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Introduction
Hypertension develops as a result of multiple complex inter-
actions between susceptibility genes and environmental
factors that influence cardiac, renal, and vascular function to
increase arterial pressure. A key factor underlying hyperten-
sion is increased peripheral vascular resistance, due in large
part to functional, structural, and mechanical alterations of
resistance arteries. Functional changes, which are usually
acute responses, include increased vascular reactivity to
vasoconstrictor agents and decreased vasodilation and
reflect abnormal excitation-contraction coupling, altered
electrical properties of vascular smooth muscle cells, and

impaired endothelial cell function [1,2]. Structural altera-
tions due to persistent, chronic stimulation of vessels
include reduced lumen diameter and media thickening
(vascular remodeling) [3,4] and involve changes in vascular
smooth muscle cell growth, cell migration, dedifferentia-
tion, rearrangement of vascular components, increased
abundance of extracellular matrix components, and forma-
tion of focal adhesions [5••,6] (Table 1). Mechanical
changes include altered stiffness and distensibility and
may be due to changes in collagen:elastin content [7].
Another recently identified factor contributing to vascular
dysfunction in hypertension is inflammation of the vascular
wall associated with migration of proinflammatory cells,
increased expression of redox-sensitive proinflammatory
genes, and proteins and fibrosis [8••,9]. Vascular smooth
muscle cells are central to these processes. Consequently,
much research has focused on elucidating physiologic
mechanisms and pathophysiologic events that regulate
vascular smooth muscle cell function in health and cardio-
vascular disease.

Among the many humoral factors involved in vascular
alterations in hypertension, angiotensin II (Ang II)
appears to be one of the most important. Ang II is a
multifunctional peptide that has numerous actions on
vascular smooth muscle: it modulates vasomotor tone
through its potent vasoconstrictor effects, it regulates cell
growth and apoptosis, it influences cell migration and
extracellular matrix deposition, it is proinflammatory,
and it stimulates production of other growth factors and
vasoactive agents [10–12].

The multiple actions of Ang II are mediated via specific,
highly complex intracellular signaling pathways that are
stimulated following an initial binding of the peptide to its
cell-surface receptors. Two major receptor subtypes have
been cloned and characterized, AT1R and AT2R [10–13].
Both receptors play a role in the regulation of vascular
smooth muscle, although they differ in their action.
Whereas the AT1R is associated with growth, inflamma-
tion, and vasoconstriction, the AT2R is associated with
apoptosis and vasodilation [10–13]. The significance of
Ang II in vascular pathology associated with hypertension
is supported by experimental and clinical studies demon-
strating that angiotensin-converting enzyme (ACE)

A major hemodynamic abnormality in hypertension is 
increased peripheral resistance due to changes in vascular 
structure and function. Structural changes include reduced 
lumen diameter and arterial wall thickening. Functional
changes include increased vasoconstriction and/or decreased 
vasodilation. These processes are influenced by many
humoral factors, of which angiotensin II (Ang II) seems to 
be critical. At the cellular level, Ang II stimulates vascular 
smooth muscle cell growth, increases collagen deposition, 
induces inflammation, increases contractility, and decreases 
dilation. Molecular mechanisms associated with these
changes in hypertension include upregulation of many signal-
ing pathways, including tyrosine kinases, mitogen-activated 
protein kinases, RhoA/Rho kinase, and increased generation 
of reactive oxygen species. This review focuses on the role 
of Ang II in vascular functional and structural changes of
small arteries in hypertension. In addition, cellular processes 
whereby Ang II influences vessels in hypertension are
discussed. Finally, novel concepts related to signaling path-
ways by which Ang II regulates vascular smooth muscle cells 
in hypertension are introduced.
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inhibitors and AT1R blockers not only lower blood
pressure, but also regress arterial remodeling, improve
endothelial function, reduce vasomotor tone, decrease
inflammation, and normalize aberrant signaling events in
vascular smooth muscle cells [14–16]. This review focuses
on the role of Ang II in vascular functional and structural
changes associated with hypertension and discusses some
of the molecular mechanisms underlying these processes.
Other agents such as endothelin-1 (ET-1); vasopressin
(AVP); aldosterone and norepinephrine; growth factors
such as epidermal growth factor (EGF), platelet-derived
growth factor (PDGF), and insulin-like growth factor-1
(IGF-1); and mechanical factors such as stretch/strain,
pressure, and shear stress may also be important in
vascular pathologic processes and complications of hyper-
tension. However, these will not be discussed in this paper,
and the reader is referred to recent reviews [5••,6,17,18].

