhibits 
both cholesterol synthesis and protein synthesis [2,3], 
which are energy-requiring cellular functions. AMPK 
also activates energy-producing metabolic pathways, 
including glycolysis [4,5••,6,7] and fatty acid oxidation 
[8,9]. Therefore, the overall effect of AMPK activation is 
to shift the balance from ATP consumption to ATP pro-
duction to compensate for cellular metabolic stress. As a 
result, AMPK has been referred to as a “metabolic fuel 
gauge” [10] or “metabolic master switch” [11].

AMPK consists of three subunits, the catalytic α sub-
unit and the noncatalytic β and γ subunits, which regulate 
the activity of AMPK and its sensitivity to activation by 
AMP [12]. There are two isoforms of the α subunit, α1 and 
α2, which might be responsible for the regulation of differ-
ent downstream targets [13]. In addition, the α2 subunit 
is present in the nucleus as well as in the cytosol, suggest-
ing a role for AMPK in gene expression [14]. It has been 
demonstrated that chronic chemical activation of AMPK 
with the nucleoside 5-aminoimidazole-4-carboxyamide-
1-ribofuranoside (AICAR) increases the expression of key 
metabolic genes in skeletal muscle [15–19]. In addition, 
stimulation of AMPK with the AMP analog precursor 
AICAR in isolated cardiac myocytes and perfused hearts 
increases the expression of two fatty acid transporters, 
FABPpm and FAT/CD36 [20]. Interestingly, chronic stim-
ulation of AMPK improves insulin sensitivity in animal 
models of diabetes and obesity [21,22]. Although little 
work has been done to demonstrate the effect of chronic 
activation of AMPK in the heart, mutations in the γ2 
subunit of AMPK in humans result in increased AMPK 
activity and a cardiomyopathy characterized by intracel-
lular glycogen accumulation and pre-excitation syndrome 
[23,24].

Regulation of AMPK occurs through both covalent 
and allosteric mechanisms. With respect to the covalent 
regulation of AMPK, phosphorylation of the catalytic α 
subunit at threonine 172 (Thr172) results in increased 
activity. This phosphorylation occurs through the activity 
of upstream kinases, known collectively as AMPK kinases 
(AMPKKs). The family of AMPKKs includes the tumor 
suppressor LKB1 [25••,26] and calmodulin-dependent 
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protein kinase kinase-β [27,28], although there may be 
other members of this family of kinases that are respon-
sible for Thr172 phosphorylation and ultimately AMPK 
activation. This is supported by recent findings that 
loss of LKB1 function in the heart prevents the Thr172 
phosphorylation of the α2 subunit but does not affect 
phosphorylation and activation of the α1 subunit [29].

5´-Adenosine monophosphate regulates AMPK through 
noncovalent binding with the γ subunit. This noncovalent 
interaction has several effects that increase AMPK activ-
ity. First, the AMP-γ subunit complex interacts with an 
autoinhibitory region in the catalytic α subunit, increasing 
the interaction of the α subunit with target proteins [12]. 
Second, the binding of AMP to the γ subunit makes AMPK 
less susceptible to the actions of protein phosphatases, 
which can desphosphorylate Thr172 of the α subunit [30].

As expected, stimuli that cause changes in the energy 
charge of the cell will increase the activity of AMPK. 
These include ischemia [5••,8], increased contractile 
work [6,31,32], oxidant stress [33,34], and osmotic 
stress [35]. In addition, the chemical agent AICAR stim-
ulates AMPK activity by being metabolized to an AMP 
analog, ZMP, albeit at concentrations in the millimolar 
range, in which there may be nonspecific effects [36,37]. 
However, AMPK can be activated by other stimuli that 
do not affect the AMP/ATP ratio. Specifically, the hypo-
glycemic agents rosiglitazone and metformin can cause 
Thr172 phosphorylation and AMPK activation [38,39], 
although at concentrations well above the serum concen-
trations that are observed with clinical use of the drugs. 
Nitric oxide (NO) also can stimulate AMPK activation 
[40], which is interesting given the fact that AMPK can 
phosphorylate and activate endothelial NO synthase 
(eNOS) [41], and NO production has been implicated in 
the stimulation of glucose uptake by AMPK [42•]. Fur-
thermore, the adipokines leptin [43,44] and adiponectin 
[45,46] can stimulate AMPK activity, although some of 
these effects may be tissue-specific [47].

