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Angiotensin I (ANG II) has multiple effects on cardiovascu-
lar and renal cells, including vasoconstriction, cell growth,
induction of proinflammatory cytokines, and profibrogenic
actions. Recent studies provide evidence that ANG Il could
stimulate intracellular formation of reactive oxygen species
(ROS) such as the superoxide anion (O,). This ANG II-
mediated ROS formation exhibits different kinetic and
lower absolute concentrations than those traditionally
observed during the respiratory burst of phagocytic cells,
but it likely involves similar membrane-bound NAD(P)H-
oxidases. Current evidence suggests that ANG II, through
AT, -receptor activation, upregulates several subunits of
this multienzyme complex, resulting in an increase in
intracellular O, concentration. ROS are involved in several
signal pathways, and redox-sensitive transcriptional factors
(AP-1, NF-kB) have been characterized. ANG ll-induced
ROS play a pivotal role in several pathophysiologic
situations of vascular and renal cells such as hypertension,
endothelial dysfunction, nitrate tolerance, atherosclerosis,
and cellular remodeling. Although these perceptions
suggest that drugs interfering with ANG Il effects (ACE
inhibitors, AT, -receptor antagonist) may serve as
antioxidants, preventing vascular and renal changes, the
clinical studies are not so straightforward. In fact, only
specific risk groups, such as patients with diabetes mellitus
or renal insufficiency, may benefit from ACE inhibitors,
whereas hard endpoints showed no advantage for ACE
inhibitors in patients with essential hypertension.

Introduction

More than 100 years ago, Elie Metchnikoff (1845-1916)
discovered the defensive role of phagocytes and proposed
that these cells constitute a first line of defense in their
ability to ingest and digest invading organisms such as bac-
teria. However, Metchnikoff immediately came under
strong attacks by the humoralist school, partly because it
was then not well understood how a circulating blood cell
should destroy an infective organism rather than spreading

the infection through the whole body. It was not until the
early 1960s before it became clear that an increase in oxy-
gen consumption occurs during intracellular destruction of
microorganisms in neutrophils and macrophages/mono-
cytes, and that reactive oxygen species (ROS) play a pivotal
role in this process, now named "respiratory burst.”
Although it has been known for 50 years that H,O, exists
endogenously, the seminal discovery of superoxide dismu-
tase by McCord and Fridovich in 1969 revealed that dis-
tinct cellular pathways exist for ROS [1]. Subsequently,
the complex enzymatic mechanism for the intracellular
generation of these ROS has been unraveled, and it is now
well known that ROS can be generated by various cellular
mechanisms involving membrane, cytosolic, and mito-
chondrial pathways [2]. A large body of evidence has been
accumulated over the last two decades. It indicates that
ROS, in addition to mediating intracellular killing of
pathogens in leukocytes and macrophages, are also impor-
tant mediators of cell injury under various pathophysio-
logic conditions [3]. This oxidative stress, leading
eventually to tissue injury, was first discovered in the reper-
fusion phase after organ ischemia, but it is also encoun-
tered in a variety of different diseases, ranging from
diabetes mellitus to immune-mediated forms of renal dis-
ease [3]. Recently, ROS have been recognized as important
mediators involved in systems that transduce extracellular
signals across the plasma membranes into the cytosol, and
may ultimately change transcription of target genes in the
nucleus [4]. Angiotensin Il (ANG 1) is not only a vasoac-
tive peptide involved in hemodynamic regulation, but it
has additionally emerged as an important growth and
profibrogenic factor in the remodeling of myocardial, vas-
cular, and renal tissues. Recent evidence suggests a link
between ANG Il and ROS formation in these tissues
[5+,6=<]. Furthermore, a pertinent relationship between
ANG II, ROS, hypertension, and vascular injury has been
described [4]. The present review focuses on potential
mechanisms of ANG ll-induced ROS formation and the
consequences of this process for vascular and renal tissues.

What are Reactive Oxygen Species,

and Where are They Formed?

