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Introduction
Humans are now living well beyond their reproductive years.
The emergence of a host of diseases of aging is, unfortu-
nately, a likely consequence of this extended longevity. Can-
cer, cardiovascular, skeletal, and neurodegenerative disorders,
for example, increase in frequency and severity with age and
are the main causes of illness and death in developed
nations. The question therefore arises as to whether age-
related diseases are intrinsic and inevitable to the aging pro-
cess or are preventable biological entities that have become
increasingly more frequent only because modern humans
are living longer than ever before. If age-related diseases are
preventable, can they be addressed in the same manner as
early-onset diseases? A related question concerns the roles of
genetic determinants versus environmental and stochastic
factors in these age-related diseases and their impact on
human longevity. Ultimately, answers to these questions will
emerge as we better understand the role played by biological
age in pacing human morbidity and longevity.

While the units of chronological age are based on the
calender and are extrinsic and constant, the units of
biological age are intrinsic and variable and are subject
to genetic-environmental interactions. Moreover, the
phases of biological age are probably epigenetic in that
they are expressed not in days or years but in a sequential
order  of  changes  that  mark organi smal  growth,

development, and senescence. An excellent series of
review articles [1,2••,3••,4,5] and a commentary [6]
appearing in a recent issue of Nature has comprehen-
sively addressed the biology of aging from many perspec-
tives. Here we briefly touch on some of the issues
discussed in these papers, while focusing in greater depth
on one of the biomarkers and contributing factors in
human aging—the telomeres.

Evolutionary Perspective of Aging
If genes figure in human longevity or in the development
of diseases of aging, the expression of longevity genes must
be regarded as the outcome of evolution by natural selec-
tion—a process occurring at various levels of biological
hierarchy and driven by three fundamental factors: varia-
tion, heritability, and survival advantage. Natural selection
exerts its primal force through successive cycles of repro-
duction that sustain variation in polymorphisms within
genes and their allelic combinations. However, it does not
favor longevity much beyond the reproductive period in
multicellular organisms characterized by a distinct germ-
line and a soma [7,8]. Thus, both extrinsic factors (eg, pre-
dation, starvation, climate changes) and intrinsic
biological processes converge on an ultimate common out-
come: death of the soma. In different species, this can
range from rapid, largely programmed demise after a
reproductive burst, through slowly increasing morbidity
reflecting an underlying gradual loss of homeostasis, to
even negligible senescence, in which death of the soma is
completely random or extrinsically determined [9,10••].
Humans and other mammals belong mainly to the cate-
gory in which both genes and chance events in the envi-
ronment influence morbidity and longevity in the
postreproductive lifespan [10••].

A model explaining how variant genes influence lon-
gevity was offered by Williams [8], who proposed the the-
ory of "antagonistic pleiotropy." According to this model,
the expression of certain genes provides survival and repro-
ductive advantages in early life but becomes a disadvantage
late in the postreproductive period. Variation in longevity
and aging within species may thus be attributed to the
nature and timing of expression of such pleiotropic genetic
factors. Kirkwood et al. [11–13] have broadened this con-
cept by articulating the "disposable soma theory," the
essence of which is that investment in the soma during the
reproductive period occurs at the expense of longevity. In
other words, the balance between metabolic energy needed
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to maintain and repair the soma and the energy devoted to
reproduction accounts for different lifespans among spe-
cies and, perhaps, variations in longevity within members
of the same species. This distinction between the soma and
nonsoma (ie, the germlines) is critical to the subject of this
communication, that is, the potential role of telomeres in
the biology of human aging.

Telomeres, Telomerase, Cell Mortality, 
and Immortality
Telomeres are essential genetic elements that cap linear
chromosome ends, protecting them from DNA damage
repair pathways that operate to heal broken chromosomes
[14]. They are typically composed of repetitive DNA
sequences and specialized telomeric DNA binding proteins
that assemble into a unique structure that masks the ends
of the chromosome, thus distinguishing chromosomal
ends from ends that are created by internal chromosome
breaks. Such internal breaks occur frequently from DNA
processing during replication, transcription, and repair, or
result from physical or chemical insults, such as oxidative
damage and ionizing radiation.

Because of the "end-replication problem" [15–17],
telomeres cannot be fully synthesized by the DNA replica-
tion fork complex. To prevent gradual telomere loss with
each cell division, most eukaryotes, including humans,
have a special DNA polymerase called telomerase [18,19]
that compensates for the end-replication problem (Fig. 1).
Telomerase is a ribonucleoprotein complex consisting at its
core of a catalytic protein component and a functional
RNA. The protein component is a unique reverse tran-
scriptase that synthesizes de novo the single-stranded telo-
meric DNA sequence onto the 3’-end of the chromosome,
using a portion of the integral RNA component as the tem-
plate. In humans, these components are called hTERT
(human telomerase reverse transcriptase) [20] and hTR
(human telomerase RNA) [21].

