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Introduction
It has long been appreciated that the brain plays an essential
role in control of cardiovascular function. Blockade of sym-
pathetic outflow from the spinal cord to the vasculature and
heart decreases arterial blood pressure, and this sympathetic
outflow is maintained by supraspinal influences. Transec-
tion of the spinal cord decreases blood pressure, and the
minimal necessary input to the spinal cord to maintain
blood pressure arises from the rostral ventrolateral region of
the medulla oblongata. For more than a century it has been
known that the brainstem is critical in mediating barore-
ceptor reflex responses and other reflex adjustments of the
cardiovascular system. This short review addresses the brain-
stem circuits involved in cardiovascular regulation, and
extends this framework to consider the role of the brain in
the long-term, baroreceptor-independent control of blood
pressure, especially as it relates to hypertension. Indeed, an

argument can be made that many, if not most, cases of pri-
mary hypertension have a neurogenic component [1].

The Baroreceptor Reflex
Much of the early work on the role of the brain in cardiovas-
cular regulation focused on the baroreceptor reflex. This pow-
erful negative feedback reflex involves brainstem circuitry that
has now been established in experimental animals, both in
terms of the neural projections and the neurotransmitters
used by these projections [2]. The basic circuitry involves
baroreceptor sensory nerves that project from the carotid
sinus and aortic arch, via the IXth and Xth cranial nerves,
respectively, to the nucleus tractus solitarius (NTS) in the dor-
sal medial brainstem. This input is excitatory to second order
sensory neurons in the NTS, evoking increased activity of
these NTS neurons in response to increases in blood pressure.
Considerable processing of this signal appears to occur in the
NTS, both as a result of intrinsic synaptic mechanisms (eg,
frequency dependent modulation) and inter-neuronal con-
nections (eg, local feedback involving �-aminobutyric acid
[GABA] interneurons) [3,4]. The baroreceptor output of the
NTS, at least as it relates to baroreceptor regulation of sympa-
thetic vasomotor activity, is an excitatory, glutamatergic pro-
jection to the caudal ventrolateral medulla (CVLM). Though
pharmacologic evidence of this pathway has existed for more
than 15 years [5], convincing functional anatomical data have
only recently been presented [6]. The CVLM provides inhibi-
tory GABAergic input to rostral ventrolateral medulla (RVLM)
presympathetic neurons [7]. RVLM neurons in turn synapse
on sympathetic preganglionic neurons in the spinal cord, pro-
viding an excitatory input. Although presympathetic neurons
in the RVLM have been categorized into two populations
based on the presence or absence of catecholamine biosyn-
thetic enzymes, the C1 and non-C1 neuronal populations,
respectively, recent data suggest that both populations use
glutamate as their primary neurotransmitter [8].

Though the baroreceptor reflex circuitry is often viewed
as a simple reflex circuit, it is certainly true that each of the
areas involved is considerably more complex than a simple
relay. Each of the brain regions noted above, NTS, CVLM, and
RVLM functions more than to just simply pass along the
information they receive, and each region contributes to car-
diovascular regulation independent of its role in the barore-
ceptor reflex [9]. Nonbaroreceptor reflex mechanisms of
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cardiovascular regulation involving these regions, and their
integration with acute reflex responses such as baroreceptor
reflexes and chemoreceptor reflexes, represent an important
topic in central neural control of the circulation that remains
inadequately explored. The functional heterogeneity of these
brainstem regions involved in the baroreceptor reflex further
complicates their study. In particular, the CVLM and RVLM
are not clearly defined structures, but rather represent over-
lapping populations of neurons extending in a column
through the ventrolateral medullary reticular formation.

It is within the context of the baroreceptor reflex and its
brainstem circuitry that much of the central neural control of
cardiovascular function has been viewed. Clearly, alteration of
any aspect of this circuit leads to predictable acute changes in
blood pressure and heart rate. For example, stimulation of the
NTS or CVLM produces a baroreceptor reflex-like decrease in
blood pressure and heart rate, whereas inhibiting these areas
increases blood pressure, consistent with the powerful tonic
nature of this reflex. Conversely, stimulation of the RVLM elic-
its marked increases in blood pressure, whereas inhibition of
the RVLM decreases blood pressure to the same extent as total
blockade of sympathetic vasomotor tone, a response mimick-
ing baroreceptor-evoked silencing of sympathetic vasomotor
nerve activity [10]. However, as noted above, it would be a
massive oversimplification of the system to consider all of
these changes exclusively in the context of the baroreceptor
reflex. Furthermore, many cardiovascular changes have been
described as a shifting of the baroreceptor reflex, though it is
often not clear precisely what is meant by this. The semantic
difference between shifting the baroreceptor reflex and having
that shift be what drives changes in blood pressure, does not
seem different from changing the level at which the brain is
setting blood pressure around which cardiovascular reflexes,
including the baroreceptor reflex, are superimposed.