The notion that ROS encompass a series of oxygen interme-
diates including the free radical superoxide anion O™, the
nonradical hydrogen peroxide (H,0O5), and the highly reac-
tive hydroxyl free radical (*OH). A more recently recog-
nized ROS member is singlet oxygen (102), in which one of



168 Hypertension: Kidney, Sodium, and the Renin-angiotensin System
Figure 1. Overview of the generation and
4 metabolism of reactive oxygen species (ROS).
H O The active species are the superoxide anion
* (O5) and hydroxyl free radical (*OH).
Hydrogen peroxide (H,0,), a relatively
Superoxide dismulase Catalase weak oxidant, holds a central position in
Sponlaneous = Llulathione penoxidasse the further metabolism to other ROS or
I detoxification to water. The fourth ROS,
. & singlet oxygen (102), is not shown in this over-
[y e Oy = HyCh = = HH view. NO—nitric acid; Fe>*—iron ion;
. NO r HOCI—hypochlorous acid.
Fes?
Svelopenon dase i
ﬂNiH:F e r'ﬂ Haber-YWeiss reactian) I
L 3 a
+ L
=iH HioC -

the electrons is raised to an orbital of higher energy with an
inversion of spin [1=]. Some of the pathways for generation
and metabolism of ROS are shown in Figure 1. The original
source is O, which is univalently reduced to form O, by
multiple enzymatic pathways (Fig. 2). O,” may then sponta-
neously devolve or be processed by SOD-mediated catalysis
into H202. This relative weak oxidant holds a central posi-
tion in the further metabolism to other ROS. H,0O, can oxi-
dize chloride to form the reactive hypochlorous acid
(HOCI), at least in neutrophils that express the presence of
the enzyme myeloperoxidase. HOCI may further react with
O, to form the hydroxyl free radical (HOCI + O,” O 20H +
O, + CI"). Alternatively, hypochlorite (OCI-) could further
interact with H,O, to produce singlet oxygen (OCI” + H,0,
0 10, + H,0 + CI"). *OH can be also formed from H,0,
and O™ by an iron-catalyzed reaction, the so-called Haber-
Weiss reaction [2]. However, the role of this reaction in vivo
has been questioned because of the limited availability of
free iron, which normally binds to lactoferrin. Interestingly,
the Haber-Weiss reaction is also implicated in the genera-
tion of singlet oxygen (102). Lastly, nitric oxide (NO) scav-
enges O," yielding peroxynitrite (ONOQO?), which may
decompose into nitrate and «OH.

Due to the highly reactive nature of ROS with the
potential of deleterious effects on cell integrity, ROS must
be neutralized by protective enzymes and endogenous
antioxidants (Fig. 1). Since H,O5 is less reactive than Oy
superoxide dismutase, which is actually a whole family of
several homodimeric metalloenzymes, may be considered
part of a detoxification pathway neutralizing superoxide
anions. Furthermore, H,0O, is reduced by catalase or
gluthathione peroxidase to H,O. In particular, tetrameric
gluthathione peroxidase serves as a detoxification pathway
for several noxious lipid peroxides.

The key initial step in formation of all ROS is the con-
version of molecular oxygen (O5) into the superoxide
anion (O5"). Several enzymatic pathways can generate
O, (Fig. 2), but in quantitative terms, the electron trans-
port chain in mitochondria is the most important source.
Other pathways may represent leaks that allow electrons
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Figure 2. Many different cellular enzymes catalyze the generation of
superoxide anion from molecular oxygen. The membrane-bound
NAD(P)H-oxidase is essential for angiotensin ll-mediated

O, generation.

to reach O, outside of the controlled mitochondrial
environment. The xanthine-oxidase system plays a piv-
otal role in the formation of O, from the ATP break-
down product hypoxanthine during reperfusion injury
after prolonged ischemia.