Vascular Structural Changes in Hypertension: 
Role of Angiotensin II
Increased peripheral resistance in hypertension results
from a general narrowing of resistance arteries (arteries
with diameter < 300 µm), due in large part to changes in
vascular structure, also known as remodeling [3,4].
Vascular remodeling has been classified according to the
nature of changes in lumen diameter (inward or outward)
and by changes in media mass (increased = hypertrophic,
decreased = atrophic, no change = eutrophic). Major
structural changes in established hypertension include
reduced diameter and increased media thickness. In
human mild essential hypertension, spontaneously hyper-
tensive rats (SHR), and 2-kidney, 1-clip Goldblatt rats,
vessels exhibit inward eutrophic remodeling where lumen
diameter is reduced, media:lumen ratio is increased, and
media cross-sectional area is unaltered [3,4,5••,19]. In
patients with severe hypertension or renovascular hyper-
tension, and in deoxycorticosterone acetate-salt rats, 1-
kidney, 1-clip Goldblatt rats, and Dahl salt-sensitive rats,
small arteries undergo hypertrophic remodeling, where
media growth encroaches on the lumen to increase

the media:lumen ratio and media cross-sectional area
[3,4,5••,20,21].

Vascular smooth muscle cell growth
Cellular processes associated with arterial remodeling
include vascular smooth muscle cell growth (hyperplasia
and hypertrophy), apoptosis, elongation of vascular
smooth muscle cells, reorganization of cells around the
lumen, and/or altered extracellular matrix composition
[3,22,23]. Hyperplasia refers to an increase in vascular
smooth muscle cell number associated with DNA
synthesis and is stimulated by Ang II. Hyperplasia may be
an important component of hypertension as evidenced
by an increase in smooth muscle cell proliferation rate
and the number of cell layers in the media of arteries
from hypertensive animals [23,24]. These processes
appear to be genetically determined and independent of
hypertension, as recently demonstrated by Hu et al. [25•].
In that study, vascular smooth muscle cells from young
SHR exhibited exaggerated growth; increased expression
of genes associated with metabolic enzymes, adhesion
molecules, and cytokines as assessed by GeneChip
(Affymetrix, Santa Clara, CA) technology; and enhanced
production of Ang II [25•]. Hypertrophy, a reversible
process, refers to increased cell size due to increased
protein synthesis and/or increased intracellular cell water
volume. Ang II stimulates hypertrophy by stimulating
protein synthesis and by inducing activation of trans-
membrane transport systems, such as Na+/K+ATPase,
Na+/H+ exchanger, Na+-dependent Mg2+ transporter,
and Na+/K+/2Cl cotransporter, which influence trans-
membrane movement of ions and water [5••,26,27]. In
experimental models of hypertension, hyperplasia and
hypertrophy have been demonstrated to contribute,
to varying degrees, to vascular remodeling. In intramyo-
cardial arteries in SHR, the volume and number of
arterial smooth muscle cells is increased [28], and in
Ang II-induced hypertensive rats, arterial smooth muscle
cell thickness is increased without a change in the
number of cell layers [29]. In prehypertensive SHR,
structural changes of small arteries are associated with an

Table 1. Angiotensin II-regulated cellular processes that influence vascular functional and structural 
changes in hypertension*

Functional changes Structural changes

Increased myocyte contraction Vascular smooth muscle cell hyperplasia
Decreased vasodilation Vascular smooth muscle cell hypertrophy
Endothelial damage Decreased/increased apoptosis
Increased endothelial permeability Increased collagen production
Myocyte migration Decreased collagen degradation

Recruitment of inflammatory cells 
Expression of adhesion molecules
Cytoskeletal rearrangement
Formation of focal adhesions

*These changes contribute to increased peripheral resistance.
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increase in the media volume, increased number of
smooth muscle cell layers, and elongation of vascular
smooth muscle cells [30]. Mesenteric resistance arteries
from SHR have a greater number of cell layers than
normotensive controls, and this is normalized when
rats are treated chronically with ACE inhibitors or AT1R
blockers [31], further confirming the importance of Ang
II in growth processes associated with vascular remodel-
ing in hypertension.

