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Introduction
Obesity is a common disorder associated with diabetes and
cardiovascular diseases including hypertension, dyslipid-
emia, and atherosclerosis [1,2]. An association between
obesity and hypertension is supported by epidemiologic
studies indicating that high blood pressure is more frequent

in overweight subjects compared with lean populations [3].
Experimental studies in humans and animals have shown
that weight gain raises arterial pressure and weight loss
reduces arterial pressure in both normotensive and hyper-
tensive subjects [4]. Although the pathophysiologic mecha-
nisms of obesity-related hypertension remain under study,
some evidence suggest that enhanced sympathetic nervous
activity might play a major role in obesity-associated hyper-
tension. Plasma and urinary catecholamines are increased in
obese humans as well as in obese animal models [5–7].
Grassi et al. [8], using direct measurement with the micro-
neurography method, have shown increased sympathetic
nerve activity in obese subjects compared with lean individu-
als. Pharmacologic blockade of adrenergic activity by a
combination of α- and β-adrenergic receptor inhibitors or
ganglionic blockade markedly blunts obesity-associated
hypertension in dogs fed a high fat diet [10]. Finally, bilateral
renal denervation blocks the increase in arterial pressure
induced by high fat feeding in dogs [11]. Taken together,
these observations indicate the importance of sympathetic
nervous system activity in the obesity-associated hyper-
tension in humans and animal models.

Increased sympathetic nervous system activity might
result from circulating humoral factors exerting central or
peripheral neural action. Insulin is known to increase
sympathetic nerve activity. Hyperinsulinemia has been
suggested as a link between obesity and hypertension, but
experimental studies have challenged this concept [12,13].
Recent evidence indicates that leptin may represent a link
between excess weight gain and high arterial pressure
through actions on the sympathetic nervous system.

The Concept of Selective Leptin Resistance
Leptin, the product of the gene ob/ob, is a key afferent
signal in the negative feedback loop regulating body
weight. This hormone is produced by white adipose tissue
and circulates to the hypothalamus to inform the central
nervous system about the state of body fat. Leptin regulates
body weight and adipose tissue mass by reducing appetite
and food intake and by increasing energy expenditure
(Fig. 1). Collins et al. [14], using norepinephrine turnover,
have shown that the increase in energy expenditure is
mediated through sympathetic stimulation to brown
adipose tissue. Haynes et al. [15] from our laboratory used
direct measurement of sympathetic nerve activity to
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examine the effects of intravenous administration of
murine leptin on sympathetic nerve activity to different
tissues in rats. As expected, leptin caused a significant
increase in sympathetic nerve activity to brown adipose
tissue. Surprisingly, leptin also caused a significant and
dose-dependent increase in sympathetic nerve activity to
the kidneys, hindlimb, and adrenal glands [15]. This effect
of leptin on sympathetic nerve activity to tissues other than
brown adipose tissue was unexpected. Others have found
that this rise in sympathetic nerve activity induced by
leptin was associated with an increase in arterial pressure
and heart rate [16].

These findings suggest that leptin contributes not only to
the regulation of energy homeostasis, but also to the control
of cardiovascular function. This has been confirmed by
chronic infusion of leptin that increases arterial pressure and
heart rate in conscious rats [17]. Furthermore, agouti obese
mice [18] with hyperleptinemia, and transgenic mice over-
expressing leptin [19••] have elevated arterial pressure. In
contrast, leptin-deficient ob/ob mice have reduced arterial
pressure [18]. Thus, leptin appears to contribute to the regu-
lation of cardiovascular function and may be implicated in
the pathophysiology of obesity-associated hypertension. In
this regard, a significant correlation between blood pressure
and plasma leptin concentration in patients with essential
hypertension has been described [20].

Numerous studies in humans and animals have shown
that plasma leptin levels are significantly elevated in obese
individuals relative to lean subjects [21,22]. These
findings led to the conclusion that obese subjects are
leptin resistant because, despite the high levels of circula-
ting endogenous leptin, they remain obese. Furthermore,
exogenous administration of leptin in obese animals
produces resistance to the effects of leptin on food intake
and body weight [22]. Several mechanisms have been
suggested to explain the phenomenon of leptin resistance,