A Move Toward Long-term Control of 
Blood Pressure
Though much of the research on the central neural control of
blood pressure has focused on the baroreceptor reflex, there is
reason to believe that the baroreceptor reflex is more involved
with the short-term stabilization of pressure than the long-
term setting of blood pressure. Baroreceptor denervation,
either by cutting the carotid sinus and aortic arch barorecep-
tor afferent nerves or by destroying their site of termination in
the NTS, initially results in an acute increase in blood pres-
sure. Chronically, however, what develops is normal average
blood pressure with decreased stability (ie, increased lability)
[11]. The restoration of normal average blood pressure in the
absence of baroreceptor input following baroreceptor dener-
vation occurs in association with a return of sympathetic out-
flow toward normal. In chronic baroreceptor denervated rats,
sympathetic vasomotor outflow still appears to be dependent
upon RVLM neuronal activity, as inhibition of this region still
results in a fall in blood pressure equivalent to that produced
in baroreceptor intact rats and by total autonomic blockade

[12] (Schreihofer et al., Unpublished observations]. The fact
that the RVLM appears to maintain sympathetic vasomotor
tone at normal levels despite an absence of the normally pow-
erful inhibitory input from baroreceptors suggests that mech-
anisms exist, independent of baroreceptors, to set the activity
of RVLM vasomotor neurons and therefore sympathetic vaso-
motor outflow. This highlights the important issue of what
normally determines the activity of these neurons. The
baroreceptor reflex provides a powerful negative modulatory
influence on these neurons, but that modulation must work
in conjunction with a level of excitatory drive to these cells.

Can Changes in the Activity of Rostral 
Ventrolateral Medulla Neurons Chronically 
Change Blood Pressure?
It is noteworthy that despite the accepted critical role of the
RVLM in cardiovascular regulation, few studies have exam-
ined the impact of changes in this region on cardiovascular
regulation in conscious animals, and fewer still have exam-
ined chronic treatments. This is due, at least in large part, to
the involvement of adjacent regions in controlling respira-
tion. The few studies that have attempted to microinject
drugs directly into the RVLM of conscious rats have generally
reported responses similar to those observed in anesthetized
rats [13,14]. Recent studies using a selective immunotoxin to
selectively destroy the C1 cell population of RVLM presym-
pathetic neurons [15], have revealed blood pressure to be
slightly lower (approximately 10 mm Hg) in conscious teth-
ered rats studied 14 days postlesion (Madden and A. Sved,
Unpublished observations). This observation provides evi-
dence that these neurons might be involved in the chronic
setting of baseline blood pressure. The most convincing evi-
dence that the RVLM is a critical component in the chronic
regulation of blood pressure comes from a recent series of
experiments by Kishi et al. [16••]. Using an adenovirus vec-
tor to increase expression of nitric oxide synthase (NOS)
restricted to the RVLM in rats, they found that during over-
expression of NOS (days 5–10 post-transfection) there was a
decrease in blood pressure and heart rate of approximately
20 mm Hg and 80 beats per minute, respectively. Further-
more, the decrease in blood pressure and heart rate they
observed occurred in association with an increase in GABA
levels in the RVLM, as assessed by in vivo microdialysis, and
increased inhibition of RVLM vasomotor neurons produced
by GABA, as assessed by the acute increase in blood pressure
caused by injection of the GABA antagonist bicuculline into
RVLM. This is an important study because it demonstrates
that chronic changes in the neurochemical milieu of the
RVLM can have a chronic and sustained impact on blood
pressure in conscious animals.

Research on what tonically drives RVLM activity is still
in its early stages. Reports that these neurons might have
pacemaker potential [10,17] failed to be substantiated by
in vivo intracellular recording studies, which show that
these neurons are controlled seemingly exclusively by exci-
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tatory and inhibitory synaptic currents [18,19]. The tonic
inhibitory inputs, both baroreceptor related and barore-
ceptor independent, to RVLM vasomotor neurons appear
to arise largely from the CVLM [7,9]. In contrast, the nature
of the tonic excitatory inputs to RVLM vasomotor neurons
is currently unclear. Initial reports showing that injection
of the excitatory amino acid (EAA) receptor antagonist
kynurenic acid (KYN) into the RVLM had little effect on
blood pressure in anesthetized rats, were interpreted as an
indication that RVLM vasomotor neurons are not tonically
driven by inputs utilizing EAA [20,21]. However, more
recent experiments have suggested that tonically active
EAA-mediated inputs to RVLM do provide a tonic excita-
tory input to the RVLM, but this input is balanced by EAA-
mediated inputs to the RVLM that also drive an inhibitory
input to the RVLM vasomotor neurons [22,23].