Telomerase is usually repressed in normal human
somatic cells. As a result, telomeres are gradually lost
with cell division, both in culture and in vivo, and
telomere loss is accelerated in certain diseases involving
chronic stress and an increased cell turnover rate [22–
31]. In contrast, telomerase is active and telomeric length
is maintained in the germline lineage and in cancer cells
(ie, in immortal cells) [32–35]. As one might expect,
human somatic stem cells in the blood, liver, and skin,
which presumably have a considerable but still finite
replicative capacity, have a low or transiently inducible
expression of telomerase [27,33,36–41]. Therefore,
telomere loss in the presence of low or nondetectable
telomerase may account for the finite replicative capacity
of normal human cells, while constitutive telomerase
activation in reproductive cells and cancer may account
for the immortality of the germline and tumor cells [42].

Proof that telomerase is necessary for cell immortality
in tumor cells and is sufficient for immortalization in
normal cells came soon after the essential components of
telomerase were cloned [21,43••,44–47]. Repression of
hTERT gene expression is the reason most normal human
cells are telomerase negative, and hTERT gene transduc-
tion, driven by a constitutive promoter element, is suffi-
cient for immortalization of multiple different primary
human cell types. In contrast, repression, inactivation, or
inhibition of function of either hTERT or hTR in human
tumor cells can “re-mortalize” these cells. Telomeres are
thus a “molecular clock” in that their attrition causes
replicative aging in human cells in culture.

Telomere Dynamics, Aging, and Disease 
in the Mouse and Their Implications to 
Human Disease
The correlative links between abnormal telomerase
activation, telomere maintenance, and cancer progres-
sion in vivo are as compelling as the correlative link
between telomere loss and aging of human cells in vitro.
The relationships between telomerase and cancer are
further supported by the demonstration in cultured cells
of the causality between telomerase activity and cell
immortality. In principle, telomeric attrition in normal
cells and telomerase activation in malignant cells could
be targeted for therapeutic interventions that activate
telomerase in degenerative diseases and inhibit telo-
merase in cancer.  Such interventions would also
definitively establish the role played by telomere dynam-
ics in human disease. This type of applied research,
examining the safety and effectiveness of telomerase
therapies in preparation for human clinical trials, is
ongoing. In the meantime, the telomerase knockout
mouse model has provided added insight into the role of
telomere attrition in diseases of proliferative tissues,
including cancer.

Telomere biology in the common laboratory species
of mice is very different from that seen in humans. In Mus
musculus, for instance, telomeres are five to 10 times
longer than those in humans, and telomerase is not strin-
gently repressed in most somatic tissues during develop-
ment. In addition, mouse chromosomes are acrocentric,
such that telomeric fusions at the short arms can generate
pseudo-metacentric chromosomes without undergoing
fusion-bridge-breakage cycles [48–50]. As a consequence,
telomeres are not significantly eroded during aging or dis-
ease in mice, and telomerase activation, although still
associated with murine cancers, is not necessary for long-
term survival of murine tumor cells, even after consider-
able telomere loss. Thus, the first generations of telom-
erase knockout mice had essentially no phenotype other
than gradual shortening of telomeric length upon succes-
sive breeding of the homozygous knockout mice [51].
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The early knockout experiments in mice demon-
strated that telomerase was not necessary for normal
growth and development and that apparently normal
tumor initiation and development occurred in its
absence. This should have been expected, given the
extremely long telomeres in wild-type and early genera-
tion telomerase null Mus musculus. However, late-genera-
tion telomerase knockout mice, with telomere lengths
similar to those seen in humans, told a different story
[3••,52–57,58••,59]. In these mice, telomere length did
reach the threshold limit at which loss of chromosomal
integrity signaled cell death. Highly proliferative tissues,
such as the immune system, gut, skin, and gonads, in
late-generation telomerase knockout mice were the first
to exhibit pathology. In addition, pathology could also
be induced by chronic environmental or genetic stress in
tissues with regenerative capacity, such as the liver. As
expected, the accelerated morbidity in these mice was
associated with a significantly reduced lifespan.

From the perspective of human disease, studies in
knockout mice have generated two very important find-
ings. First, the pathology of diseases induced by chronic
stress in these mice more closely matched the pathology
in human disease than did that in wild-type mice. Sec-
ond, in the case of stress-induced liver cirrhosis, telo-
merase gene therapy in the knockout model effectively
prevented the onset of pathology [58••]. Thus, the late-
generation telomerase knockout mouse is an important
model for degenerative, age-related diseases and telo-
merase activation therapy in humans.

