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Abstract
Purpose of Review Gallant efforts are ongoing to achieve sustained antiretroviral therapy (ART)–free HIV remission in the HIV-
infected person; however, most, if not all, current human clinical studies have primarily focused these efforts on targeting viral
persistence in CD4 T cells in blood and tissue sanctuaries. The lack of myeloid centered HIV clinical trials, either as primary or
secondary end points, has hindered our understanding of the contribution of myeloid cells in unsuccessful trials but may also
guide successes in future HIV eradication clinical strategies.
Recent Findings Recent advances have highlighted the importance of myeloid reservoirs as sanctuaries of HIV persistence and
therefore may partially be responsible for viral recrudescence following ART treatment interruption in several clinical trials
where HIV was not detectable or recovered from CD4 T cells. Given these findings, novel innovative therapeutic approaches
specifically focused on HIV clearance in myeloid cell populations need to be vigorously pursued if we are to achieve additional
cases of sustained ART-free remission.
Summary This reviewwill highlight new research efforts definingmyeloid persistence and recent advances in HIVremission and
cure trials that would be relevant in targeting this compartment and make an argument as to their clinical relevancy as we progress
towards sustained ART-free HIV remission in all HIV-infected persons.
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Introduction

Most past and ongoing HIV eradication targeted clinical trials
have narrowly focused on evaluating and targeting the long-
lived memory CD4+ T cells, as these cellular reservoirs harbor
the majority of the cell-associated HIV using current reservoir
quantification assays. As treatment interruption of antiretroviral
therapy (ART) remains the gold standard in determining the
outcome of HIV curative designed clinical trials, the contribu-
tion of viral persistence in myeloid cells, such as blood mono-
cytes and tissue macrophages, has not been at the forefront.
This partly stems from the debate in the field on the scope of
myeloid cells as viral reservoirs or contributors to viral persis-
tence. However, recent studies now provide compelling evi-
dence that bloodmonocytes and tissuemacrophages in the lung

[1, 2], adipose tissue [3], gut-associated lymphoid tissue
(GALT) [4, 5], genital tract [6], semen [7], and bone marrow
[8, 9] as well as central nervous system (CNS) cells including
both myeloid originating microglia and astrocytes of the brain
[10, 11]; all have been shown to harbor HIV in the setting of
suppressive ART. Thus, in order to achieve full remission, we
need to rethink the design and implementation of HIV cure-
focused trials for elimination of all cellular reservoirs.

Two prominent cases that may shed light on the impor-
tance of myeloid cells as viral reservoirs in cure studies
may be informative in this regard. In the case of the
“Berlin Patient” [12], who received a bone marrow trans-
plant and successfully achieved viral remission after stop-
ping ART without subsequent viremic rebound for over a
decade now, the exact mechanisms for this successful tri-
al, which to date has not been replicated, remain unde-
fined and speculative. With respect to monocytes and
macrophages in this trial, prior administration of
gemtuzumab (a myeloid cell depleting anti-CD33 mono-
clonal antibody) for his acute myeloid leukemia (AML)
may have depleted HIV-infected myeloid reservoirs. It is
also unclear whether the lack of a myeloid cell-targeted
depletion contributed to the incomplete reservoir
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elimination and viral reemergence in other human [13]
and non-human [14] trials that have attempted to recapit-
ulate the case of the Berlin Patient.

In the case of the infamous “Mississippi baby,” and cases of
acute and extremely early administration of ART [15–17],
where a prolonged period of viral control without ART
persisted, the viral reservoir monitoring studies were not de-
signed for interrogation of viral persistence within myeloid
cells. Interesting to note that in the case of the Mississippi
baby following aggressive ARTat birth, virus rebounded after
27 months after ART cessation. At 26 months, plasma virus
was undetectable (< 2 copies/ml); however, the monocyte
threshold for detection of cell-associated virus was higher than
for the memory CD4 T cells, so it is unclear if the use of more
sensitive assays would have detected any residual virus in the
monocytes. Furthermore, lower monocyte counts were
assessed as compared to CD4 T cells and viral outgrowth
assays were not performed on monocytes. In our ongoing
studies where ART was administered early during acute HIV
infection [18], we are pursuing sensitive virological studies to
better define the contribution of myeloid reservoirs to viral
persistence in the earliest stage of infection.

This review will consider the contribution of HIV persis-
tence in myeloid-derived cells in past, ongoing, and future
cure clinical trials. Furthermore, we will review the sensitivity
of myeloid reservoir measurement methods and argue for in-
clusion of monitoring myeloid cells harboring HIV as future
primary and secondary end points in future HIV cure studies.