such as decreased transport of leptin across the blood-
brain barrier [22,23], a defect in the leptin receptor [24], or
impaired downstream signaling in the hypothalamus
[22,25••]. In addition to multiple mechanisms of leptin
resistance, there is emerging evidence that in some models
of obesity, leptin resistance may be selective and spare
some actions of leptin. For example, in agouti obese mice,
there is resistance to the metabolic effects of leptin, but the
blood pressure effects appear preserved [19••]. In this
regard, we recently demonstrated that agouti obese mice
have selective leptin resistance with preservation of the
sympathetic actions despite loss of the metabolic effects of
systemic leptin. We found that effects of systemic leptin on
food intake and body weight were significantly less in
agouti obese than in lean controls, whereas the increase in
renal sympathetic nerve activity was not different in agouti
obese and lean mice across all doses [26]. We subsequently
obtained preliminary evidence that selective leptin
resistance in these agouti obese mice occurs with central
neural as well as systemic administration of leptin, exclud-
ing a defect in the transport of leptin to cerebrospinal fluid
[27]. This finding of selective leptin resistance has been
extended in preliminary studies to other models of obese
mice including diet-induced obesity [28]. The concept
of selective leptin resistance has potentially important
implications because it could help explain how high levels
of circulating leptin in obese subjects might contribute to
elevated arterial pressure despite resistance to the effects of
leptin on appetite and body weight. In support of the
persistence of the sympathetic action of leptin in obesity is
the finding that plasma leptin concentration correlates
significantly with muscle sympathetic nerve activity in
obese subjects [29].

Site of Leptin Action in the Central 
Nervous System
The leptin receptor is a single transmembrane protein
belonging to the cytokine receptor super-family. Due to
alternative splicing of the mRNA, at least six leptin receptor
isoforms have been identified (designated Ob-Ra to Ob-Rf)
[30]. Five isoforms (Ob-Ra to Ob-Rd and Ob-Rf) differ in
the length of their intracellular domain, while Ob-Re, which
lacks the transmembrane domain, is a soluble form of the
receptor. The Ob-Rb form encodes the full receptor, includ-
ing the long intracellular domain that contains all the motifs
necessary to stimulate the janus kinases-signal transduction
and transcription (JAK-STAT) pathway [31]. STAT proteins
stimulate transcription of target genes that mediate some of
the cellular effects of leptin. However, some rapid effects
of leptin on neuron activity are unlikely to be mediated by a
modulation of gene transcription. For example, subsets of
hypothalamic neurons were hyperpolarized within minutes
of leptin application [32]. Modulation of the activity of
mitogen-activated protein (MAP) kinase [33], PI3-kinase
[34] type 3 phosphodiesterase [35], IRS protein [33], and

Figure 1. Schematic representation of the loop regulating body 
weight. Leptin is secreted by the adipocyte and circulates in the blood 
in concentration proportional to fat mass content. Action of leptin on 
its receptor present in the hypothalamus inhibits food intake and 
increases energy expenditure (thermogenesis), leading to decreased 
adipose tissue mass and body weight.
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protein kinase C [36] by leptin have been reported and
could mediate these rapid effects of this hormone.

Leptin from the plasma is transported to the central
nervous system by a saturable, unidirectional system [37]
involving binding of leptin to the short form of the leptin
receptor located at the endothelium of the vasculature and
the epithelium of choroid plexus [38]. There is abundant
evidence that the hypothalamus is the most important
site of leptin action in the brain. The long form of leptin
receptor, Ob-Rb, is expressed in several hypothalamic
nuclei including the arcuate nucleus, ventromedial
hypothalamus, paraventricular nucleus, and dorsomedial
hypothalamus [39]. The arcuate nucleus is considered the
major site of transduction of the afferent input from
circulating leptin into a neuronal response. This is
supported by the decrease in food intake induced by local
injection of leptin in this area [40], and the inability of
central neural administration of leptin to affect food intake
[41] or sympathetic nerve activity [42] after the arcuate
nucleus has been destroyed. Other brain areas innervated
by the arcuate nucleus neurons, such as the paraventricular
nucleus and lateral hypothalamus, are considered as
downstream neurons of second order in the pathways
regulating neuronal activity by leptin [39]. After activation
of leptin receptors in the central nervous system, the signal
is transduced by a series of integrated neuronal pathways
that lead to changes in the nerve activity affecting different
functions in the periphery.

Role of the Melanocortin System in 
Leptin Signaling
There is strong evidence that many of leptin's actions are
mediated by stimulation of the melanocortin system. The
melanocortins are peptides that are processed from the
polypeptide precursor pro-opiomelanocortin (POMC),
which is produced by neurons in the arcuate nucleus of the
hypothalamus and the nucleus of the tractus solitarius.
POMC neurons are known to express the leptin receptor.
Leptin binding leads to the secretion of alpha-melanocyte
stimulating hormone (�-MSH), which in turn binds to a
number of the family of melanocortin receptors (Fig. 2). In
the absence of leptin (in ob/ob mice) the expression of the
POMC gene is reduced [43]. In the ob/ob mice, injection
of leptin significantly increases POMC mRNA expression
in the hypothalamus [44].