Apoptosis
In eutrophic remodeling, characteristic of small arteries in
mild essential hypertension, increased vascular smooth
muscle cell growth does not seem to be a major factor
contributing to media thickening. In this condition,
apoptosis and vascular fibrosis may be more important.
The exact role of apoptosis in arterial remodeling remains
unclear, and it is unknown whether apoptosis is a growth-
associated compensatory process or a primary event.
However, an imbalance between growth and apoptosis
could be important. In resistance arteries of young SHR,
apoptosis is reduced and growth is enhanced [32]. On the
other hand, in Ang II-infused normotensive rats, aortic
apoptosis is increased [33]. Treatment of SHR with an
AT1R blocker increased the vascular smooth muscle cell
apoptotic rate, whereas AT2R blockade attenuated these
effects, suggesting an antiapoptotic (cell survival) role for
AT1R and a proapoptotic role for AT2R in SHR [34]. To
further support the proapoptotic, antigrowth effect of AT2R
in vivo, Wu et al. [35] recently demonstrated that valsartan
improved cardiovascular remodeling in aortic-banded
wild-type mice, whereas valsartan effects were blunted in
AT2R null mice. Numerous studies have suggested that ACE
inhibitors and AT1R blockers may contribute to regression
of vascular wall growth through activation of proapoptotic
pathways [36,37].

Vascular fibrosis
Vascular fibrosis involves the accumulation of extracellular
matrix proteins, particularly collagen, in the vascular
media. Changes in extracellular matrix may precede the
vascular dysfunction associated with hypertension. Risler
et al. [38] demonstrated that synthesis of secreted and
membrane-bound sulfated proteoglycans by cultured
vascular smooth muscle cells from young SHR was greater
than that from age-matched controls. Increased collagen
deposition in the vascular media has been demonstrated in
experimental hypertension and in subcutaneous resistance
arteries from essential hypertensive patients [3,39].
Increased collagen I and III mRNA and enhanced collagen
protein synthesis have also been demonstrated in fibro-
blasts from patients with essential hypertension [40].
Collagen accumulation may be due to increased Ang II-
induced synthesis. In Ang II-dependent hypertension in
TGRen2 transgenic rats, vascular hypertrophy is attributed

to increased collagen deposition and dedifferentiation of
vascular smooth muscle cells to a fetal-type smooth
muscle cell phenotype [41]. In isolated vascular smooth
muscle cells from SHR, Ang II directly stimulates collagen
production via a p38 mitogen-activated protein (MAP)
kinase–dependent pathway [42]. In addition to stimulat-
ing production, Ang II regulates collagen degradation by
attenuating interstitial matrix metalloproteinase (MMP)
activity and by enhancing tissue inhibitor of metallo-
proteinase-1 (TIMP-1) production. In young SHR, activity
of MMP1 and MMP3 is reduced, whereas in adult SHR,
MMP2 activity is decreased [43]. These effects promote
accumulation of fibronectin, proteoglycans, and collagen,
which contribute to remodeling in hypertension. In SHR
treated with AT1R blockers, TIMP-1 expression and collage-
nase activity were normalized [44], supporting the role for
Ang II in these processes.

Inflammation
Vascular inflammation, characterized by recruitment of
monocytes and lymphocytes into the subendothelial
space, production of chemotactic cytokines, increased
expression of adhesion molecules, reactive smooth muscle
cell proliferation, and altered extracellular matrix produc-
tion and degradation, may also contribute to vascular
structural changes in hypertension [8••,45]. These
processes, together with lipid oxidation, are proathero-
genic, particularly in damaged arteries in hypertension.
Ang II has significant proinflammatory actions in the
vascular wall, inducing the production of reactive oxygen
species, such as superoxide (O2

•-) and hydrogen peroxide
(H2O2), cytokines, adhesion molecules, and activation
of redox-sensitive inflammatory genes [8••,46]. Vascular
O2

•- and H2O2 function extracellulary to modulate endo-
thelium-dependent changes in vasomotor tone and intra-
cellularly as a second messenger to produce long-term
phenotypic alterations of cells [46,47••]. Reactive oxygen
species regulate activity of pro-MMP2 and pro-MMP9,
which further influence extracellular matrix protein
content [48•].