Evidence for Myeloid Cells as Contributors of HIV
Persistence

Mounting evidence suggests that cells of the macrophage
lineage, including blood monocytes subsets, play a signifi-
cant role in HIV-1 persistence. Monocytes routinely survey
tissues by transmigrating across the vascular endothelium
from the bloodstream into tissues sites. Their capacity to
harbor HIV DNA and RNA makes them suspect as critical
contributors to HIV pathogenesis [19•]. Indeed, a variety of
attributes make the monocyte and tissue macrophages, in-
cluding microglia, ideal candidates for contributing to the
HIV reservoir, both as carriers and replenishers of the viral
reservoir. The macrophage reservoir half-life has historical-
ly been underdetermined, yet in the presence of ART, mac-
rophages from SIV-infected rhesus macaques can sustain
viremia for several months [20–22]. Furthermore, myeloid
cells are relatively more resistant to apoptosis induced by
HIV infection [23], and virus produced by macrophages
may be more infectious than virus originating from CD4+
T cells [24].

The HIV envelope region undergoes more frequent se-
quence evolution in blood monocytes as compared to that of
resting CD4+ T cells, suggesting a distinct contribution to

plasma viremia. Indeed, phylogenetic analyses of HIV-1 se-
quences indicated that after prolonged ART, viral populations
are related or identical to those found only in CD14+ mono-
cytes [25]. The non-classical or patrolling monocyte subset
(CD14lowCD16high) expresses higher levels of CCR5, a co-
receptor for M-tropic HIV strains, and CD4, making them
more susceptible to continual viral infection. Circulating
blood monocytes traffic into tissues to later differentiate into
tissue macrophages, but have the potential to undergo subse-
quent differentiation into migratory myeloid dendritic cells,
which then traffic to other lymph tissues. Monocytes and mac-
rophages disseminate into most tissues of the body and medi-
ate HIV spread, particularly into the central nervous system
and lymphoid tissues. Post-mortem brain tissue analysis has
revealed that viral DNA is present in 3 to 19% of astrocytes
[26] despite astrocyte infection being both relatively infre-
quent and unproductive [27]. Moreover, our group has used
next-generation in situ hybridization RNAScope to identify
HIV RNA in cerebellum macrophages of an infected individ-
ual who died with a undetectable plasma viral load [28•].
Perivascular macrophages have a half-life of ∼ 3 months
[29] while microglia have a half-life of months-years to
years-lifetime [30], and parenchymal microglia have been
shown to represent two thirds of the infected cells in brain
autopsies of HIV-infected persons with encephalitis [31].
Therefore, both CNS perivascular macrophages and microglia
need to be considered as possible long-lived HIV reservoirs.

The extent of monocyte and macrophage tissue reservoir
compartments contributing to viral recrudescence is poorly
understood. Compared to the vast majority of studies tailored
to evaluate the viral reservoir in the CD4 T cell compartment,
few studies focus their effort to elucidate the relationship of
monocyte/macrophages to HIV reservoir and its persistence.
In humanized myeloid-only mice (MoM) infected with HIV, it
has been shown that after ART-interruption, one of three mice
experienced a delayed viral rebound [19•]. Due to the absence
of human T cells in MoMmice, this study showed for the first
time, in vivo, that persistent HIV infection exists in tissue
macrophages during ART and the myeloid compartment can
contribute to viral rebound after treatment interruption.
Although investigators reported not being able to detect HIV
DNA or viral outgrowth in peripheral monocytes isolated
from viremic and ART-suppressed patients [19•, 32•], others
have reported detection of HIV in circulating monocyte pop-
ulations. CD16+ monocytes isolated from the blood of ART-
treated individuals have been shown to harbor HIV DNA [33,
34]. In non-human primate studies, SIV was quantifiable in
monocytes and macrophages from blood and tissues using a
modified quantitative viral outgrowth assay (QVOA). The
macrophage-QVOA (Mϕ-QVOA) is specifically tailored
to quantify productively infected myeloid cells [35•]. The
evidence in these reports stresses a need for HIV curative
studies to include a more comprehensive evaluation of
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HIV persistence in the myeloid compartment in both
blood and tissue. In doing this will we begin to fully
understand the extent of the viral reservoir and the dy-
namics of its’ persistence, as well as to ascertain failures
in past and current cure studies, which may better inform
future curative endeavors (Fig. 1).