The critical role for the melanocortin system in leptin
signaling emerged with the cloning of melanocortin-4
(MC-4) receptor gene and the demonstration that it is
expressed primarily in the brain [45]. Subsequently, it was
demonstrated that a synthetic agonist of this receptor
(MTII) suppresses food intake, whereas a synthetic antago-
nist (SHU9119) has the opposite effect [46]. Targeted
disruption of the MC-4 receptor induces obesity, and

these mice are resistant to both peripherally and centrally
administered leptin [47]. Interestingly, heterozygous MC-4
receptor knockout mice are also obese, but less obese than
the homozygous knockout mice [47], suggesting an impor-
tant physiologic role for this receptor. Disruption of both
the MC-3 receptor and MC-4 receptor exacerbates the
obesity associated with MC-4 receptor deficiency, suggest-
ing nonredundant functions for the two receptors in
regulating body weight [48]. The MC-3 receptor appears
particularly to influence feeding efficiency and fat storage.

MC-4 receptors also play a role in mediating the effect of
leptin on sympathetic nerve activity. Stimulation of hypo-
thalamic MC-4 receptors by central administration of MTII
produces a dose-dependent increase in sympathetic nerve
activity to brown adipose tissue and kidney that is blocked
by the MC-4 receptor antagonist, SHU9119 [49•]. Surpris-
ingly, MC-4 receptor blockade prevents the sympathoexcita-
tory effects of leptin to the kidneys, but not to brown
adipose tissue [49•]. These results suggest that leptin
controls sympathetic nerve activity in a tissue-specific
manner through different neuronal pathways. The regula-
tory action of leptin on sympathetic nerve activity to the
kidney appears to be mediated by the melanocortin system.
We have recent unpublished evidence that renal sympatho-
activation to leptin is abolished in homozygous MC-4
receptor knockout mice. Interestingly, we also observed that
the maximum increase in renal sympathetic nerve activity
induced by leptin in the heterozygous MC-4 receptor
knockout mice was the half response of the wild-type mice.
These findings confirm the pivotal role of MC-4 receptor
in mediating the effect of leptin on renal sympathetic
nerve activity.

Further evidence for the importance of the melanocort-
inergic pathways in leptin signaling has been obtained by
studying the syndrome of agouti yellow obesity in mice
[50]. These animals have a mutation in the agouti gene
that leads to ubiquitous overexpression of agouti protein
that functions as an antagonist of MC-1 receptors preventing
α-MSH from stimulating melanin synthesis and terminal
pigmentation of the hair follicles, leading to the yellow hair
[51,52]. Blockade of α-MSH effects MC-4 receptors in the
hypothalamus causing obesity in the agouti syndrome.
Transgenic mice overexpressing agouti-related protein
mimic the critical futures of the obesity syndrome in the
agouti yellow mice [53,54]. As with most human obesity,
the obesity observed in agouti mice is associated with high
levels of circulating leptin [22] and elevated arterial blood
pressure [18]. These mice are resistant to the appetite and
weight reducing effect of leptin [22], but leptin nevertheless
contributes importantly to regulation of arterial pressure in
these mice [19••]. The novel concept of selective leptin
resistance, discussed previously, may help explain how high
levels of leptin in agouti mice contribute to hypertension
despite resistance to its metabolic effects.
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Interaction of Neuropeptide Y and Leptin 
in the Hypothalamus
Neuropeptide Y (NPY) has emerged as a candidate media-
tor of leptin action in the brain after the demonstration of
the functionally active, long isoform of the leptin receptor
in the NPY neurons [55]. NPY, a 36-amino acid peptide, is
the most potent orexigenic (promotes increased energy
intake) peptide activated by decreases in leptin [39,56]. In
the hypothalamus NPY is synthesized by neurons of the
arcuate nucleus and secreted from their terminals in the
paraventricular nucleus and lateral hypothalamus (Fig. 2).
Injection of NPY into the cerebral ventricles or direct
hypothalamic administration increases food intake and
promotes obesity [57]. Levels of NPY are dramatically
increased in the hypothalamus of leptin-deficient mice
[58,59]. Moreover, leptin inhibits NPY gene expression,

and knockout of the NPY gene reduces by about 50% the
obesity and other endocrine alterations resulting from
chronic leptin deficiency in ob/ob mice [60]. Recently,
Cowley et al. [61•] demonstrated that NPY can also modu-
late directly the activity of POMC neurons via the release of
γ-aminobutyric acid (GABA) (Fig. 2).

