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Introduction
Diabetes mellitus represents an increasingly heavy health
burden in our society and has acquired epidemic dimensions.
The lifetime risk for developing diabetes for individuals born
in the year 2000 in the United States is 32.8% for males and
38.5% for females [1]. If an individual is diagnosed with
diabetes at the age of 40 years, men will lose 11.6 life-years,
and women will lose 14.3 life-years; the loss of quality-
adjusted life-years is even higher.

Most diabetic complications are related to the vascula-
ture. Macrovascular complications of diabetes include
atherosclerosis, leading to myocardial infarction, stroke,
and peripheral artery disease, the latter being the leading
cause of limb amputation in the United States. Microvas-
cular complications include diabetic nephropathy and

retinopathy, which represent the leading causes of end-
stage renal disease and blindness. The cardiovascular risk
in diabetic patients is further enhanced in the presence
of other risk factors, such as hypertension. Diabetes and
hypertension are often part of a clustering of risk factors.
The mechanisms whereby diabetes affects the vasculature
are complex, and new findings are enriching our patho-
physiologic understanding of the disease. Two important
risk factors, which are the focus of this review, have
emerged: nitric oxide (NO) and oxidative excess. Because
more than 90% of diabetic patients have the type 2 form of
diabetes, this review is focused on the vascular pathology
of type 2 diabetes.

Endothelial Dysfunction
Endothelial dysfunction is an almost inevitable finding
associated with vascular damage in diabetes, and is linked
in part to the balance between oxidative stress and the
NO system. Rizzoni et al. [2] and Shofield et al. [3] have
described vascular remodeling and endothelial dysfunc-
tion in small resistance arteries of diabetic patients, as
well as elevated adhesion molecules, such as intercellular
adhesion molecules (ICAM)-1 and vascular cell adhesion
molecules (VCAM)-1 [2]. ICAM-1 and VCAM-1 are
markers of endothelial dysfunction that correlate with
blood glucose levels, as indicated by measurement of
glycated hemoglobin [4]. In diabetic subjects, ICAM and
VCAM are associated with markers of inflammation, such
as C-reactive protein (CRP), interleukin (IL)-6, and
tumor necrosis factor (TNF)-α [5]. Endothelial dysfunction
is associated with inflammation and is a powerful pro-
moter of progression of atherosclerosis [6]. Endothelial
dysfunction has been shown to predict the risk of death in
diabetic patients [7•].

There is impaired NO-dependent dilation of skeletal
muscle arterioles in hypertensive diabetic obese Zucker
rats. Oxidative excess promotes endothelial dysfunction in
this model, as demonstrated by correction of the endo-
thelial dysfunction by superoxide dismutase mimetics [8].
Similar results were seen by inhibition of reduced nicotina-
mide adenine dinucleotide phosphate (NADPH) oxidase
in the OLETF diabetic rat model [9]. The endothelial
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dysfunction occurs as a result of reduction of NO or tetra-
hydrobiopterin (BH4) bioavailability. Diminished BH4
results in uncoupling of endothelial NO synthase (eNOS),
and oral administration of L-arginine [10], the substrate for
eNOS, or BH4 [11], reverses this endothelial dysfunction in
the streptozotocin-induced rat model of diabetes.

Effects of Decreased Nitric Oxide 
Bioavailability in Diabetes
Nitric oxide bioavailability is decreased in diabetes [12].
Besides causing endothelial dysfunction, decreased NO
bioavailability can also lead to several other pathophysio-
logic effects. There is a decrease in platelet-derived
NO in diabetic patients with coronary heart disease, and
the decreased NO affects arachidonic acid metabolism in
the platelets, resulting in higher platelet sensitivity to
aggregating stimuli [13]. A prothrombotic state increases
the chance of coagulation on a vulnerable plaque, and,
therefore, increases the risk of myocardial infarction.