Biomarkers and Advances in Quantifying HIV
Reservoirs in Myeloid Cells

CD4 T cells have been at the center of understanding HIV
persistence dynamics and defining the latent reservoir.
However, studies have utilized various HIV persistence and
reservoir measurement techniques in characterizing these as-
pects in the myeloid compartment (Table 1). While there is
evidence of HIV persistence in forms of proviral DNA in
myeloid cells, measurement of replication-competent provi-
ruses that produce infectious virions during ART-
suppression is what will define the myeloid compartment as
a reservoir. It is the existence of the latter that results in viral
rebound after ART interruption and is a major barrier to curing
HIV infection [39, 40]. The QVOA remains the gold standard
for quantifying the latent reservoir, and its development was

critical in defining resting CD4 Tcells as latent reservoirs [39].
Overtime, modifications of the QVOA have been implement-
ed to improve and streamline different steps of the assay.
However, the majority of modifications done on the QVOA
remained to be T cell centric [41–43, 44, 45•, 46, 47, 48•, 49,
50]. Clement et al. have modified the QVOA and tailored the
assay to measure the viral reservoir size in monocytes and
macrophages, addressing the need to evaluate the potential
viral reservoir in myeloid cells [35•]. The Mϕ-QVOA
assessed enriched myeloid cells that undergo cellular stimula-
tion with TNF-α, a potent activator of myeloid cells and the
U1 HIV latently infected monocytic cell line [51, 52]. Using
the Mϕ-QVOA technique, macrophages were not only found
to be productively infected in the SIV-infected non-human
primate model, but also the number of productively infected
macrophages varied throughout different tissue sites.
Moreover, despite viral suppression by ART, tissue macro-
phages isolated from SIV-infected macaques continued to be
productively infected [38•].

With the ongoing use of these techniques in myeloid cells, it
is of great value to evaluate potential biomarkers of viral per-
sistence and reservoir in this cellular compartment. Much of the
biomarkers currently proposed, such as CD2, CD30, CD32,

Fig. 1 Current HIVeradication approaches. Overview of cure strategies that are being actively considered for CD4 Tcell HIV clearance of relevance to
non-CD4 T cell populations
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and immune checkpoint receptors TIGIT, PD-1, and LAG-3,
are still being investigated, but CD4 T cells were the focused
cell type of these discoveries [53–56, 57•, 58]. The utility of
these biomarkers as it directly relates to viral persistence and
reservoir in myeloid cells has not been vigorously pursued,
although much of the markers are T cell specific and highlight
a need to further investigate myeloid-specific candidates.
CD16, a Fcγ receptor, expression on myeloid cells has been
found to be enriched for HIVDNA [33, 34]. In addition, higher
expression of CCR2 on CD14+CD16+ monocytes isolated for
ART-suppressed patients correlated with higher HIV DNA
levels in peripheral blood mononuclear cells (PBMC) [59•].

Consideration of Myeloid Cells in HIV Cure Trials

Latency Reactivation Agents

The “shock and kill” strategy is currently one of themost widely
discussed approaches to eliminate the viral reservoir [60, 61]. In
this approach, drugs are administered to reverseHIV latency and
induce viral production, ultimately resulting in the death of in-
fected cells by direct viral cytopathic effects or immune-
mediated clearance. Latency reversing agents (LRAs) are ad-
ministered during suppressive ART, thereby preventing
reactivated virus from replenishing the reservoir through infec-
tion of new cells. Clinical trials involving LRAs such as
romidepsin, vorinostat, disulfiram, and panobinostat have failed
to demonstrate significant reduction in reservoir size, although
transient elevation in plasma viral RNA has been observed
[62–64, 65•, 66, 67]. Numerous LRAs have been shown
in vitro to have implications for driving HIV transcription in
myeloid-derived cells, yet primary outcomes of completed clin-
ical trials have thus far been entirely T cell focused, leaving our
knowledge of myeloid-driven viral control to be underdevel-
oped. Below are some LRAs that may have relevance in driving
viral transcription in myeloid cells.

Numerous clinical trials have used histone deacetylase in-
hibitors (HDACi) to reactivate HIV transcription, these include
the following: panobinostat, vorinostat, valproic acid, and

romidepsin. While HDACi may not alter the initial susceptibil-
ity of macrophages to HIV infection, they have been shown to
decrease HIVrelease frommacrophages ex vitro [68]. Thus far,
there are limited studies that have assessed the impact of LRAs
on myeloid contributions to pro-virus reactivation kinetics, al-
though the importance for which has been published. In human
primary astrocyte cell lines transfected with patient-derived
HIV-1 LTR, treatment with HDACi did activate transcription
of HIV LTRs [26, 69]. Furthermore, valproic acid (VPA) has
been shown to alter activation states of the myelo-monocytic
pathway [70] and therefore may have promise in latency reac-
tivation in myeloid cells. In a separate study using CD34+
myeloid precursor cells, results from RNA microarray analysis
revealed altered pathways for myeloid cell differentiation [71].
Pathways altered are implicated in changing homeostatic sig-
nals for both sustained cell persistence and pro-inflammatory
activation of pre-cursor myeloid cells.