Role of AMPK in the Cardiovascular System
The first (and still the most studied) stimulus for AMPK 
activation in the heart is myocardial ischemia. Myocar-
dial ischemia results in a switch in the main source of 
energy production from fatty acid oxidation to glycolysis. 
During reperfusion, with restored provision of oxygen to 
the heart, the rate of fatty acid oxidation increases over 
the rate observed under basal conditions. These meta-
bolic switches during ischemia and reperfusion can be 
explained by activation of AMPK. AMPK is activated 
very rapidly with the onset of ischemia [48••]. This 
increase in AMPK activity is maintained during ischemia 
and for at least 30 minutes during reperfusion [5••]. 
Early studies using AICAR demonstrated that AMPK 
activation causes translocation of the facilitative glucose 
transporter GLUT4 from an intracellular storage pool to 
the cell surface, where it is biologically active, increasing 
glucose uptake [4]. Subsequent studies using transgenic 
mice in which AMPK was rendered inactive demonstrated 
that there is an absolute requirement for AMPK activation 
for increased glucose uptake in the setting of myocardial 
ischemia [5••,49]. Furthermore, AMPK activation 
enhances glycolysis by activating phosphofructokinase 
(PFK)-2, which generates fructose 2,6-bisphosphate, an 
activator of the glycolytic enzyme PFK-1 [7].

As noted above, AMPK phosphorylates and thereby 
inactivates ACC, which results in increased fatty acid 
oxidation. The phosphorylation of ACC decreases its 
ability to convert acetyl-CoA to malonyl-CoA, which is 
an allosteric inhibitor of carnitine palmitoyltransferase-
1 (CPT-1). CPT-1 regulates the transport of fatty acids 
into the mitochondria and is therefore the rate-limiting 
enzyme of fatty acid β-oxidation by the mitochondria. 
Although AMPK activation during ischemia will result in 
the phosphorylation of ACC, the oxidation of fatty acids 
does not increase; instead, it decreases because of the 
lack of sufficient oxygen to maintain β-oxidation. During 
reperfusion, however, when adequate blood flow and oxy-

Figure 1. The adenosine monophosphate–
activated protein kinase (AMPK) signaling 
pathway and the downstream metabolic 
effects of AMPK activation. ACC—ace-
tyl-CoA carboxylase; ATP—adenosine 
triphosphate; FABP—fatty acid binding 
protein; GLUT—facilitative glucose 
transporter; PFK—phosphofructokinase; 
UCP—uncoupling protein.
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genation are reestablished, the inhibition of ACC results 
in enhanced fatty acid oxidation [5••,8,9].

The vital role that AMPK plays in the ischemic heart 
is underscored by studies assessing the effect of loss of 
AMPK function on the response of the heart to ischemia. 
In the setting of no-flow ischemia, loss of AMPK function 
results in a more rapid onset of ischemic contracture [49]. 
With low-flow ischemia followed by reperfusion, loss of 
AMPK function results in poorer postischemic recovery of 
function [5••]. Furthermore, this contractile dysfunction 
is associated with greater myocyte damage and increased 
apoptosis. It remains to be determined if this antiapop-
totic effect of AMPK is related to the metabolic effects of 
this stress protein or if there is some direct effect on the 
apoptotic pathways that is mediated by AMPK.

Because of the rapid hydrolysis of ATP to adenosine 
diphosphate (ADP) and AMP in the setting of myocar-
dial ischemia [50], rapid activation of AMPK is to be 
expected, and detectable changes in AMPK activity have 
been demonstrated within 1 minute of the onset of ische-
mia [48••]. This activation is mirrored by an increase in 
AMPKK activity, as determined by Thr172 phosphoryla-
tion of AMPK. Interestingly, in contrast to AMPK, which 
demonstrates clear allosteric activation by AMP, AMPKK 
activity is not affected by AMP concentrations [48••]. 
Furthermore, in vitro activity of one of the putative AMP-
KKs, LKB1, is not increased by myocardial ischemia, 
suggesting either that LKB1 does not play a significant 
role in the regulation of AMPK in the heart [51] or that 
other mechanisms, such as the association of LKB1 with 
the accessory subunits MO25 and STRAD, are respon-
sible for increased AMPKK activity [25••].