Angiotensin II also modulates expression of pro-
inflammatory molecules in the vessel wall that influence
monocyte recruitment into the damaged hypertensive
vessel. In endothelial cells, Ang II upregulates vascular cell
adhesion molecule (VCAM-1), intercellular adhesion
molecule, and E-selectin expression through a redox-
dependent pathway [8••,49]. In vascular smooth muscle
cells, Ang II stimulates VCAM-1 production, chemokine
monocyte chemotactic protein-1 (MCP-1), and the
cytokine interleukin (IL)-6 [8••,49], which stimulate the
recruitment of mononuclear leukocytes into the
vessel media. To support the role of endogenous Ang II in
vascular inflammation, AT1R blockers have been shown to
reduce serum levels of VCAM-1, tumor necrosis factor-α,
and superoxide in patients with early atherosclerosis [50].
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Vascular Functional Changes in Hypertension: 
Role of Angiotensin II
In addition to structural changes, abnormal regulation
of vascular caliber due to increased vasoconstriction and/
or decreased vasodilation contributes to increased
peripheral resistance and consequently to blood pressure
elevation. These are usually acute events in response to
multiple stimuli.

Increased vasoconstriction
Of the many vasoconstrictor agonists implicated in
vascular hyper-responsiveness in hypertension, Ang II
appears to be one of the most important. Whereas contrac-
tile responses to ET-1, AVP, and norepinephrine are
reported to be decreased, unchanged, or rarely increased,
vascular reactivity to Ang II has, for the most part, been
found to be enhanced in experimental and human hyper-
tension [51–54]. These effects may be direct or indirect
through increased sympathetic activity [55]. Regulation of
Ang II-induced vascular contraction is generally attributed
to a G protein-mediated increase in cytoplasmic free Ca2+

concentration ([Ca2+]i), which is the signal activating the
contractile machinery of vascular smooth muscle cells.
Ca2+ activates the Ca2+/calmodulin-dependent myosin
light chain (MLC) of myosin, inducing a myosin:actin
interaction [10]. Relaxation results from dephosphoryla-
tion of MLC by MLC phosphatase. Accordingly, the
contractile state of vascular smooth muscle is dependent
upon the relative activities of these enzymes. In addition to
changes in [Ca2+]i, Ca2+ sensitivity of MLC phosphoryla-
tion contributes to regulation of the contractile state. Both
MLC kinase and phosphatase are downstream targets of
multiple signaling molecules including Ca2+/calmodulin
kinase II, protein kinase C, arachidonic acid, extracellular
signal-regulated kinase (ERK1/2), and cGMP-dependent
protein kinase [10–13]. Recent studies demonstrate that
RhoA/Rho kinase–dependent pathways also influence
MLC kinase and phosphatase at a constant [Ca2+]i, and
probably constitute a major mechanism underlying
increased vascular contractility in hypertension [56]. Other
systems implicated in enhanced Ang II-mediated contrac-
tility in hypertension include 5-lipoxygenase-derived
products, particularly the cysteinyl leukotrienes [57] and
epoxide hydrolase [58]. Studies in intact arteries and
isolated vascular smooth muscle cells from experimental
hypertensive rats and hypertensive patients have demon-
strated that many of the above Ang II-mediated events are
upregulated and contribute, at least in part, to increased
reactivity, exaggerated vasoconstriction, and enhanced
vascular tone in hypertension (Fig. 1).