Disulfiram and a protein kinase C activator, bryostatin, are
non-HDACi with LRA activity. Although well tolerated in clin-
ical trials (NCT01286259, NCT02269605), HIV-1 reactivation
was only considered in T cells. However, interestingly, DSF
reactivates latent HIV-1 expression in U1 cells (a monocytic
cell line) but not in ACH2 cells (a T cell line) [72]. Bryostatin
has had moderate LRA activity in astrocyte cell lines both
in vitro and in cultured primary astrocytes by inducing HIV-1
expression through NF-kB activation [73]. These LRAs may
thus have value in targeting myeloid HIV reservoirs in the cen-
tral nervous system. One concern however has been a risk for
adverse CNS toxicity with LRA reactivating HIV in the CNS
[74•, 75]; however, a recent clinical study has shown no long-
term neuro-consequences though additional studies are needed.

Biologics

Immunotherapy with immune checkpoint blocking antibodies
has been shown success in oncology through reversing T cell
immune exhaustion and may have efficacy in the elimination of
HIV. A recent study in patients with metastatic non-small-cell
lung carcinoma (NSCLC) and HIV infection, who received

Table 1 Detection methods for HIV in myeloid cells. A reference for quantitative assays which can detect HIV provirus in myeloid cells

Assay Myeloid cells characterized HIV status of host Detection
method

Reference

Total HIV-1 DNA Monocytes, macrophages Viremic (human), ART-suppressed (NHP) qPCR, ddPCR Ellery et al. (2007) [33]
Valcour et al. (2010) [34]

Alu-PCR for integrated
HIV-1 DNA

Monocyte-derived
macrophages,
microglia

In vitro infection of HIV
donor cells

PCR Castellano et al. (2017) [36]

PCR for 2-LTR
circles

Monocytes, macrophages ART-suppressed (human) PCR Sonza et al. (2001) [37]

QVOA Monocytes, macrophages Viremic (NHP), ART-suppressed (NHP) PCR Avalos et al. (2016, 2017)
[35•, 38•]
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multiple doses of PD-1 inhibitors while on suppressiveART, one
participant showed a decline in viral reservoirs in CD4 T cells
[76]. Moreover, of six HIV-positive individuals on therapy who
received the anti-PD-L1 antibody BMS-936559, two patients
demonstrated improvements in HIV-1-specific CD8+ T cell re-
sponses suggesting blockade of the PD-1–PD-L1 pathway has
the potential to improve HIV-1-specific immunity and potential-
ly eliminate HIV [77]. Given that PD-L1 is expressed on mye-
loid cells, the impact of PD-1:PDL-1 blockade on viral reservoirs
in myeloid cells would be of interest to future cure initiatives.

3BNC117 and 10-1074 are two of most potent broadly
neutralizing antibodies currently available. 3BNC117 targets
the CD4-binding site and 10-1074 targets the base of the V3
loop of HIV-1 gp120. In phase 1 clinical studies
(NCT03526848), the combination of 3BNC117 and 10-1074
has additive effects extending the median time-to-viral-
rebound by 11–15 weeks than treating with 3BNC117 alone
[78•]. However, the protective capacity of bnAbs not only is
solely due to virus neutralization but can also be attributable to
Fc-mediated function [79, 80]. Indeed, studies in HIV-1-
infected humanized mice show that the therapeutic activity
of anti-HIV-1 bNAbs requires Fc receptor (FcR) effector func-
tion to mediate anti-viral protection [81]. Therefore, investi-
gating the role of FcR phagocytic expressors such as mono-
cytes and macrophages for their capacity in direct sequestra-
tion and destruction of HIV but in stimulating the secretion of
inflammatory mediators could be key in delineating time-to-
rebound kinetics or an actual HIV elimination.

