
Angiotensin and Cytoskeletal Proteins: 
Role in Vascular Remodeling

Jos P.M. Wesselman, PhD, and Jo G.R. De Mey, PhD

Address
Department of Pharmacology & Toxicology, Cardiovascular Research 
Institute Maastricht, Maastricht University, PO Box 616, 6200 MD, 
Maastricht, The Netherlands. 
E-mail: j.wesselman@farmaco.unimaas.nl
Current Hypertension Reports 2002, 4:63–70
Current Science Inc. ISSN 1522-6417
Copyright © 2002 by Current Science Inc.

Introduction
Blood vessels are able to sense and respond to a great diver-
sity of stimuli. Acute responses include modulation of
smooth muscle tone leading to constriction or dilation.
However, persistent stimulation of blood vessels induces
structural changes, ie, remodeling. The kind of remodeling
response depends on the stimulus and the vessel type, and
may include changes in lumen diameter (inward or out-
ward remodeling [1]); medial cross-sectional area (hypo-
trophic, eutrophic, or hypertrophic remodeling [1]); and
media-to-lumen ratio. Vascular remodeling is involved in
normal development and in many physiologic events, such
as the expansive remodeling of the uterine circulation dur-
ing pregnancy [2]. On the other hand, pathologic vascular
remodeling has been demonstrated as well, for example

during hypertension, atherosclerosis, and vein graft disease
[3–6]. The process of vascular remodeling is complex, with
many different subprocesses such as growth, apoptosis,
dedifferentiation, rearrangement of vessel components,
extracellular matrix deposition, and formation of focal
adhesions, with similar or different temporal patterns. In
this review, we focus on the roles of angiotensin II (Ang II)
and the cytoskeleton in vascular remodeling.

Angiotensin II
Angiotensin II is the principal effector of the renin-angio-
tensin-system (RAS). Renin, mainly produced by the juxta-
glomerular cells in the kidneys, is a circulating enzyme that
converts angiotensinogen into Ang I. Ang I is further trans-
formed to Ang II by angiotensin converting enzyme (ACE).
ACE exists in several forms, but is primarily bound to the
vascular endothelium throughout the body. Over the years
it has become clear that besides the systemic RAS, a local
RAS is present in the vasculature, which may play an
important role in vascular remodeling [3,7–9]. In addition,
other enzymatic systems have been described by which
Ang II can be produced, including cathepsin G, elastase,
tonin, tissue plasminogen activator, and chymase. How-
ever, their relative contribution to total Ang II production
is not clear [8,10–12]. Ang II acts on two receptor types,
angiotensin type 1 and 2 (AT1 and AT2) receptors. Activa-
tion of the AT1 receptor is responsible for the powerful vas-
oconstrictive and growth promoting actions of Ang II,
whereas AT2 activation often elicits opposite actions.

Angiotensin Receptor Signaling
AT1 receptors activate many signal transduction cascades
with complex interactions leading to cellular growth,
migration, and proliferation. Activation of the G-pro-
tein–coupled AT1 receptor induces rapid protein tyrosine
phosphorylation of src family kinases and substrates of
src, such as focal adhesion kinase (FAK); proline-rich
tyrosine kinase 2; paxillin, tensin, Janus kinase 2 (JAK2);
and signal transduction and activator of transcription 1
(STAT1). This leads to activation of regulatory proteins
(Shc, Grb2, Sos); small G-proteins (Ras, Rho); mitogen-
activated protein (MAP) kinases (extracellular signal-reg-
ulated kinase [ERK1/2], p38, c-jun N-terminal kinases
[JNK]); expression of protooncogenes (c-fos, c-jun, c-
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myc); activation of transcription factors (AP-1, nuclear
transcription factor κB [NFκB]); and gene expression
(Fig. 1) [8,13,14,15•,16–21,22••].