The effects of AMPK on fatty acid metabolism are 
rather direct, with phosphorylation and inactivation of ACC 
being responsible for increased fatty acid oxidation, but the 
downstream mechanisms responsible for GLUT4 transloca-
tion are only beginning to be characterized. Recent studies 
have demonstrated that inhibition of p38 mitogen-activated 
protein kinase (MAPK) results in partial inhibition of the 
increase in glucose uptake caused by either hypoxia or 
AICAR stimulation and decreased translocation of GLUT4 
to the cell surface [52•]. As mentioned above, AMPK activa-
tion results in phosphorylation of eNOS. However, treatment 
of heart muscle with NO inhibitors incompletely attenuates 
the increase in glucose uptake in response to AICAR stimu-
lation [42•]. It is not clear whether the incomplete nature 
of the attenuation of the effects of AMPK stimulation on 
glucose metabolism by NO inhibitors is due to incomplete 
inactivation of p38 MAPK or NO production or whether 
p38 MAPK and eNOS are only some of the parallel media-
tors of the AMPK signaling cascade.

The role of AMPK in the heart’s response to ischemia 
discussed above represents an acute response with little 
effect on gene transcription and protein expression. How-
ever, several studies have investigated the effects of chronic 
stimuli on AMPK activity in the heart. Chronic pressure 

overload, induced by ascending aortic banding, increases 
both α1- and α2-isoform–specific AMPK activity, although 
the expression of the α1 isoform increases while expression 
of the α2 isoform decreases, suggesting that there may 
be greater Thr172 phosphorylation of the α2 isoform to 
explain the increased α2 activity [53]. Interestingly, volume 
overload inhibits the developmental increases in AMPK 
expression [54]. Metabolic signals, such as prolonged 
exposure of isolated cardiac myocytes to the saturated 
fatty acid palmitate, cause a decrease in AMPK expres-
sion and increase apoptosis [55]. Furthermore, perfusion 
of isolated hearts with high concentrations of free fatty 
acids has been shown to increase Thr172 phosphorylation 
of the α subunits of AMPK, as does 24 hours of fasting 
[56]. Chronic caloric restriction did not change myocardial 
AMPK activity in another study, however [57]. Further-
more, in insulin-resistant rats with increased circulating 
free fatty acid concentrations, no change in myocardial 
AMPK activity was noted [58]. The conflicting results of 
the above studies demonstrate the need for further research 
in the area of chronic regulation of AMPK.

Although most of this review has focused on the role of 
AMPK in cardiac myocytes, it is important to point out that 
AMPK also plays a critical role in endothelial cells. Endo-
thelial cells derive the bulk of their ATP from glycolysis, 
although glucose and fatty acid oxidation can contribute 
variable amounts to ATP production [59]. As mentioned 
above, AMPK activation leads to eNOS phosphorylation, 
which may be responsible, in part, for the increase in 
glucose utilization by endothelial cells [40,41]. Endothelial-
cell AMPK activation by AICAR can increase the rates of 
oxidation of both glucose and fatty acids [59,60]. The sig-
nificance of endothelial-cell AMPK activation by metabolic 
stress in vivo remains to be determined, although AMPK 
activation can decrease reactive oxygen species generation 
and apoptosis induced by hyperglycemia in endothelial 
cells [61,62]. Furthermore, loss of AMPK activity inhibits 
the expression of vascular endothelial growth factor and 
angiogenesis in response to hypoxic stress [63,64].

Conclusions
Recognition of the importance of AMPK in the response 
to metabolic and hemodynamic stressors in the cardio-
vascular system continues to increase, with AMPK found 
to be responsible for metabolic adaptations to ischemia, 
changes in workload, and alterations in circulating 
substrate concentrations, as well as for genomic-level 
adaptations with changes in expression of key proteins 
and protection against cell injury and death. Based on 
the growing body of information concerning the role of 
AMPK in the heart and vasculature, increased interest 
will be focused on pharmacologic manipulation of the 
AMPK signaling pathway. There may also be interest in 
possible methods of noninvasively assessing the activity of 
this pathway in disease states.
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