Decreased vasodilation
Alterations in vasodilator mechanisms have been identified
both in endothelial-dependent and endothelial-independent

systems. The endothelium plays a critical role in modulating
vascular relaxation by release of endothelial-derived nitric
oxide (NO), stimulation of vascular smooth muscle cell solu-
ble guanylate cyclase (sGC), and the subsequent increase in
intracellular cGMP. Altered vascular tone in hypertension is
associated with impaired endothelium-dependent vasodila-
tion due, in large part, to reduced NO signaling [59]. Among
the mechanisms implicated in perturbed endothelial-derived
bioavailability of NO in hypertension are 1) reduced
expression/abundance of endothelial nitric oxide synthase
(eNOS), the major endothelial NO-generating enzyme
system; 2) decreased activation of eNOS, possibly due to
tetrahydrobiopterin (eNOS cofactor) deficiency; and
3) increased quenching of NO by increased Ang II-mediated
generation of O2

•- [60]. Impaired endothelium-mediated
vasodilation has been demonstrated in many experimental
models of hypertension, as well as in essential hypertensive
patients [15,19,59,61,62•]. These endothelium-dependent
aspects have been reviewed recently elsewhere and will not
be discussed further [63,64].

The endothelium was classically considered to be the
major regulator of vascular relaxation through the NO/cGMP
pathway. However, growing evidence indicates that endo-
thelium-independent processes also play a role in modula-
tion of vascular tone, and that abnormalities in these events
contribute to aberrations in vasorelaxation in hypertension.
This is supported by studies demonstrating that endothelium-
independent vasodilators release NO, activate GC, and
generate cGMP in the vascular wall [65]. In addition, vascular
smooth muscle relaxes in response to classical endothelium-
independent agents such as adenosine, prostacyclin, forsko-
lin, and β-receptor agonists [66]. In vascular smooth muscle
cells, activation of receptors linked to adenyl cyclase and
the consequent increase in intracellular cAMP levels is an
important endothelium-independent mechanism mediating
vasodilation. Impaired receptor-mediated vasodilation has
been demonstrated in genetic and experimental models of
hypertension and has been attributed to alterations in the
transmembrane signaling processes linking β-adrenoceptor
receptor activation with the stimulation of adenyl cyclase.
Other studies suggest that dysregulation of sGC is important
in impaired endothelium-independent vasodilation in
hypertension [60,67]. Despite data implicating endothelium-
independent processes in impaired vasodilation in experi-
mental hypertension, there is little convincing data to support
these findings in human hypertension. In fact, clinical studies
demonstrate, for the most part, that vasodilatory responses
to acetylcholine (endothelium dependent) but not to sodium
nitroprusside (endothelium independent) are attenuated in
human hypertension [64]. Furthermore only endothelium-
dependent relaxation seems to be positively influenced by
antihypertensive therapy. Hence, the clinical significance of
experimental hypertensive models exhibiting impaired
endothelium-independent dilation await clarification.
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Molecular Mechanisms Whereby 
Angiotensin II Influences Vascular Changes 
in Hypertension
Angiotensin II induces its vascular effects by acting directly
through Ang II receptors, indirectly through the release of
other factors, by transactivating receptor tyrosine kinases,
and via cross-talk with intracellular signaling pathways of
other vasoactive agents and growth factors (Fig. 2).
Although Ang II is classically described as a vasoconstrictor
agent, it is now clear that this peptide has potent growth
and proinflammatory actions. Some novel concepts related
to signaling pathways whereby Ang II modulates vascular
changes in hypertension are discussed below.

Regulation of vascular smooth muscle cell growth by 
angiotensin II
Similar to growth factors, Ang II induces cell hyperplasia and
hypertrophy by stimulating phosphorylation of tyrosine
kinases, activation of MAP kinases, and production of
reactive oxygen species [10–13]. These signaling molecules
are required for the growth-promoting actions of Ang II.
Ligand binding to AT1R induces phosphorylation of multi-
ple tyrosine kinases, including c-Src, janus family kinases
(JAK), focal adhesion kinase (FAK), Pyk2, p130Cas, and
phosphatidylinositol 3-kinase (PI3K). One of the earliest
kinases to be phosphorylated in response to Ang II is c-Src
[68]. c-Src is a major regulator of many downstream
proteins involved in growth signaling, including phospho-
lipase C-γ, Pyk2, FAK, JAK, Shc, MAP kinases, PI3K, and