The NAD(P)H-oxidase is the enzymatic complex
responsible for the generation of O, in phagocytes during
the respiratory burst [4]. In addition, a membrane-bound
NAD(P)H-oxidase system is also present in many nonph-
agocytic cells, including endothelial and vascular smooth
muscles cells (VSMC) and mesangial cells, podocytes, and
proximal tubules in the kidney. Under normal conditions,
the NAD(P)H-oxidase is dormant in nonactivated neutro-
phils, with only two subunits, glycoprotein (gp)91phox
(for phagocyte oxidase) and p22phox, constituting the
membrane-bound cytochrome bgsg (Fig. 3). The flavopro-
tein FAD is a cofactor linking NADPH and cytochrome
bssg. Two isoforms of the small GTP-binding protein rac,
racl and rac2, promote the assembly of the NAD(P)H-oxi-
dase multienzyme complex and may act as a switch that
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Figure 3. Overview of the multienzyme complex of neutrophil
NAD(P)H-oxidase. The subunits rac, p67phox, p47phox, and
p40phox reside under normal conditions in the cytosol and

associate with the membrane-bound gp91phox/p22phox subunits
only after activation. Although differences exist between this
depicted multienzyme from neutrophils and the NAD(P)H-oxidase
from nonphagocytic cells, there are several common subunits,
including p22phox, that play an important role in ANG Il-mediated
reactive oxygen species generation. ANG Il stimulates transcription of
p22phox subunits in various cells, providing one mechanism for how
the vasopeptide may activate NAD(P)H-oxidase.

trigger electron transport [4]. Rac2 exhibits a high affinity
for cytochrome bgsg and appears to be constitutively asso-
ciated with the cell membrane. On cellular activation
inducing respiratory burst, the additional components
p67phox, p47phox, p40phox, and racl shift from the cyto-
sol to the membrane. These proteins bind to the poly-L-
proline-rich domain of p22phox through the interaction
of src homology domain-3 (SH3). Further SH3-mediated
interaction associates p67phox with p47phox. Mutations
in each of these NAD(P)H-oxidase subunits have been
described, resulting in attenuated ROS production with the
clinical phenotype of chronic granulomatous disease, a
rare disorder with increased susceptibility to bacterial and
fungal infections.

Although the detailed structure of nonphagocytic
NAD(P)H-oxidase is only incompletely understood, it never-
theless shares several characteristics with its neutrophil coun-
terpart, including sensitivity to the flavoprotein inhibitor
diphenylene iodinium (DIP) [5<,6=<]. However, compared
to phagocytes in which O, generation during the respiratory
burst is fast and massive with release of ROS into the extracel-
lular environment, ROS formation in nonphagocytic cells is
principally restricted to intracellular space and occurs over a
period of hours with a quantitatively decreased magnitude.
Some important structural differences may exist between the
neutrophil and nonphagocytic NAD(P)H-oxidases, and the
latter apparently express a large subunit, not similar to
gp9lphox, of neutrophils [4]. Furthermore, p22phox has

been cloned from VSMC, is abundant in these cells, and the
NAD(P)H-oxidase-mediated ROS generation in VSMC and
renal proximal tubular cells are diminished by p22phox anti-
sense oligonucleotides, indicating an important role of this
subunit in holoenzyme function [5e,6=<]. Finally, the non-
phagocytic enzymes may preferentially use more NADH
than NAD(P)H as coenzyme.

Reactive Oxygen Species as Intracellular Signal
Transduction Systems and Modulators of
Transcriptional Pathways

In striking contrast to phagocytic cells in which ROS pro-
duced during the respiratory burst destroy microorgan-
isms, these species may function as signal transduction
intermediates in other cells. As shown more than a decade
ago, exogenous maneuvers to increase ROS such as xan-
thine/xanthine oxidase or H,O, lead to the induction of
immediate early genes including c-jun, c-fos, and c-myc, as
well as stimulate proliferation of mouse epidermal cells
and fibroblasts [7,8]. Similar effects were subsequently
found in VSMC and in other cardiovascular and renal cell
types [9—11]. Members of the c-jun and c-fos families inter-
act through a leucine zipper to generate homo- and het-
erodimers that are capable of binding to AP-1 regions in
target genes [12]. Indeed, AP-1 is now among the most
well studied transcriptional factors influenced by the cellu-
lar redox state [12,13]. Meanwhile, ROS-induced gene
transcription mediated through AP-1 has been demon-
strated for many genes playing a role in cardiovascular
pathology including adhesion molecules, proinflamma-
tory chemokines (MCP-1), and growth stimulatory and
apoptotic genes [13—-16]. However, NF-kB was the first
transcription factor shown to be activated by oxidative
stress [14]. This conclusion was reached on experiments
demonstrating that antioxidants inhibit NF-«B activation.
NF-«B is a prototype of a whole family of transcription fac-
tors that are retained in the cytosol as heterodimers in an
inactive form [14]. This dimer is composed of various
members of the NF-«B/Rel family, which binds an inhibi-
tor protein called 1kB. Recent evidence suggests the exist-
ence of multiple forms of IkB. Upon activation, 1B is
phosphorylated, degraded, and NF-«kB is released and
moves into the nucleus to bind to target DNA elements
and activates transcription of these genes [13].