In diabetes, inflammation is an important mechanism
promoting vascular damage. Markers of vascular inflam-
mation, such as chemokines and activated platelets, are
increased in diabetic patients [14•]. NO and oxidative
excess play a pivotal role in the vascular inflammatory
state. In human umbilical vein endothelial cells (HUVEC),
oxidized low-density lipoprotein (LDL) increases mono-
cyte chemoattractant protein (MCP)-1 expression through
an enhanced nuclear factor (NF)-κB activity; this process
can be prevented by activation of the NO system [15].
Therefore, diminished NO bioavailability in diabetes can
increase MCP-1 expression, promoting leukocyte chemo-
taxis and adhesion, two processes that are characteristic of
the inflammatory response [14•].

Nitric oxide interferes with other mechanisms in
diabetic vascular damage, such as the polyol pathway, in
which reduced glucose results in sorbitol accumulation.
This polypol pathway has been linked to the development
of vascular complications in diabetes mellitus. In aortic
tissue from diabetic rats, sorbitol accumulation can be
increased by eNOS blockade and decreased by the addition
of L-arginine, indicating a regulatory role for NO for the
polyol pathway. The proposed target for NO on the polyol
pathway might be the enzyme aldose reductase, a redox-
sensitive protein [16•].

Causes of Diminished Nitric Oxide in Diabetes
Diminished NO in both human and animal models of
diabetes might have several causes, such as variations in
the expression of the enzyme NO synthase. In human
aortic cells, glucose increases eNOS activity [17]; however,
eNOS activity can be decreased by glycosylated and
oxidized LDL [18]. In human endothelial cells, the
addition of glucose increases oxidative stress and reduces
NO bioavailability [19]. In HUVEC, there is a decrease in

NO production, despite a threefold increase in eNOS
expression, when grown on glycated collagen, accompa-
nied by increased nitrotyrosine-modified proteins and
premature cell senescence, which could be prevented by
peroxynitrite scavenging [20]. NO is scavenged by super-
oxide anion forming peroxynitrite, which is responsible
for the nitration of tyrosine residues on proteins. Nitro-
tyrosine in plasma proteins might be regarded as indirect
evidence of peroxynitrite production. Indeed, nitrotyrosine
plasma levels were increased in patients with diabetes and
correlated with plasma glucose levels [21]. Additionally,
peroxynitrite is a cytotoxic oxidant. By promoting genera-
tion of BH2 rather than BH4, eNOS dimer formation is
decreased. Uncoupled eNOS loses its oxygenase function
(NO production) and functions as a reductase, forming
superoxide anion instead of NO [22]. Peroxynitrite is an
important mediator of oxidation of LDL, contributing to
its proatherogenic role [23••]. Using a novel peroxynitrite
decomposition catalyst, FP15, target-organ damage in
the form of endothelial and cardiac dysfunction can be
prevented in diabetic mice [24•].

Another source of low NO in diabetes relates to the
process of inflammation that has been shown to decrease
NO levels. For example, the calcium-dependent protease
calpain, which is increased in acute inflammatory condi-
tions in the cardiovascular system, has been shown to
mediate inflammation secondary to glucose excess. Inhibi-
tion of calpain activity decreases the interaction between
leukocytes and the endothelium [25•]. The inflammatory
marker CRP, which is elevated in diabetes, has also
been shown to decrease eNOS activity [26]. Additionally,
advanced glycation end products (AGEs) quench NO
and impair endothelial function [27]. Aminoguanidine
inhibits AGEs and improves NO function.