NAD(P)H oxidase, and its activation is increased in hyper-
tension [68]. JAK proteins phosphorylate STAT proteins and
are key mediators of mRNA expression and are characterized
as early response genes [69]. Ang II-induced activation of
FAK causes its translocation to sites of focal adhesion with
the extracellular matrix and phosphorylation of paxillin and
talin. These processes regulate vascular smooth muscle cell
morphology and migration. p130Cas is an adapter protein
that plays a role in cytoskeletal rearrangement and is critical
in arterial development. PI3K stimulates Akt, a threonine-
serine kinase. These proteins influence cell survival, metabo-
lism, cytoskeletal reorganization, and membrane trafficking,
and have been identified as having growth-promoting,
antiapoptotic effects [70].

Angiotensin II also activates major members of the MAP
kinase family, ERK1/2, p38 MAP kinase, c-Jun N-terminal
kinases (JNK), and ERK5 [10–13]. ERK1/2, phosphorylated
by MEK1/2 (MAP/ERK kinase), is a key growth signaling
kinase, whereas JNK and p38 MAP kinase, phosphorylated
by MEK4/7 and MEK3/6 respectively, influence cell survival,
apoptosis, differentiation, and inflammation. ERK5, a
redox-sensitive MAP kinase, is involved in protein synthesis,
cell cycle progression, and cell growth. In cardiac, renal, and
vascular tissue from hypertensive rats, basal and Ang II-
stimulated activation of tyrosine kinases and ERK1/2 is
increased [10–13]. These processes have been associated
with enhanced vascular smooth muscle cell growth, inflam-
mation, fibrosis, as well as increased vascular contractility.
We recently demonstrated in in vivo studies that blockade

Figure 1. Angiotensin II (Ang II)-mediated 
cellular events regulating vascular structure. 
Ang II binds to the AT1R leading to activation 
of tyrosine kinases, mitogen-activated protein 
(MAP) kinases, and NAD(P)H oxidase. These 
signaling events regulate vascular smooth 
muscle cell function. Under pathologic
conditions, increased signaling leads to
altered growth, fibrosis, and inflammatory 
processes, which contribute to structural 
remodeling in hypertension. EGFR— epider-
mal growth factor receptor; FAK—focal 
adhesion kinase; IGF-1R—insulin-like
growth factor 1 receptor; IL—interleukin; 
JAK—janus family kinase; MCP-1— mono-
cyte chemotactic protein 1; NF-κB—nuclear 
factor-κB; PAI—platelet activator inhibitor; 
PDGFR—platelet-derived growth factor 
receptor; PI3K—phosphatidylinositol 3-
kinase; ROS—reactive oxygen species.
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of the ERK1/2 pathway by PD98059 improves vascular
dysfunction in hypertensive rats, independent of blood
pressure–lowering actions [71].

Recent studies suggest that Ang II activates growth-
signaling pathways primarily by transactivating receptor
tyrosine kinases. Ang II can activate receptor tyrosine kinases,
even though it does not directly bind to these receptors. This
process of transactivation has been demonstrated for EGF
receptor, PDGF receptor, subtype β PDGF receptor, and IGF-1
receptor [72]. Mechanisms underlying Ang II-induced
transactivation of RTKs include activation of tyrosine kinases
(Pyk2 and Src), redox-sensitive processes, and possibly
stimulation of MMPs that release heparin-binding EGF [72].
Ang II also increases production of various vasoactive agents
and growth factors in hypertension, such as ET-1, PDGF,
transforming growth factor-β, basic fibroblast growth factor,
and IGF-1, which could promote cell proliferation, protein
synthesis, and fibrosis, further contributing to growth
processes underlying vascular remodeling.

Regulation of redox-sensitive pathways by 
angiotensin II in vascular smooth muscle cells
In the vasculature, reactive oxygen species modulate
vascular tone and structure. O2

•- and H2O2 have been

shown to induce vascular contraction and vascular smooth
muscle cell growth, whereas NO• plays a pivotal role in
endothelium-dependent relaxation. Furthermore, oxygen
free radicals are proinflammatory and stimulate monocyte
migration and formation of oxidized low-density
lipoprotein, which is toxic to vascular cells and impairs
vascular endothelial function [8••]. Consequently,
increased bioavailability of reactive oxygen species (oxida-
tive stress) may underlie pathologic processes associated
with vascular dysfunction and structural remodeling in
hypertension [47••].