The activation of AP-1 and NF-«B transcription factors
through oxidative stress can be explained by findings that
ROS affect multiple signal transduction cascades upstream
of these transcription factors [17]. Endothelial and VSMC
challenged with H,O, or xanthine/xanthine oxidase
respond with transient release of Ca®* from intracellular
stores [17,18]. ROS-mediated inhibition of ATP-dependent
ca% pumps may be a potential mechanism for this intrac-
ellular increase in Ca®* [19]. Bass and Berk showed in 1995
that a superoxide-generating agent activates mitogen-acti-
vated protein kinases (MAPKSs) in VSMC [20]. In addition,
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ROS-induced activation of src, SAPK/INK, and p38 kinase
pathways, as well as inhibition of protein phosphatases,
have been described in various cell types [21,22].

Many of these ROS-stimulated signal transduction path-
ways and activation of transcription factors have been eluci-
dated using xanthine/xanthine oxidase or H,O, as an
exogenous source for the formation of ROS [23,24]. A more
recent conception is that ROS are intracellularly formed after
exposure of cells to growth factors and cytokine [22,25e].
Membrane-bound NAD(P)H-oxidase is likely responsible
for this induction of ROS [26==,27-29]. Relatively low con-
centrations of O,™ may, in turn, interact with many of the
signal transduction pathways as intermediates of normal sig-
nal transduction pathways, rather than as pathophysiologic
alterations forced onto cells by an exogenous source of ROS
or the respiratory burst. For example, Irani et al. demon-
strated an important role for O, in ras-induced cell cycle
proliferation in fibroblast, independent of MAPK [26«,27].

Angiotensin Il and Reactive Oxygen Species
The first evidence of ANG ll-mediated ROS production
came 10 years ago from a single author [30]. Wilson per-
formed acute ANG Il infusion experiments into Wistar rats
in the presence or absence of different free radical scavengers
including superoxide dismutase (SOD), catalase, dimethyl
sulfoxide [30]. These scavengers did not reduce acute ANG
IlI-induced hypertension, they partly inhibited vascular
hyperpermeability and cellular damage. Although Wilson
did not directly measure ROS, he straightforwardly sug-
gested that ANG Il induces ROS formation in this system
[30]. Subsequent in vitro studies demonstrated that treat-
ment of cultured VSMC with ANG Il for 4 to 6 hours
increased intracellular O,™ as measured by lucigenin assay
[31]. This ANG IlI-stimulated O, production was transduced
through AT -receptor and was caused by activation of mem-
brane-bound NAD(P)H-oxidase because DIP and p22phox
antisense oligonucleotides attenuated this response [31].
Furthermore, ANG Il-mediated production is followed by
an increase in intracellular H,O, by endogenous SOD
present in VSMC [32]. AT,-receptor transduced ROS forma-
tion, depending on NAD(P)H-oxidase, has been also
described in the kidney in cultured mesangial and proximal
tubular cells, podocytes as well as in human macrophages
[6==,33,34]. Immunohistochemical studies in rabbit aortic
sections revealed the presence of p22phox, gp9lphox,
p47phox, and p67phox localized exclusively in the adventi-
tia [35<]. Cultured fibroblasts, isolated from the adventitia
of rabbits, increased production of ROS after challenge with
ANG Il [35¢<]. Infusion of ANG Il into rats for 5 days
increased blood pressure and doubled vascular generation
[36=<]. This increase in ROS formation was mediated by
AT - receptors [36<]. Further experiments in vascular
homogenates revealed that the oxidase activated by ANG Il
in vivo was membrane bound and was stimulated by NADH
to a greater extent than NAD(P)H [36<<,37].