The cancer phenotype of telomerase knockout mice is
harder to interpret in the context of human tumorigene-
sis, given the inherent differences in chromosome struc-
ture (acrocentric vs metacentric) and the stringency of
DNA repair and checkpoint mechanisms that control cell
proliferation after DNA damage [50]. There are also dif-
ferences between different laboratories or different can-

cer models with regard to the effects of telomerase
deficiency on tumorigenesis [59,60]. Nevertheless, in the
telomerase null mice with short telomeres, growth con-
trol mutations can generate a profile of epithelial cancers
that much more closely matches those of humans than
do the typical sarcomas and hematopoietic tumors of
wild-type mice [3••].

Reactive Oxygen Species and 
Their Role in Telomere Biology
Reactive oxygen species (ROS) have been at the center of the-
ories of biological aging. The recent findings that ROS may
accelerate the rate of telomeric attrition in cultured cells
suggest a potential role for ROS in human aging through
their effect on telomere dynamics. Generated by multiple
biological processes, ROS are essential for organismal
vitality in that they defend against pathogens, transduce
signals, and regulate genes, including the response to
vascular injury [61••,62–64]. At the same time, ROS pro-
mote degenerative senescence. The endogenous targets of
ROS are diverse, including nucleic acids, proteins, and
lipids. Organisms use an array of antioxidant defenses that
include enzymatic scavenging of free radicals [61••,62]
and mechanisms that maintain protein thiols and the
reduced forms of  antioxidant  molecules,  such as
glutathione [65]. In the final analysis, the cumulative oxi-
dative damage in tissues hinges on the balance between the
generation of ROS and countermeasures to neutralize their
deleterious effects. Accordingly, the rate of tissue accumula-
tion of oxidative end products is negatively correlated,
while DNA repair capacity of ROS-evoked damage is
positively correlated with maximal lifespan potential
among species [2••,61••,62]. Collectively, these findings
support the “free radical theory of aging” and the “rate of
living theory” [66–68], attributing central roles in aging to
ROS and metabolic rate.

Figure 1. Schematic of telomerase and 
telomere synthesis.
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Traditionally, the involvement of ROS in aging has
been ascribed to oxidative stress-mediated structural dam-
age that promotes age-related diseases. For instance, oxida-
tive mutagenesis causes cancer [69], lipid peroxidation
promotes atherosclerosis [70], and oxidized proteins are
involved in neurodegenerative disorders [71,72]. However,
mild hyperoxia and treatment with hydrogen peroxide or
with organic hyperoxides result in activation of the p53 or
p16/pRb and p21 pathways in concert with premature
senescence of cultured cells [73,74]. These conditions
cause considerable single-strand telomeric damage associ-
ated with rapid telomeric attrition that cannot be
explained by the size of the telomeric overhangs. Single-
strand degradation and accelerated telomeric attrition are
also observed in cultured cells maintained for long periods
in a confluent state [75]. After being released from conflu-
ence, these cells attain replicative senescence at a lower
cumulative population doubling than control cells. These
and other studies indicate that telomeres are considerably
more sensitive to ROS-induced single-strand degradation
than other chromosomal regions and that ROS accelerate
telomeric attrition [76••], which, in principle, may affect
the aging process and age-related diseases.

Cardiovascular Diseases: Links to Telomere 
Biology and the Potential Role of Reactive 
Oxygen Species and Sex
Most cardiovascular diseases in adult humans are disorders
of aging. This is certainly true with regard to atherosclerosis
and essential hypertension, which are the most prevalent
aging disorders in developed nations. The connection
between atherosclerosis and ROS is well established [70].
Evidence suggesting that ROS are a determinant in hyper-
tension pathobiology has been documented only recently.
Increased activity of ROS is found in rats with genetic
hypertension and experimentally induced hypertension
[77–82]. In addition, oxidative stress induced by depletion
of glutathione, a major intracellular antioxidant, causes
severe hypertension in rats [83]. Production of plasma per-
oxidase is greater in patients with essential hypertension
and in normotensive persons with familial history of
essential hypertension than in normotensive persons with-
out familial history of the disorder [84,85]. Less plasma
hydrogen peroxide is produced in women than in age-
matched men [85]. Women may also differ from men in
activities of antioxidant enzymes, such as circulating super-
oxide dismutase, catalase, and glutathione peroxidase [86].
These sex-related differences might be attributed to the
capacity of estrogen to reduce oxidative stress [87,88].

Bearing the marks of ROS and estrogen, links between
vascular parameters and telomere dynamics have been
identified in humans in vitro and in vivo. As is seen with
most other replicative somatic tissues, telomere length in
the human vascular endothelium inversely relates to donor
age [23,89]. Homocysteine—a major factor in the pathobi-

ology of atherosclerosis—accelerates telomere attrition in
human vascular endothelial cells in culture by mechanisms
largely mediated via ROS [90].