AT1 activation leads to rapid activation of phospholi-
pase (PL) C , PLD, and PLA2 via src [23]. PLC activation
induces formation of diacylglycerol and inositol triphos-
phate, leading to activation of protein kinase C and Ca2+

release from intracellular stores, respectively [24]. AT1
stimulation also increases vascular smooth muscle cell
(VSMC) [Ca2+]i by activation of sarcolemmal Ca2+ chan-
nels, which leads to smooth muscle contraction [8]. The
AngII-induced activation of Ca2+ channels was shown to
be regulated by src and FAK [25]. In addition, Ang II has
been demonstrated to induce rat aorta contraction by acti-
vation of the p38 MAP kinase pathway (Fig. 1) [26].

Cascades induced by PLD and PLA2 lead to activation
of a NADH/NADPH oxidase, probably through formation
of phosphatic acid or arachidonic acid, and induce produc-
tion of reactive oxygen species (ROS). The superoxide
anion (•O2

-) has a short half-life (seconds), and is rapidly
converted by superoxide dismutase to the more stable ROS
hydrogen peroxide (H2O2). Catalase and glutathione per-
oxidase finally convert H2O2 to H2O [27,28]. The molecu-
lar identity of the oxidase that is responsible for ROS
generation in VSMC is not clear yet. Recent evidence points
towards several essential components of the oxidase
enzyme: the cytosolic p47phox (phagocyte oxidase),
p67phox, and the membrane-bound p22phox, p91phox, and
nox-1 (nonphagocytic oxidase), which is a p91phox homo-
logue [28–32]. ROS are mediators of Ang II-induced VSMC
proliferation. Many of the growth-associated signaling
molecules that are activated by Ang II, such as src, JAK2,
STAT1, PLD, Ras, and p38 and JNK MAP kinases are redox
sensitive. Thus, ROS may mediate Ang II-induced VSMC
proliferation by manipulation of these signaling molecules
[28]. Besides promoting VSMC proliferation, ROS are also
involved in expression of interleukin-6, monocyte
chemoattractant molecule-1, and vascular cell adhesion
molecule through activation of NFκB [6,13,18], suggesting
a role for ROS in the inflammatory response to Ang II.
Inflammation leads to enhanced production of ACE and
Ang II, and this creates a positive feedback mechanism that
amplifies the actions of Ang II [3,6]. Furthermore, ROS can
modulate activity of matrix metalloproteinases, which
modify the deposition of extracellular matrix molecules
and thereby may affect the vessel structure [6,33]. Finally,
ROS inactivate the vasodilator molecule nitric oxide, lead-
ing to impairment of endothelium-dependent relaxation
[3,28].

Part of the growth promotory action of AT1 activation
may be mediated by other growth factors or activation of
their receptors. AT1 activation has been shown to induce
rapid (within minutes) transactivation (tyrosine phospho-
rylation) of receptors for epidermal growth factor
[19,34,35], insulin-like growth factor-1, and platelet
derived growth factor-β [16,34,36,37]. The mechanisms of

receptor transactivation are not clear, but ROS and src are
candidate transducers (Fig. 1) [16,34]. In addition to the
rapid receptor transactivation, Ang II has been reported to
stimulate expression of various growth factors, including
platelet derived growth factor-β, basic fibroblast growth
factor, vascular endothelial growth factor, insulin-like
growth factor-1 (proproliferative), and transforming
growth factor-β (antiproliferative) [3,8,16,17,34]. AT1
activity also interacts with the endothelin metabolism.
Hypertension induced by Ang II infusion can be sup-
pressed by ETA-receptor antagonism, which suggests that
endothelin partly mediates Ang II-induced hypertension
[38]. Furthermore, AT1 stimulation has been shown to pro-
mote endothelin synthesis and release [39]. Thus, Ang II
may mediate growth and remodeling responses by auto-
crine or paracrine production of growth factors.