Angiotensin II increases production of reactive oxygen
species in all cell types of the vasculature, including
smooth muscle cells, endothelial cells, and adventitial
fibroblasts. The major source of oxygen intermediates in
the vascular wall is Ang II-modulated nonphagocytic
NAD(P)H oxidase, which is upregulated in hypertension
[73•,74]. Activation of this oxidase by Ang II involves c-Src,
PLA2, and PLD, as well as increased synthesis of the
NAD(P)H oxidase subunits gp91phox, p22phox, p47phox
and p67phox [73,74]. In Ang II-dependent models of
hypertension, vascular production of superoxide anions
is increased [75,76]. This effect is mediated via Ang II-
stimulated activation of vascular NAD(P)H oxidase.

Figure 2. Signal transduction mechanisms 
involved in angiotensin II (Ang II)-induced 
changes in vascular contractility in hyperten-
sion. Ang II increases intracellular free Ca2+ 
concentration [CA2+]i by stimulating Ca2+ 
influx and through mobilization from sacro-
plasmic reticulum (SR) stores. Increased 
activity of the RhoA/Rho kinase Ca2+-sensi-
tizing pathway and protein kinase C (PKC)-
dependent pathway (dashed line) also contrib-
ute to contractility. Increased Ang II-stimulated 
NAD(P)H oxidase–mediated generation of 
O2

•- quenches endothelial-derived nitric 
oxide (NO), resulting in decreased cGMP-
induced vasodilation. DAG—diacylglycerol; 
GAP—GTPase-activating protein; 
GEF—guanine nucleotide exchange factor; 
IP3—inositol triphosphate; MLC(K)—myosin 
light chain (kinase); PLC—phospholipase C.
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In Ang II-dependent hypertensive rats, treatment with
liposome-encapsulated superoxide dismutase (SOD), SOD
mimetics, or antioxidant vitamins reduced production of
vascular reactive oxygen species, decreased blood pressure,
regressed vascular remodeling, and improved endothelial
function [75,76]. NAD(P)H oxidase-generated O2

•-

contributes to increased Ang II-mediated vascular smooth
muscle cell growth in hypertension [73•,74]. Both O2

•-

and H2O2 are potent mitogens that elicit effects via MAP
kinases (p38 MAP kinase, JNK, ERK-5) and tyrosine
kinases (Src, JAK2, STAT, p21Ras, Pyk2, and Akt), through
transactivation of receptor tyrosine kinases, and by increas-
ing expression of growth-inducing genes [47••]. Blockade
of NAD(P)H oxidase activity inhibits Ang II-induced
vascular smooth muscle cell hypertrophy and regresses
vascular remodeling [73•,76], supporting a role for
reactive oxygen species as inducers of enhanced vascular
growth in hypertension.

Oxidative stress also plays an important role in vascular
inflammation. Ang II activates the redox-sensitive trans-
cription factor, nuclear factor (NF)-κB, which is associated
with upregulation of adhesion molecules, stimulation
of chemokine and cytokine production, and recruitment of
monocytes to the arterial wall [8••,47••]. Inhibition
of NF-κB activity abrogates Ang II-mediated expression of
IL-6, VCAM-1, and MCP-1 [49]. These Ang II-regulated
processes, which play a role in the progression of athero-
sclerosis, are also involved in vascular remodeling and
dysfunction in hypertension. In Ang II-infused rats, which
exhibit vascular oxidative stress, endothelial dysfunction
and media thickening, expression of VCAM-1 and PECAM
was increased and activity of NF-κB was augmented [77•].
Accordingly, growing evidence indicates that vascular
damage in hypertension is associated with inflammatory
responses. Oxidative stress and inflammation, mediated
in large part by Ang II, may reflect the continuum from
hypertensive vascular damage to atherosclerosis.