Among blood pressure parameters, pulse pressure is the
most reliable index of cardiovascular risks [91,92]. Pulse
pressure is primarily determined by the “stiffness,” (ie, less
distensibility) of central arteries, a characteristic reflecting the
biological aging of these vessels. Pulse pressure progressively
increases with age and is lower in premenopausal women
than in men of the same age. During the postmenopausal
period, women’s pulse pressure catches up with that of men,
so that by age 70 years pulse pressure is about the same in
both sexes [92]. In rats, age-dependent increase in arterial
stiffness is attenuated by estrogen replacement [93]. Given
the observed relationships between pulse pressure, age, and
sex, it is interesting that after adjustment for age, pulse
pressure correlates inversely with telomere length and is
modified by sex [94,95]. In addition, telomere length in
patients with vascular dementia is shorter than that in con-
trols [96], suggesting the involvement of telomere dynamics
in the biological aging of not only central arteries but also
smaller, peripheral arteries.

These intriguing associations between telomeres and
measures of vascular biology are largely controlled by
genetic factors, since telomere length is highly heritable
[94,97], and by sex. Telomere length is the same in new-
born boys and girls [Okuda K, Aviv A, Unpublished data],
but is longer in adult women than men [94,95]. This find-
ing suggests that telomere attrition is slower in women
than men. This may be due to the fact that women produce
fewer ROS and that an estrogen response element exists in
the catalytic subunit of telomerase so that estrogen can
stimulate telomerase [98]. Estrogen and ROS might there-
fore explain not only differences between men and women
in pulse pressure and cardiovascular risks, but also the sex-
related differences in telomere length.

Conclusions
Chronological age is an abstraction that presupposes the
notion that "one size fits all." Nature rarely, if ever, oper-
ates in this fashion, as demonstrated by the heterogeneity
that underscores the diversity of biological processes.
Telomere biology is no exception to this rule. The telo-
meric clock is differently set by genetic determinants and
unwinds at different paces during different life phases. In
addition, telomeric attrition is subject to a host of cellular
and extracellular modifiers, including estrogen and ROS,
which are centrally involved in signal transduction, cellular
energetics, cardiovascular diseases, cancer, and apparently
the aging process itself.

Telomere biology may play an important role in disease
and longevity of humans, but not in wild-type mice.
Humans have roughly 1000 times as many cells and live
roughly 50 times as long as mice. Thus, after adjustment for
cell number and maximal life expectancy, growth control
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and tumor suppressor mechanisms in humans should be
10,000 to 100,000 times as efficient as those in mice. Short
telomeres and stringently controlled telomerase expression
dictating programmed replicative senescence may be an
important component of this difference between mice and
man. Somatic cell mortality has long been considered a
tumor suppressor mechanism because loss of growth con-
trol in cancer would rapidly exhaust the proliferative poten-
tial of cells [99]. The deleterious effects of cell senescence
following critical telomere loss in normal cells in older
humans would then be a classic example of antagonistic
pleiotropy: a trait with strong beneficial effects early in life,
but detrimental effects late in life. The age-related effect of
telomere loss in normal cells would be most apparent in
highly proliferative tissues or in anatomical sites of chronic
stress, where it could be manifested by degenerative
changes, including cardiovascular disease, or even cancer.
Different outcomes will depend on genetic endowment, cell
types, and whether cell cycle arrest or genomic instability
and further loss of growth control predominate.

Telomerase repression in somatic cells but not repro-
ductive cells may also be viewed as an example of the dis-
posable soma theory. Energy to maintain telomeres must
be spent in the germline to ensure we are “born young,”
but the telomerase pathway is turned off in somatic cells as
long as telomeres are long enough to allow survival
through the peak reproductive years.

The following questions must, therefore, be more fully
answered to allow us to understand the role of telomeres
in human biogerentology: Is telomere length simply a
record that keeps track of our individual passage through
life, or is it a determinant of our longevity and susceptibil-
ity to age-related disease? How is telomerase regulated in
the germline? How is it repressed in normal somatic tissues
and abnormally activated in cancer? What is the telomere
signal of aging cells? Is it triggered in an all-or-none fash-
ion at a fixed critical length, or does telomere attrition
affect biological functions through phenotypic changes in
replicating cells even before this putative threshold is
reached? The jury may be out for some time on these ques-
tions as we continue to explore and ponder the biological
structure and function of telomeres. The answers will no
doubt have considerable clinical ramifications. From the
evolutionary standpoint, the antagonistic pleiotropy and
disposable soma theories suggest that, in humans, telom-
erase regulation and telomere dynamics are fundamentally
important to the partition of germline from the soma, the
prevention of cancer early in life, and the onset of diseases
of aging, including cardiovascular diseases and cancer. The
answer to the question “How long should telomeres be?” is
still uncertain, but the prospect for treatment of degenera-
tive diseases, including cancer, through therapeutic manip-
ulation of telomerase activity looks promising.
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