Interactions between leptin and NPY in the control of
renal sympathetic nerve activity and blood pressure have
been described by Matsumura et al. [62•]. They found that
central neural administration of NPY in rabbits elicited dose-
dependent decrease in arterial pressure and sympathetic
activity to the kidneys. Pretreatment with intracerebroventric-
ular administration of leptin prevented the depressor and
sympathoinhibitory responses to central administration of
NPY. This suggests that leptin interferes with NPY action in
some manner.

NPY, therefore, has a key role in the control by leptin of
body weight, energy homeostasis, and cardiovascular
function. Surprisingly, mice in which the NPY gene had
been deleted by homologous recombination were pheno-
typically normal and responded to leptin [63]. This
indicates redundant signaling mechanisms, such that in
the absence of NPY, leptin acts through other pathways to
maintain seemingly normal feeding and body weight
regulation. Subsequently, other effector molecules media-
ting the effects of leptin have been discovered, including
melanocortin, orexin, agouti-related protein, galanin,
neurotensin, cocaine- and amphetamine-regulated tran-
script, and corticotrophin releasing factor (CRF) [39,56].

Interaction of Corticotrophin Releasing 
Factor and Leptin
The complicated nature of leptin signaling pathways may
be suggested from the essentially normal phenotype of
NPY knockout mice [63], despite the potent stimulatory
effects of NPY on food intake and body weight [57]. This
suggests that there are complementary and/or overlapping
effector systems that compensate the absence of NPY. CRF
is a 41-amino acid mammalian neurohormone that
inhibits food intake and appears also to mediate leptin
actions. Chronic administration of CRF causes sustained
anorexia and progressive body weight loss [56,64]. CRF
also increases sympathetic activity to brown adipose tissue
and kidneys [65,66] in the same pattern observed with
leptin [15]. Therefore, we postulated that leptin may
induce sympathoactivation through CRF and/or CRF-
related neuropeptides. Subsequently, we examined the
effects of central administration of CRF on sympathetic
nervous activity and the interaction between CRF receptors
and leptin in the regulation of sympathetic nerve activity in
the rat. We observed that third cerebroventricular adminis-
tration of CRF produced a substantial dose-dependent
increase in sympathetic nerve activity to brown adipose
tissue, which was blocked by concomitant central adminis-
tration of a CRF receptor antagonist (α-helical CRF9-41)

Figure 2. Signaling pathway of leptin in the hypothalamic arcuate 
nucleus and the interaction of leptin with neuropeptide Y (NPY)- 
and pro-opiomelanocortin (POMC)-containing neurons. Increased 
action of leptin inhibits the NPY anabolic pathway and stimulates 
the POMC catabolic pathway, leading to reduced food intake and 
increased thermogenesis (resulting in decreased in body weight) and 
arterial blood pressure (resulting in hypertension). GABA—γ-amino-
butyric acid; MC—melanocortin; α-MSH—alpha-melanocyte 
stimulating hormone.
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[67•]. We also observed that leptin-dependent sympathetic
activation to brown adipose tissue was mediated by the
CRF receptor; the sympathoexcitatory effect of leptin to
this tissue was substantially inhibited by pretreatment with
the CRF receptor antagonist (Fig. 3). These results demon-
strate that leptin and CRF or CRF-related peptides interact
in the central nervous system to control sympathetic
nervous activity to brown adipose tissue [67•]. However,
the suppression of the sympathoexcitatory effects of leptin
to brown adipose tissue by the CRF receptor antagonist
was incomplete, suggesting that other pathways such as
neurotensin or orexin may interact with leptin to control
sympathetic nerve activity to thermogenic tissue.

Conclusions
Leptin is a key hormone in regulation of food intake and
energy homeostasis. Multiple other actions of leptin are
potentially relevant not only to control of body weight but
also to cardiovascular regulation. Leptin action on the
sympathetic nervous system could contribute importantly
to obesity-related hypertension because in animal models
of obesity the sympathetic action is conserved despite the
loss of metabolic effects of leptin.

Modulation of these different functions by leptin is
mediated by several neuroendocrine systems including the
melanocortin system, NPY, and CRF. A detailed under-
standing of the multitude and complexity of integrated
neuronal circuits and neuropeptide-containing pathways
in leptin actions will help in understanding the patho-
genesis of obesity and related disorders. For example, these
studies may help to identify the molecular basis of selective
leptin resistance observed in some models of obesity.
Future studies will hopefully determine the precise
character and mechanisms of selective leptin resistance.
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