Similar observations have been made in rat aortas
when the endogenous renin-angiotensin system was stim-
ulated, using the two kidney-one clip (2K-1C) hyperten-
sion model [38]. In these hypertensive rats, endothelium
relaxation was impaired, and vascular O, formation was
significantly increased compared with controls [38]. Phar-
macologic inhibitor studies of vascular homogenates from
2K-1C animals demonstrated that the major source of 02
was a NAD(P)H-oxidase that was activated by a protein
kinase C-dependent mechanism [38]. The first in vivo evi-
dence in humans of a relationship between ANG Il and
ROS was provided by Dijkhorts-Oei et al., who infused
ANG Il into the brachial artery of healthy volunteers [39<].
ANG ll-induced vasoconstriction was significantly attenu-
ated by vitamin C co-infusion, suggesting that ROS con-
tributed to the vasoconstriction [39e].

The mechanisms of how ANG Il activates NAD(P)H-
oxidase are not well understood. It is clear that the
response is mediated by AT;-receptors and involves pro-
tein kinase C in some systems [4,36<,38]. ANG Il stimu-
lates p22phox transcription in VSMC, rat aortas, and renal
proximal tubular cells [5+,6*=,40]. This increase in
p22phox mMRNA expression was accompanied by an
increase in NAD(P)H-oxidase activity [5e,6+,40]. Further
evidence for an important role of p22hox in ANG II-
mediated O, generation emanated from antisense experi-
ments interfering with p22phox expression [5e,6==]. ANG
Il also stimulates the transcription of p67phox in rabbit
aortic adventitial fibroblast [41=]. Thus, ANG Il apparently
increases NAD(P)H-oxidase by stimulating synthesis of
some of its subunits. However, the exact signal transduc-
tion pathways are only incompletely understood. Further-
more, the fate of these newly synthesized subunits
remains unclear after ANG Il is withdrawn because O,
generation declines in the absence of the vasopeptide. Per-
haps these subunits will be intracellularly degraded by
proteases after dissociation from the NAD(P)H-oxidase
multienzyme complex, but this hypothesis needs further
experimental confirmation.

Pathophysiologic Effects of Angiotensin 11—
induced Reactive Oxygen Species
Pathophysiologic consequences of ANG Il-mediated
ROS formation are depicted in Figure 4 and include
endothelial dysfunction that may be arbitrarily defined
as a reduced vasodilatation in the presence of acetylcho-
line [42]. This endothelial dysfunction is mainly due to a
decrease in local NO synthesis and occurs in clinical situ-
ations such as hypercholesterolemia, diabetes mellitus,
hypertension, and smoking [42]. In many situations, NO
has opposite effects from ROS, including vasodilatation,
inhibition of platelet adherence and aggregation, sup-
pression of proinflammatory cytokines, and growth sup-
pression [42]. Although there is a complex interaction
between ANG II, ROS, and induction of NO-synthase,
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accumulating evidence suggest that O, interacts with
NO, resulting in the destruction of NO associated with
the formation of highly active «OH after generation of
peroxynitrite as intermediate [42]. MUnzel et al. were the
first who proposed that this mechanism underlies nitrate
tolerance in which nitroglycerin-derived NO is degraded
by O,7, particularly if ROS formation is stimulated in the
presence of high circulating or local ANG Il [43]. Induc-
ible NO generation in cultured proximal tubular cells is
attenuated in the presence of ANG Il without any change
in transcription of inducible NO-synthase, suggesting
that O, -mediated NO neutralization may also play a
role in renal cells [45].