Increased O2
•- in hypertension also impairs endo-

thelium-dependent vascular relaxation and increases
vascular contractile reactivity. These effects may be medi-
ated directly by increasing cytosolic Ca2+ concentration
through increased Ca2+ influx and increased intracellular
mobilization, or indirectly by reducing concentrations of
the vasodilator NO• through quenching by O2

•- [78].
Oxygen radicals also induce endothelial permeability, with
extravasation of plasma proteins and other macromole-
cules, which could further impair endothelial function and
aggravate vascular damage.

Role of RhoA/Rho kinase in angiotensin II-mediated 
vascular changes in hypertension
It is becoming increasingly evident that the RhoA/Rho
kinase pathway may play an important role in hyper-
tension. Inhibition of this pathway lowers blood pressure
in hypertensive rats [79] and improves forearm blood flow
in hypertensive patients [80]. RhoA is a low-molecular-

weight guanosine triphosphatase that is regulated by
Ang II. RhoA activation leads to stimulation of Rho kinase,
which promotes contraction of cells via the phosphoryla-
tion of the myosin-binding subunit of MLC phosphatase
(thereby inhibiting phosphatase activity) [56]. Inhibition
of Rho kinase by Y-27632, or fasudil, results in relaxation
of isolated vessels due to inhibition of Ca2+ sensitization
of vascular smooth muscle contraction. Recent findings
suggest that increased vascular reactivity and increased
tone in hypertension may be due to increased Ca2+ sensiti-
zation due to upregulation of the RhoA/Rho kinase
cascade [56]. RhoA/Rho kinase may also play a role in
vascular remodeling and inflammation in hypertension.
Ang II-induced hypertrophy and MCP-1 expression in
vascular smooth muscle cells involves a Rho kinase–
dependent mechanism [81]. In Ang II-induced hyper-
tensive rats, increased plasminogen activator inhibitor-1
gene expression and cardiovascular remodeling were
normalized by Rho kinase inhibitors [82]. Furthermore,
increased activation of RhoA/Rho kinase in L-NAME-
induced hypertension was reduced by AT1R blockade [83].
Taken together, these data suggest that RhoA/Rho kinase
regulates vascular smooth muscle cell processes that
influence both vascular contractility and remodeling in
Ang II-dependent hypertension. Although exact pathways
whereby Ang II signals through RhoA await clarification,
this system may provide a novel therapeutic target to
reduce peripheral vascular resistance in hypertension.

Conclusions
Abnormal vascular function (increased constrictor and
decreased dilator responses) and altered structure (vascular
remodeling) are major factors underlying vascular pathology
in hypertension. These processes are influenced by Ang II,
which stimulates vascular smooth muscle cell contraction,
inhibits NO-mediated vasodilation, augments cell growth,
increases content of extracellular matrix proteins, inhibits
apoptosis, induces migration, and promotes inflammation.
Mechanisms whereby Ang II mediates these cellular events
in hypertension seem to occur at the postreceptor level
and appear to be associated with upregulation of Ang II-
stimulated G protein-coupled phospholipases, tyrosine
kinase– and MAP kinase–dependent pathways, oxidative
stress, and RhoA/Rho kinase cascades. Interaction between
these pathways is highly complex and dysregulation at any
level could manifest as pathologic functional and structural
vascular changes in hypertension. Although there has been
major progress in the elucidation of Ang II-mediated
signaling in vascular smooth muscle cells, we still know little
about the processes that underlie aberrant signaling in hyper-
tension and at what level some pathways become more
important than others. With molecular and pharmacologic
tools that target specific molecules, identification of distinct
signaling abnormalities in hypertension should be possible.
This would facilitate improved management of vascular
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changes, thereby ameliorating development of hypertension
and preventing target organ damage. In the mean time,
we should continue to use agents that interrupt the renin-
angiotensin system such as ACE inhibitors or AT1R blockers,
which not only lower blood pressure, but also improve
vascular structural and functional changes in hypertension.
These effects could contribute to improved cardiovascular
outcomes as recently demonstrated in the Heart Outcomes
Prevention Evaluation (HOPE) study [84••] and the
Losartan Intervention for Endpoint Reduction in Hyper-
tension (LIFE) study [85••].
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