The physiologic role and signal transduction mecha-
nisms of the AT2 receptor are not yet clearly defined. Acti-
vation of the AT2 receptor generates vasodilation, and is
involved in growth inhibition, apoptosis, and differentia-
tion. The G-protein–coupled AT2 receptor is abundantly
expressed in neonatal and embryonic blood vessels, and
has lower (but detectable) levels of expression in adult ves-
sels. However, the AT2 receptor is re-expressed after vascu-
lar injury and in the development of proliferative vascular
lesions. It is hypothesized that during vascular remodeling,
the AT2 receptor modulates the growth responses elicited
by the AT1 receptor or other growth stimuli [3].

Besides these direct effects, Ang II may also promote
vascular remodeling indirectly through effects on blood
pressure and sympathetic nerve activity [40,41], but this is
beyond the scope of this review.

Role of Angiotensin in Pathologic 
Vascular Remodeling
Evidence is accumulating that Ang II, through AT1 activa-
tion, is involved in many types of pathologic vascular
remodeling. Hypertension is associated with arterial
remodeling; large arteries show hypertrophic remodel-
ing, arterioles (diameter < 100 µm) undergo rarefaction,
and small arteries (diameter 100–500 µm) display
inward remodeling, leading to the characteristic
increased peripheral resistance [5]. The involvement of
Ang II in hypertension-related arterial remodeling, and
in the severity of the arterial hypertrophy, is evident from
many clinical and experimental observations. Schiffrin et
al. [42••] showed that in patients with essential hyper-
tension, resistance arteries show inward eutrophic
remodeling. In these patients, the AT1 antagonist losar-
tan and β-blocker atenolol induced similar blood pres-
sure reduction. However, losartan, and not atenolol,
corrected resistance artery structure [42••]. In spontane-
ously hypertensive rats (SHR), both AT1 blockade and
ACE inhibition normalized resistance artery structure
[43]. Patients with renovascular hypertension, which is
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characterized by high circulating renin levels, show dis-
proportional arterial hypertrophy compared with essen-
tial hypertension [44•]. In mRen transgenic rats with
enhanced renin expression in the vasculature, similar
observations were made [45]. Several recent studies
showed enhanced Ang II-induced signal transduction in
VSMC from hypertensive patients or SHR. In VSMC of
essential hypertensive patients compared with normo-
tensive patients, AT1 receptor expression was unaltered,
but Ang II induced an enhanced phosphorylation of src
and ERK, enhanced c-fos expression, AP-1 DNA binding,

and protein and DNA synthesis [22••]. Similarly, in
VSMC of SHR compared with Wistar-Kyoto (WKY) rats,
Ang II induced enhanced PLD activity [46], phosphoryla-
tion of p38 and ERK, and enhanced DNA and collagen
synthesis [20,21]. Moreover, the Ang II-induced [Ca2+]i
response is differently modulated by extracellular matrix
molecules in VSMC of SHR and WKY, leading to
enhanced Ca2+ release from intracellular stores and an
increased Ca2+ influx in SHR. This may contribute to
increased arterial smooth muscle tone and increased
peripheral resistance in SHR [47].

Figure 1.  Angiotensin II signaling through the AT1 receptor. Stimulation of the G-protein–coupled AT1 receptor leads to activation of several signal 
transduction cascades that promote vascular constriction and gene expression, and finally cause changes in the architecture of blood vessels (see text 
for details). All solid arrows depict established routes of activation, the dashed arrows represent hypothesized activation pathways. DAG—diaglyc-
erol; ECM—extracellular matrix; ERK—extracellular signal-regulated kinase; FAK—focal adhesion kinase; HSP—heat shock protein; IP3—inositol 
triphosphate 3; NFκB—nuclear transcription factor κB; PKC—protein kinase C; PL—phospholipase; ROS—reactive oxygen species.
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Pregnancy is associated with outward remodeling of
uterine spiral arteries. If this remodeling does not suffi-
ciently occur, pre-eclampsia may develop [2]. Defective
RAS has been implicated in the development of pre-
eclampsia. It was shown that all components of the RAS
are expressed in and around remodeling spiral arteries, and
that especially altered expression levels of angiotensinogen
may be a critical factor in the development of pre-eclamp-
sia [9]. Furthermore, our group recently showed that in tis-
sue-ACE–deficient mice, uterine arteries have a larger
lumen diameter compared with wild-type mice. Unexpect-
edly, pregnancy induced a more hypertrophic outward
remodeling in the tissue-ACE–deficient mice [48]. These
results show that RAS is involved in pregnancy-related vas-
cular remodeling, but the exact contribution of the RAS
components needs further investigation.