Other neurotransmitter antagonists have been reported to
decrease blood pressure when injected into the RVLM, sug-
gesting that tonic excitation of the RVLM may be maintained
by a variety of neurotransmitter systems. Among these, the
most dramatic response is produced by a series of 1-sarcosine-
containing peptide antagonists of angiotensin receptors such
as sarthran and sarile [24]. Curiously, injections of these drugs
into the RVLM decrease blood pressure to the same extent as
total inhibition of the RVLM, though they produce this effect
totally independent of their action on AT1 angiotensin recep-
tors [25,26]. The mechanism by which they produce this dra-
matic effect is presently unknown. Selective antagonists of the
AT1 angiotensin receptor, the primary angiotensin receptor
subtype located in the RVLM [27], have no effect on blood
pressure or sympathetic nerve activity when injected into the
RVLM of normotensive rats, though they do totally block the
pressor response evoked by injection of angiotensin II into
the RVLM [28••].

Antagonists of muscarinic cholinergic receptors injected
into the RVLM have also been reported to decrease blood
pressure in anesthetized normotensive rats [29,30], suggest-
ing that cholinergic inputs to the RVLM might act to help
maintain baseline sympathetic vasomotor tone. Clearly,
acetylcholine in the RVLM increases the activity of RVLM
vasomotor neurons [31]. However, the notion that cholin-
ergic inputs to the RVLM contribute to the maintenance of
baseline blood pressure relies on observations obtained with
what might be excessively large doses of muscarinic antago-
nists. For example, whereas atropine, a well-known muscar-
inic receptor antagonist, can decrease blood pressure when
injected directly into the RVLM [30], the doses required for
this response exceed the doses required to antagonize the
pressor effects of acetylcholine (Ito and A. Sved, Unpublished
observations). A similar dissociation of doses of atropine
needed to block acetylcholine responses and those needed to
elicit changes in baseline blood pressure has also been
reported for injections into NTS, where it has been shown
that the large doses of atropine needed to change baseline
blood pressure are not specific for blocking muscarinic recep-
tors [32]. Doses of methylatropine necessary to completely

block the actions of acetylcholine do not alter baseline blood
pressure when injected into either the NTS [32] or RVLM [Ito
and A. Sved, Unpublished observation]. Thus, when inter-
preting results of experiments relying on the local administra-
tion of drugs, it is important to keep in mind the specificity of
the drugs and the doses used. Therefore, based on these con-
flicting data, the potential role of cholinergic inputs to the
RVLM in controlling blood pressure requires further study.

Several other neurotransmitters have been shown to
increase blood pressure when injected into the RVLM [33],
but there is little, if any, evidence for their involvement in
the control of baseline blood pressure. For example, vaso-
pressin injected into the RVLM increased blood pressure,
though similar injections of a vasopressin receptor antago-
nist, in a dose required to block the actions of vasopressin,
had no effect on baseline blood pressure [34].

Role of Rostral Ventrolateral Medulla in 
Maintaining Elevated Blood Pressure in 
Hypertensive Rats
Clinical hypertension is often associated with increased sym-
pathetic outflow [1], as is the case with many experimental
models of hypertension. Several studies have addressed
whether in hypertensive rats the elevated sympathetic vaso-
motor outflow is driven by the RVLM. Inhibition of the RVLM
in hypertensive rats, for example by local injection of the neu-
roinhibitory drug muscimol, reduces mean arterial pressure
to the same extent as autonomic blockade [35••,36]. These
findings imply that increased activity of RVLM neurons is
responsible for the increased sympathetic vasomotor tone.
Although there are a few reports that the electrophysiological
activity of RVLM neurons in spontaneously hypertensive rats
(SHR) is increased compared with Wistar-Kyoto (WKY) rats
[37,38], the literature is inconsistent [39]. Increased immuno-
cytochemical detection of the protein product of the early
response gene c-fos in the RVLM of SHR compared with WKY
rats has been interpreted as reflecting chronically increased
activity of these neurons [40].

Chronic Setting of Blood Pressure: 
The Balance Between Excitation and 
Inhibition of Rostral Ventrolateral Medulla 
Vasomotor Neurons
Following the assumption that increased activity of RVLM
vasomotor neurons causes increased sympathetic outflow in
hypertension, then the hypothesis that shifting the balance of
tonically active inputs to the RVLM toward excitation lies at
the core of hypertension. Indeed, in several models of hyper-
tension there is evidence for such an imbalance of excitatory
and inhibitory drive leading to increased activity of the RVLM.