There is also a relationship between the insulin-
signaling pathway and NO regulation. The actions of
insulin are mediated through two major pathways. One
pathway is through activation of insulin-receptor
substrate-1 (IRS-1), phosphatidylinositol 3-kinase
(PI3K), phosphoinositide-dependent kinase 1 (PDK-1),
and Akt. This same pathway can lead to phosphorylation
and activation of eNOS [28]. The other insulin-signaling
pathway leads to mitogen-activated protein kinases
(MAP-K), including mitogen-activated protein kinase
kinase (MEK)-1, ERK-1, and ERK-2, which have major
effects on growth and proliferation [29]. In states of
insulin resistance, such as those seen in type 2 diabetes,
the PI3K pathway is reduced, whereas the MAP-K pathway
is unaffected [30]. High levels of glucose lead to inhibi-
tion of the PI3K pathway through the hexosamine
pathway [31••]. Insulin excess also leads to the stimula-
tion of inflammatory/atherogenic factors, such as MCP-1
and plasminogen activator inhibitor (PAI)-1 [32]. There-
fore, in the insulin resistance and hyperinsulinemia of
type 2 diabetes mellitus, the high insulin levels could lead
to reduced eNOS expression coupled to increased growth
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and mitogenic action, and the disparate effects of insulin
on NO and growth in insulin-resistant states might favor
the progression of atherosclerosis.

The protein kinase C (PKC) pathway that is activated
by elevated glucose levels in diabetes presents another
factor in the etiology of the complications of diabetes
[14•]. PKC contributes to increased superoxide anion
formation via inhibition of eNOS activity [33] and
activation of NADPH oxidase [34], both of which
play an important role in endothelial dysfunction.
The specific PKC inhibitor ruboxistaurin improves
diabetic nephropathy in animal models of diabetes
[35,36]. This agent reduces PKC that, in turn, decreases
oxidative stress, inflammation, and profibrotic media-
tors in diabetes.

Effects of Oxidant Excess in Diabetes
Reactive oxygen species (ROS) are downstream targets of
PKC activation, but also appear to be upstream of PKC,
as well as of NF-κB activation, the polyol, and the hex-
osamine pathways [37]. By activating the hexosamine
pathway, ROS reduce NOS activity [38]. ROS can activate
matrix metalloproteinases (MMPs) (namely MMP-2 and
MMP-9), which degrade the extracellular matrix and
contribute to the instability of the atherosclerotic plaque
and plaque rupture [39]. In the vasculature, ROS upregu-
late adhesion (VCAM-1 and ICAM-1) and chemotactic
(MCP-1) molecules, contributing to vascular inflamma-
tion [23••]. In resistance arteries from genetic hypertensive
rats, which are known to be insulin-resistant, correction
of oxidant excess with antioxidants results in improved
endothelial function and vascular remodeling [40]. In
diabetic pigs, oxidant excess induces an inflammatory
response in the adventitia, with increased expression of IL-
6, TNF-α, MCP-1, and VCAM-1 [41•].

In diabetes, ROS promotes the formation of AGEs acting
on specific receptors (AGE-R1–3 [RAGE]), scavenging
receptors (ScR-II), and the fatty acid receptor/transporter
CD-36, which contributes to vascular and end-organ
damage [42]. AGEs promote crosslinking of long-living
proteins, such as vascular collagen, which is conducive to an
age-associated increase of arterial and cardiac stiffness, and
is enhanced in diabetes. Interestingly, new crosslink break-
ers, such as ALT-711, have improved arterial and ventricular
function in elderly humans [43]. AGEs induce cell activa-
tion, and stimulate growth-related mediators, cell prolifera-
tion, and proinflammatory responses [41•,42]. In renal
dysfunction, clearance of AGEs is delayed, which promotes
vascular and renal injury in diabetic nephropathy [44].
AGEs themselves induce ROS [41•]. Therefore, AGEs are
important promoters of vascular inflammation and acceler-
ated atherosclerosis in diabetes. In fact, RAGE blockade
decreases atherosclerosis in streptozotocin-induced diabetes
[45•]. Finally ROS can induce insulin resistance, as demon-
strated in angiotensin II–infused rats [46].