Angiotensin II is also implicated in several other forms
of pathologic vascular remodeling, such as atherosclerosis,
vein graft disease after coronary bypass surgery, and vascu-
lar injury after percutaneous transluminal coronary angio-
plasty. These pathologies are characterized by narrowing of
the lumen, neointima formation, VSMC migration and
proliferation, and endothelial dysfunction. The involve-
ment of Ang II is clear because both ACE inhibitors and
AT1 blockers have been shown to reverse the above-men-
tioned pathologic changes of vessel structure [3,4,17]. They
have been shown to act by inhibition of Ang II-induced
oxidative stress [49] and inflammation [13,14]. In athero-
sclerosis, an increased accumulation of tissue-ACE has
been reported [3,50], as well as an AT1 receptor upregula-
tion [49]. For both vein graft disease and balloon-injured
arteries, there is evidence for the involvement of chymase,
besides ACE, as an Ang II-generating system [10,12].

Cytoskeleton
The cytoskeleton is a dynamic three-dimensional network
of filamentous polymers that has many functions in the
cell, such as cell shape, deformability, and transduction of
mechanical stimuli [51]. The cytoskeleton consists of three
components: actin filaments, microtubules, and interme-
diate filaments (IFs). It is becoming increasingly clear that
the cytoskeleton has a role in acute (up to several hours)
vasoactive responses.

Cytoskeleton in acute vasoactive responses
The involvement of the three cytoskeletal components in
acute vasoactive responses has been demonstrated. Mice
lacking the IF vimentin (vimentin-/-) showed impaired
flow-induced, nitric oxide-mediated, dilation of mesen-
teric resistance arteries, although the myogenic reactivity
was not modified [52]. Disruption of actin filaments
prolonged nitric oxide synthase mRNA half-life in endo-
thelial cells [53], and inhibited Ca2+ channels in VSMC
[54], which would both promote vasodilation. On the
other hand, polymerization of actin causes constriction.

Ang II has been shown to induce contraction of rat aorta
through phosphorylation of heat shock protein
(HSP)27, an important regulator of actin polymeriza-
tion. This response was dependent on activation of p38
MAP kinase and generation of ROS [26]. Depolymeriza-
tion of microtubules blocked flow-dependent dilation of
arterioles [55], and is associated with endothelium-inde-
pendent, slow (steady-state after 1 hour), force produc-
tion mediated by myosin light chain phosphorylation
[56,57]. Recently, Bakker et al. [58••] showed that in an
isolated resistance artery in organ culture, a maintained
(days) vasoconstriction caused structural narrowing of
the artery. This suggests that if the cytoskeleton is
involved in vasoactive responses that persist, it may be
able to mediate or modify vascular remodeling.

Cytoskeleton in vascular remodeling
For all three components of the cytoskeleton there is evi-
dence for a role in vascular remodeling. It is known from
experiments in cultured endothelial cells that shear stress
modification induces a coordinated displacement of
vimentin filaments [59]. This cytoskeletal reorganization
probably participates in the shape changes and alignment
of the endothelial cells, and thus may contribute to the
remodeling of whole blood vessels after altered flow.
Indeed, Schiffers et al. [60•] recently reported that vimen-
tin-/- mice show an altered carotid artery remodeling in
response to a 4-week period of modified flow. Thus,
vimentin and possibly other IFs participate in the mechan-
otransduction of altered shear stress, but their role in the
remodeling process is not clear yet.