Though the EAA receptor antagonist KYN had no effect
on blood pressure in anesthetized normotensive rats, KYN
injected into the RVLM decreased blood pressure in SHR
[35••], Dahl salt-sensitive rats on a high-salt diet [41], and a
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model of renal hypertension [36]. This observation is worth
highlighting, as it provides a qualitative difference between
hypertensive and normotensive animals, strongly suggesting
that the RVLM influence on blood pressure is altered in
hypertensive rats, in a manner that may help explain the ele-
vated blood pressure.

In the context of increased excitation of RVLM vasomo-
tor neurons, the ability of KYN to decrease blood pressure
when injected into the RVLM of hypertensive rats could be
viewed as either increased EAA-mediated excitation of RVLM
vasomotor neurons or decreased inhibition of RVLM vaso-
motor neurons driven by an EAA-mediated input to RVLM
[23]. Reports by Smith and Barron [42,43], which show that
excitation of the CVLM produces an exaggerated decrease in
blood pressure in SHR whereas inhibition of the CVLM
produces an attenuated increase in blood pressure in SHR,
have been interpreted as reduced inhibition of the RVLM by
CVLM in SHR rats leading to increased sympathetic vasomo-
tor tone in these animals. However, other laboratories have
failed to confirm that the RVLM is under less tonic inhibi-
tory drive in SHR [9,35••,44]. Furthermore, EAA stimula-
tion of the RVLM elicits similarly large increases in blood
pressure in SHR and WKY rats [42–44], indicating that the
inhibitory drive of the RVLM is not grossly abnormal in SHR
[22]. Similar studies addressing the level of tonic inhibition
of the RLVM produced by the CVLM have not been reported
for other models of hypertension.

Kynurenic acid is not the only neurotransmitter antago-
nist reported to decrease blood pressure when injected into
the RVLM of hypertensive rats but not normotensive rats. Of
particular interest are the observations that AT1 angiotensin
receptor antagonists injected into the RVLM substantially
decrease blood pressure in SHR [28••,45], Dahl salt-sensitive
hypertensive rats [46], and transgenic rats with over-expres-
sion of a mouse renin gene [47], though they have no effect
on blood pressure in normotensive rats. This antihyperten-
sive effect of AT1 angiotensin receptor antagonists injected
into the RVLM appears to be independent of the antihyper-
tensive action of KYN, since the responses to these two drugs
are additive in SHR [28••], the only model in which this has
been tested.

The observation that AT1 angiotensin receptor antago-
nists have an antihypertensive action when microinjected
directly into the RVLM in rats with either high plasma renin
activity (the transgenic model over-expressing renin) or low
plasma renin activity (the Dahl model) is consistent with
the clinical observation that AT1 receptor antagonists are
useful in the treatment of hypertension whether or not it is
accompanied by elevated circulating levels of angiotensin.
Indeed, despite the widespread belief that AT1 receptor
blockers act by blocking the actions of angiotensin on blood
vessels, the evidence supports an action of AT1 receptor
blockers to decrease sympathetic vasomotor tone [48], pos-
sibility by acting at the level of the brain. Though the site at
which systemically administered AT1 receptor blockers act to
decrease sympathetic vasomotor tone in hypertensive sub-

jects is unclear [48], the results reviewed above indicate that
the RVLM is one site to consider.

Given that AT1 receptor antagonists injected into the
RVLM decrease blood pressure in hypertensive rats but not
normotensive rats, the question arises as to what drives the
tonic excitation of RVLM AT1 receptors in hypertension. The
report by Tagawa and Dampney [49], indicating that activat-
ing the hypothalamic paraventricular nucleus (PVN) can
increase blood pressure via stimulation of RVLM AT1 recep-
tors, prompted investigation of the role of the PVN in the
stimulation of RVLM AT1 receptors in hypertensive rats. Inhi-
bition of the PVN decreases blood pressure in SHR [28••,50]
and Dahl salt-sensitive rats on a high-salt diet [46], similar to
the action of AT1 antagonists injected into the RVLM; inhibi-
tion of PVN has also been reported to decrease blood pressure
in a model of renal hypertension [51]. Furthermore, at least in
SHR, the decreases in blood pressure caused by inhibition of
the PVN and blockade of RVLM AT1 receptors occlude each
other [28••], suggesting that they represent the same mecha-
nism. Though it is presently unclear why a PVN-driven input
to RVLM AT1 receptors may be enhanced in models of hyper-
tension, this seems to be an important question to be
addressed in future research.