Multiple studies demonstrate that α4β7-expressing gut
homing CD4 T cells represent early targets for HIV, and ther-
apy targeting this integrin has been considered in the manage-
ment of HIV-1 infection. Recent studies in the SIV-infected
macaques show that treatment, during acute infection with
ART and anti-α4β7 therapy, achieved long-term viremic con-
trol following treatment interruption [82•], suggesting this
may be a novel therapeutic for HIV remission. While several
clinical studies are ongoing targeting α4β7 (NCT03147859,
NCT03577782, and NCT02788175), in our recent studies, we
have observed significant attenuation of lymphoid aggregates
in the terminal ileum in inflammatory bowel disease patients
with concomitant HIV-1 infection receiving ART and
anti-α4β7 therapy [83•]. While we also observed modest im-
pact on persistent viral reservoirs in the gut of these donors,
the study has not initiated ART treatment interruption to de-
termine the extent of immunological control of residual HIV
reservoirs. Furthermore, given that α4β7 is expressed on my-
eloid cells [84], monitoring the effects of α4β7 immunother-
apy in myeloid cells should be pursued.

Immune-Based Modification Therapies

CD8 T cells targeting HIV-infected CD4 T cells are well de-
scribed, but it is apparent that this is more challenging when

virus resides in myeloid cells. SIV-specific CD8+ T cells can
efficiently kill SIV-infected CD4+ Tcells but not SIV-infected
macrophages [85]. Clayton et al. recently show that HIV-
infected macrophages are more resistant to cytotoxic T lym-
phocytes (CTLs) killing through a granzyme-B inhibitor–
mediated mechanism [86•]. Rainho et al. show that CTL-
mediated killing of CD4+ T cells and monocyte derived mac-
rophages infected with SIV nef variants was more efficient
when targeting CD4+ T cells than macrophages [87].
Finding strategies to enhance CTL activity against infected
macrophages are therefore important. Pegu et al. have shown
that a bi-specific immunomodulatory protein that stimulates
CD8+ Tcell effector function thereby initiating latent-infected
cell lysis through recognition of Env [88•] may be retargeted
towards HIV-infected macrophages. Studies evaluating im-
munotherapies targeting negative checkpoint receptors [89•,
90, 91] to improve CTL activity as well as harnessing NK
cells [92] could also be needed in concert to overcome mye-
loid cell resistance to CTL killing. Advances have also been
made using chimeric antigen receptors (CAR) to re-engineer
CD8 T cells for specific lysis of HIV-infected CD4 T cells
[93–95]. However, engagement of a CAR T cell to mediate
monocyte and macrophage killing of infected cells has not
been assessed to date.

Excising the CCR5 locus using zinc finger nucleases was
the first-in-human application of genome editing accom-
plished in both Tcells and hematopoietic stem/progenitor cells
[96]. However, the CRISPR-Cas9 system has now markedly
improved the precision by which direct edits to the host ge-
nome can be made. However, no clinical trial in the context of
HIV cure has genetically engineered myeloid cells despite the
feasibility having been published. Zhang et al. have reported
using a dCas9-synergistic activation mediator (dCas9-SAM)
system to reactivate HIV-1 in both CD4+ Tcell and microglial
cell lines [97•]. Other promising results in myeloid cells that
are presented by Hu et al. were latently infected microglial,
pro-monocytes, and T cell lines; they developed a Cas9/guide
RNA system to eradicate the HIV-1 genome and immunize
target cells against HIV-1 reactivation [98].

Conclusion: Potential Future Clinical Trials

Promising newer strategies are being pursued including the
“block and lock” approach for HIV cure. Didehydro-
Cortistatin A (dCA) is one compound that inhibits Tat which
has been shown in vitro to decrease chromatin accessibility at
the HIV LTR, reducing the transcriptional competence of latent
HIV-1 provirus under ART [99, 100]. In mouse models, dCA
treatment showed strong reductions in both systemic and brain
tissue levels of viral RNA [101•, 102]. This may be particularly
relevant for myeloid cells in the CNS. dCA therapy, by reduc-
ing low-level viremia and preventing viral reactivation from
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latent reservoirs, makes it a promising therapeutic for tissue
sanctuaries like the CNS and where cell-based cytotoxicity
strategies can have irreversible consequences. In the
promonocyte cell line U1, dCA had no effect on viral mRNA
production [102, 103]; however, because the U1 cell line has
two integrated proviruses with Tat mutations, U1 cells are
therefore already deficient for processive viral production.
Further studies of dCA treatment activity in myeloid cells har-
boring virus should be pursued. Inclusion of a Tat inhibitor to
current ART regimens may contribute to a functional cure in
which no further immune cells are infected but would need to
be paired with a strategy that eliminates already infected cells.

New therapeutic strategies that place emphasis on targeting
HIV in non-CD4+ T cells will be imperative on the road to a
successful cure. As shown in Table 2, ongoing HIV cure trials
may need to be redesigned to better inform on their impact on
myeloid HIV reservoirs.
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