Depolymerization of microtubules has been shown to
potentiate the phenylephrine-induced constriction in
mesenteric arteries of normotensive rats, but not in the
mesenteric bed of deoxycorticosterone acetate (DOCA)
hypertensive rats. This experimental finding supports the
hypothesis that the microtubular network in vessels from
the hypertensive rats is somewhat dissembled, which
would contribute to the increased reactivity in this model
of hypertension [35].

Actin disorganization decreased Ang II-induced Ca2+

release from intracellular stores and Ca2+ influx in cultured
rat aortic VSMC from SHR, but not from WKY rats. This
suggests a more prominent role of the actin cytoskeleton in
Ca2+ handling mechanisms in SHR [61]. Furthermore, the
inward remodeling of rabbit carotid artery, induced by a
ligation that reduced shear stress, was associated with reor-
ganization of the actin cytoskeleton in the endothelium,
with fewer central stress fibers and more peripheral actin
bundles. This was accompanied by enhanced leukocyte
adhesion and changes of the endothelial cells to a much
less elongated "cobblestone" phenotype, indicative for the
initiation of atherosclerosis [62]. Likewise, loss of stress
fibers was shown to be associated with accumulation of
macrophages and atherosclerotic plaque formation in rab-
bits with hypercholesterolemia [63].



Angiotensin and Cytoskeletal Proteins: Role in Vascular Remodeling  •  Wesselman and De Mey 67
These findings show that the cytoskeleton participates
in both acute vasoactive responses and the remodeling
process, but the responsible mechanisms are not fully
elucidated. Focal adhesion sites deserve special attention.
Here, actin-containing stress fibers and the extracellular
matrix interact with integrins in the plasma membrane.
Focal adhesion sites already have been implicated in
transduction of mechanical stimuli, such as pressure and
flow [25]. However, experimental findings showing asso-
ciation of second messenger molecules, such as src and
FAK, to the cytoskeleton [15•,64,65], and the regulation
of the cytoskeleton by Rho (see below), suggests partici-
pation of the cytoskeleton in agonist-induced signal
transduction as well.

Rho and Vascular Remodeling
The Rho protein family belongs to the Ras superfamily of
small G-proteins that has four main representatives: Rho,
Cdc42, Rnd, and Rac. They are key regulators of the actin
cytoskeleton, and as such they are involved in many funda-
mental vascular processes, including smooth muscle con-
traction, cell adhesion, cell motility, and cell shape.
Recently, Rho G-proteins have also been reported to regu-
late the organization of other cytoskeletal proteins, such as
mircotubules [66] or IF vimentin [67], but the functional
consequences of these Rho actions for the vasculature are
not known. In vivo, the activation of Rho is regulated by
guanine nucleotide exchange factors, guanine nucleotide
dissociation inhibitors, and GTPase-activating proteins.
The members of the Rho subfamily, RhoA, RhoB, and
RhoC, are very similar, and many of the used inhibitors, or
mutant guanine nucleotide exchange factors, cannot spe-
cifically target one of them. Therefore, we use the term
Rho, although RhoA, which is the best characterized Rho
subfamily member, probably regulates most pathways dis-
cussed in this review. Rho exerts most of its effects through
Rho-kinase (p160ROCK) [68,69]. Because of its newly dis-
covered roles in Ca2+ sensitization of smooth muscle con-
traction (by inactivation of myosin light chain
phosphatase), focal adhesion assembly, stress fiber forma-
tion, and G-protein–coupled receptor signaling, many
recent studies investigating the mechanisms of pathologic
vascular remodeling focused on Rho.