The cellular actions of angiotensin II on RVLM neurons
help clarify the effects of angiotensin II in the RVLM on
blood pressure. Studies by Li and Guyenet [52,53] on RVLM
slices from neonatal rats indicate that angiotensin II acts on
AT1 receptors in the RVLM to increase the activity of these
neurons by closing a K+ channel, thereby depolarizing these
neurons and increasing their input resistance. The actions of
angiotensin II were largely, if not exclusively, confined to the
C1 cell population in the RVLM [53], consistent with studies
localizing AT1 receptors to these neurons in rats [54] and
humans [55]. Importantly, the cellular actions of angiotensin
II to cause depolarization and an increase in membrane
resistance in the RVLM would enhance the responsiveness of
these RVLM presympathetic neurons to other excitatory
inputs. Interestingly, a recent study by Matsuura et al. [38]
suggests that angiotensin II may have a greater action on
RVLM spinal neurons in SHR compared with WKY rats, con-
sistent with the possibility of more AT1 angiotensin receptors
in the RVLM of SHR [56–58].

The cellular actions of angiotensin II on neurons requires
the activities of certain intracellular signal transduction path-
ways [59], and Seyedabadi et al. [60] recently provided evi-
dence that different signal transduction pathways in RVLM
neurons may be involved in the maintenance of blood pres-
sure in SHR and WKY rats. Injection into the RVLM of an
inhibitor of mitogen activated protein (MAP)-kinase
decreased blood pressure to the same extent in both SHR and
WKY, whereas wortmannin, an inhibitor of phosphatidyli-
nositol 3 (PI3)-kinase decreased blood pressure only in SHR.
Interestingly, while the MAP-kinase inhibitor alone blocked
the pressor response evoked by injection of angiotensin II
into the RVLM in WKY rats, inhibition of both MAP-kinase
and PI3-kinase was necessary to block the action of angio-
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tensin II in SHR. These results highlight yet another differ-
ence in the RVLM between SHR and WKY rats, and can be
related back to differences in the role of angiotensin II in the
RVLM supporting the elevated blood pressure in SHR.

These studies showing decreases in blood pressure in
response to neurotransmitter antagonists injected directly
into RLVM in hypertensive but not control rats are very
important because they demonstrate qualitative differences in
the central neural control of blood pressure in association
with hypertension. Furthermore, these changes in the central
neural mechanisms controlling blood pressure are such that
they can help explain why the blood pressure is elevated in
these different models of hypertension. However, they all rely
on acute evoked changes in blood pressure to infer something
about chronic regulation. Important insight into the role of
the RVLM in chronic hypertension comes from studies by
Kishi et al. [61] showing that overexpression of NOS in RVLM
of stroke-prone SHR (SP-SHR) can chronically reduce blood
pressure. The general approach of using viral vectors to pro-
duce a change in the neurochemical milieu of the RVLM cou-
pled to chronic cardiovascular recording provides a powerful
experimental tool. However, in the case of the report by Kishi
et al. [61], the observation that increased NOS expression low-
ered blood pressure in both normotensive and hypertensive
rat strains makes it difficult to evaluate whether the responses
observed reflect some unique change associated with hyper-
tension. Nonetheless, the study provides important new evi-
dence that changes in the RVLM can chronically impact
cardiovascular regulation in a manner that might be relevant
to neurogenic hypertension.

A hypothesis has also been presented that clinical hyper-
tension results from vascular compression of the rostral ven-
trolateral brainstem due to an artery that loops along the
surface of this area [62]. This hypothesis has received support
from studies in rats showing that pulsatile compression of the
rostral ventral lateral medullary surface increases blood pres-
sure and activates RVLM neurons [63,64]. Furthermore, the
increase in blood pressure produced by pulsatile compression
of the rat RVLM can be blocked by local inhibition of EAA
receptors [63]. The potential that chronic pulsatile compres-
sion of the ventrolateral brainstem might alter the neuro-
chemical milieu of the RVLM to cause chronically increased
blood pressure appears to warrant further study.

Conclusions
Taken together, this body of evidence suggests that the RVLM is
a critical site from which increased sympathetic vasomotor
tone emanates in hypertension. Tonic excitation of RVLM
vasomotor neurons by EAA-mediated inputs and AT1 angio-
tensin receptors contribute to the elevated sympathetic vaso-
motor tone found in at least some models of experimental
hypertension. These data fit more generally into a framework
of considering neurogenic hypertension in the context of tonic
excitatory drive of RVLM vasomotor neurons, and the balance
between excitatory and inhibitory inputs to these neurons.
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