ANG Il-stimulated O, formation directly contributes
to hypertension, likely via degradation of endothelium-
derived NO, because treatment of ANG Il-infused rats with
liposome-encapsulated SOD reduced blood pressure by 50
mm Hg, but had no effect on hypertension induced by
norepinephrine infusion [37]. ANG ll-infusion increased
transcription of extracellular SOD (ecSOD) in mice, inde-
pendent of concomitant hypertension. Interestingly, ANG
Il-induce hypertension is more severe in rats (a species
lacking ecSOD) than in mice, indicating that this increase
in ecSOD may represent an important compensatory
mechanism, partly blunting the ROS-mediated increase in
blood pressure [45]. An increase in ROS formation, likely
induced by ANG I, is essential for uremic hypertension in
a rat model with 5/6 nephrectomy [46]. Polymorphonu-
clear leukocytes from patients with essential hypertension
exhibit an increase in ROS production [47]. However,
whether ANG Il is involved in this process remains unclear.

ANG ll-induced ROS formation may also play an
important role in the development of atherosclerosis
[48]. Warnholtz et al. demonstrated in hypercholestere-

mic rabbits an AT;-receptor up-regulation leading to an
increased NAD(P)H-dependent vascular production [48].
An ATq-receptor antagonist improved endothelial dys-
function and reduction of early plaque formation, sug-
gesting an important role for ANG II-mediated ROS
formation in this model [48]. ANG II-mediated oxida-
tion of low-density lipoprotein (oxLDL) and an unpregu-
lation of LOX-1, the endothelial receptor for OxLDL, may
contribute to the relationship between ANG Il and ROS
in the pathogenesis of atherosclerosis [49<]. ANG Il is
also a well-characterized growth factor for vascular cells.
Similarly, it has been shown that ANG Ill-induced O, for-
mation is essential for hypertrophy of VSMC [4,5«]. ANG
Il stimulates hypertrophy of proximal tubular cells and
O, ,as a second messenger, causes this cell cycle arrest in
the G;-phase by inducing p27X'P1, an inhibitor of cyclin-
cyclin-dependent kinase complexes [6e<].

Clinical Consequences?

Although the perception of ANG ll-mediated ROS forma-
tion and its deleterious consequences suggest that drugs
blocking the renin-angiotensin system (eg, ACE inhibitors,
AT,-receptor antagonists) may serve as antioxidants, pre-
venting vascular and renal injuries, the clinical studies are
not as straightforward as the culture dish or the metabolic
cage. ACE inhibitor treatment has undoubtedly been
shown to be beneficial for patients with specific diseases
such as heart failure and diabetes mellitus. Furthermore,
therapy with an ACE inhibitor is currently the only known
treatment to prevent the progression of chronic renal dis-
eases. However, the situation for patients with essential
hypertension is less clear. In fact, two trials showed no
advantage to treatment with ACE inhibitors over conven-
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tional therapy in patients with hypertension [50,51]. After
the initial brouhaha following the publication of the ELITE
1 study, the recent observation from the ELITE 2 trial, that
there is no advantage to using an AT;-receptor antagonist
compared to an ACE inhibitor in patients with heart fail-
ure, as well as data showing an independent role for aldos-
terone [52], clearly demonstrate that ANG Il is conceivably
more complex than we are accustomed to think. The rela-
tionship between ANG Il, AT,-receptor activation, and ROS
formation, leading finally to vascular and renal injury, is
certainly not a simple one. Prospective randomized trials
are necessary to establish that antagonizing ANG II action
will reduce ROS generation in humans.

Conclusions

In vivo and in vitro studies provide ample evidence that
ANG Il could stimulate intracellular formation of O, by
upregulating subunits of the membrane-bound
NAD(P)H-oxidase in vascular and renal cells. O5" is
involved in several signal pathways and redox-sensitive
transcriptional factors, including AP-1 and NF-«B, sug-
gesting that O, is an important second messenger of the
transcriptional effects of ANG Il. ANG ll-induced O,
may play a pivotal role in several pathophysiologic situa-
tions involving vascular and renal tissue, such as hyper-
tension, endothelial dysfunction, nitrate tolerance,
atherosclerosis, and cellular remodeling. Although this
concept suggests that ACE inhibitors may exert antioxi-
dative effects in vivo, this theoretical benefit has not
been translated into clinical superiority of this class of
drugs compared with conventional therapy in patients
with essential hypertension.
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