In 1997, Uehata et al. [70] reported that Y27632, a spe-
cific inhibitor of p160ROCK, inhibited smooth muscle
contraction by reducing Ca2+ sensititvity, reduced stress
fiber formation in cultured cells, and corrected hyperten-
sion in several hypertensive rat models [70]. Recent studies
showed that Rho-kinase inhibition normalized the
enhanced Ca2+ sensitization in SHR to WKY levels, prefer-
entially reduced the augmented arterial tone in SHR com-
pared with WKY rats, and also prevented hypertrophic
remodeling of coronary arterioles in SHR [71•,72••].
Moreover, it was found that the expression and activity of
Rho-kinase were augmented in SHR [72••]. In VSMC,

stretch-induced Rho translocation and stretch-induced
ERK activation were suppressed by both Rho-kinase inhibi-
tion and actin disruption [73]. In endothelial cells, gene
transfer of dominant-negative mutants of Rho and Rho-
kinase inhibited shear stress–induced cell alignment and
stress fiber formation [74]. In VSMC, Rho-kinase inhibi-
tion reduced Ang II-induced expression of monocyte
chemoattractant molecule-1 and plasminogen activator
inhibitor-1 [75,76]. Rho-kinase inhibition or transfer of
dominant-negative Rho-kinase reduced constrictive
remodeling and vasospastic serotonin responses after
interleukin-1β infusion in porcine coronary arterioles, a
model of atherosclerosis [77,78•]. The same treatment also
suppressed neointima formation in porcine femoral artery
after balloon injury [79•]. Collectively, these recent find-
ings show that inhibition of Rho-kinase reduced mechan-
otransduction, atherosclerosis-related Ang II-signaling and
pathologic vascular remodeling in different animal models
for hypertension, atherosclerosis, and response to injury.
Thus, Rho-kinase can be regarded as a novel therapeutic
target in the treatment of these forms of vascular disease.

Conclusions
Angiotensin II and the cytoskeleton participate in patho-
logic vascular remodeling. We suggest two ways by which
Ang II is involved: 1) increased Ang II production, and 2)
sensitization of the AT1 response. The Ang II production
may increase through elevated plasma renin levels,
enhanced expression of angiotensinogen or ACE in the vas-
culature, or by upregulation of other Ang II-generating sys-
tems, such as chymase [3,9–11,44•,50]. Mechanisms of
AT1 sensitization are unknown, but the finding that Ang II-
induced src phosphorylation, one of the first events in Ang
II signaling, was enhanced in hypertensive patients [22••]
suggests modifications in the link between the AT1 receptor
and src tyrosine kinase. It can be speculated that this link is
altered by specific subunits of the G-proteins that are cou-
pled to the AT1 receptor, but this hypothesis has to be
tested in future experiments.

The cytoskeleton appears to participate in vascular
remodeling by changes in polymerization, assembly of
focal adhesions, and formation of stress fibers. At least part
of these cytoskeletal changes can be induced by Ang II,
which indicates interactions between cytoskeletal dynam-
ics and Ang II-induced signaling (Fig. 1). Ang II stimulates
formation of focal adhesions and stress fibers [16,64,65].
Ang II, through generation of ROS and activation of p38
and HSP27 can also induce actin polymerization and con-
traction [26]. On the other hand, disruption of the actin
cytoskeleton suppressed Ang II-dependent signaling and
protein synthesis [15•]. Moreover, Ang II leads to activa-
tion of Rho, a key regulator of the actin cytoskeleton [68].

Many studies suggest that pathologic vascular remod-
eling is due to augmented Rho or Rho-kinase activity. It
is not known what causes this upregulation, and it is also
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not clear by what signal transduction mechanisms Rho
activation leads to pathologic vascular remodeling. Can-
didate effector mechanisms involve 1) enhanced Ca2+

sensitization, generating more smooth muscle tone that
may contribute to hypertension, enhanced agonist-
induced contractions, and spasms [35,68,69,77,78•]; 2)
rearrangement of actin cytoskeleton, stress fiber forma-
tion, and focal adhesion assembly, which may potentiate
smooth muscle contraction and possibly sensitize the
smooth muscle cells to mechanical stimulation [25,68];
and 3) inflammation, through expression of proinflam-
matory molecules [75,76].
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