Sources of Reactive Oxygen Species in Diabetes
The main source of oxidant excess in the vasculature is
NADPH oxidase [23••], and, seemingly, this is also the
case in diabetes. In pigs with streptozotocin-induced
diabetes, superoxide formation was augmented because
of increased NADPH oxidase activity [41•]. PKC-induced
activation of NADPH oxidase was a major source of
ROS in the glomeruli of diabetic rats [47]. In vitro, glucose
stimulates NADPH oxidase in endothelial cells, vascular
smooth muscle cells, and renal mesangial cells, suggesting
that it is the main source of ROS in diabetes [34]. In other
studies, xanthine oxidase is the leading source of ROS in
human and experimental diabetes [48]. In mice with
streptozotocin-induced diabetes, plasma xanthine oxidase
was increased, leading to enhanced superoxide formation
that could be normalized by the xanthine oxidase inhibitor
allopurinol [49].

Mitochondria have lately become the focus of research
as a source of oxidant excess. Nishikawa et al. [37] showed
that mitochondria-derived ROS can activate PKC, increase
the formation of AGEs and sorbitol, and induce NF-κB
activation. The age-related decline in mitochondrial
function might contribute to the increasing insulin
resistance seen in the elderly [50]. Recently, a unifying
mechanism for these effects was proposed [51••].
Mitochondrial superoxide production might lead to DNA
strand breaks,  which act ivate  poly (ADP-ribose)
polymerase (PARP), inhibiting glyceraldehyde-phosphate
dehydrogenase (GAPDH) activity. This leads to increased
delivery of glycolytic intermediates to the mitochondria,
increasing, in turn, superoxide production. Increases in
glycolytic intermediates activate PKC, increase flux in
the hexosamine pathway, with increased AGE formation,
and activate the polyol pathway. The activation of PKC,
hexosamine, AGE formation, and the polyol pathway can
be prevented by competitive PARP inhibitors.

New Therapeutic Targets
Diabetic patients are at high cardiovascular risk. Intensive
blood-pressure lowering is critical to lower their risk.
Nevertheless, we recently showed that diabetic hyper-
tensive patients with controlled blood pressure, most of
them on ACE inhibitors and lipid-lowering agents, show
marked remodeling of resistance arteries, even more
pronounced than patients with untreated hypertension do
[52]. Additionally, normotensive diabetic patients already
display vascular abnormalities [2,3]. These newer studies
of abnormal vascular biology in diabetes underline that
the current treatment regimens for diabetic patients do not
completely reduce the cardiovascular risk in diabetes to
normal. In addition to strict control of glycemia, hyper-
tension hypercholesterolemia, obesity, sedentary lifestyle,
smoking, and high calorie diet, we need additional new
treatment options with specific effects on the vascular
pathology in diabetic patients. The newer mechanisms of
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vascular damage in diabetes mellitus should provide new
targets for intervention, of which blockade of oxidant
excess might be the most important.

Peroxisome proliferator-activated receptors (PPAR)-γ
activators are used in type 2 diabetes due to their insulin-
sensitizing effects. PPAR-γ  as well as PPAR-α agonists
exhibit pleiotropic effects that include antioxidant and
vascular-protective properties [53]. This class of agents has
several potential benefits in diabetes in cardiovascular
prevention but their effects must be proven in large
outcome trials. The peroxynitrite decomposition catalysts,
specific PKC inhibitors, and RAGE-blockade agents
represent o ther  new potent ia l  therap ies  fo r  the
complications of diabetes. The new crosslink breaker ALT-
117 (Alteon, Ramsey, NJ) has already improved arterial and
ventricular function in the elderly. Whether it will benefit
diabetic patients needs to be investigated [43].

Conclusions
Diabetic subjects are at increased risk for cardiovascular
disease, and the imbalance between the NO system and
formation of ROS products are linked to advanced vascular
damage. NO and ROS are at the center of feedback loops
that lead to vascular injury. Such feedback loops include
the uncoupling of eNOS due to ROS, leading to more
ROS formation, ROS promotion of inflammation, super-
oxide anion stimulation of PKC with NADPH oxidase-
mediated production of superoxide anion, or glycolytic
intermediates overloading mitochondria leading to
increased superoxide anion and PARP activation with
inhibition of GAPDH, leading to further accumulation of
glycolytic intermediates. New therapeutic approaches
hopefully will be able to successfully interfere with
these targets.
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