
HIV PATHOGENESIS AND TREATMENT (AL LANDAY AND NS UTAY, SECTION EDITORS)

Breaking the Glyco-Code of HIV Persistence and Immunopathogenesis

Florent Colomb1
& Leila B. Giron1

& Irena Trbojevic-Akmacic2 & Gordan Lauc2,3 & Mohamed Abdel-Mohsen1

Published online: 1 February 2019
# Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Purpose of review Glycoimmunology is an emerging field focused on understanding how immune responses are mediated by
glycans (carbohydrates) and their interaction with glycan-binding proteins called lectins. How glycans influence immunological
functions is increasingly well understood. In a parallel way, in the HIV field, it is increasingly understood how the host immune
system controls HIV persistence and immunopathogenesis. However, what has mostly been overlooked, despite its potential for
therapeutic applications, is the role that the host glycosylation machinery plays in modulating the persistence and
immunopathogenesis of HIV. Here, we will survey four areas in which the links between glycan-lectin interactions and immu-
nology and between immunology and HIVare well described. For each area, we will describe these links and then delineate the
opportunities for the HIV field in investigating potential interactions between glycoimmunology and HIV persistence/
immunopathogenesis.
Recent findings Recent studies show that the human glycome (the repertoire of human glycan structures) plays critical roles in
driving or modulating several cellular processes and immunological functions that are central to maintaining HIV infection.
Summary Understanding the links between glycoimmunology and HIV infection may create a new paradigm for discovering
novel glycan-based therapies that can lead to eradication, functional cure, or improved tolerance of lifelong infection.
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Introduction

The main barrier to HIV eradication is the ability of HIV to
establish latent infection in long-lived CD4+ T cells, which
persist in the blood and tissues [1]. These latently infected
cells are the source of viral rebound after interruption of anti-
retroviral therapy (ART), and their continual reactivation
in vivo probably contributes, among other drivers, to the im-
mune activation, chronic inflammation, and organ damage

that persist despite long-term suppressive therapy [2, 3].
These realities have prompted a renewed interest in develop-
ing new effective and accessible therapies that can lead to
eradication, functional cure, or improved tolerance of lifelong
infection.

Many studies have described the important role the im-
mune system plays in regulating HIV infection during sup-
pressive ART [4, 5, 6•, 7]. These studies suggest that a com-
prehensive understanding of the host immune determinants
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shaping the persistence and immunopathogenesis of HIV is a
critical step in developing new strategies to cure HIV and/or
prevent or delay the development of inflammation-associated
co-morbidities, which are more prevalent in HIV+ individuals
compared with those in the general population, despite long-
term suppressive ART [8–16].

After the initial success of the genome-wide association
approach, it became evident that genetic information was only
one of the layers of biologic complexity and that knowledge
about several additional layers would be needed to understand
life at the molecular level. A particularly important layer in
this respect is glycomics. Glycobiology is an emerging field
focused on defining the structures and functional roles of com-
plex carbohydrate structures, called glycans, in biological sys-
tems. These glycan structures, composed of branched chains
of monosaccharides, are added to a wide variety of biological
molecules (such as proteins and lipids) through a biological
process called glycosylation. Glycosylation alters not only
protein/lipid structure but also their function. The specific
structure of a glycan allows it to bind to a specific type of
glycan-binding proteins called lectins, leading to activation
of downstream signaling pathways. Glycans integrate genetic
and environmental factors, contribute significantly to variabil-
ity in protein structure, and function as a bridge between cells
and their complex environments; thus, aberrations of glycan
structures closely associate with complex diseases [17–19].
Evolutionary conservation is in the order of: genetic code
“genome” > RNA sequences “transcriptome” > primary pro-
tein sequence “proteome” > metabolic pathways “metabo-
lome” > cellular lipid composition “lipidome” > glycan struc-
tures “glycome.” The reverse order generates structural diver-
sity and richness of biological information. In other words, the
genome is the most evolutionarily conserved and the least
diverse, and the glycome is the least evolutionarily conserved
and the most diverse, rich with biological and chemical infor-
mation [20].

Recent advances in glycobiology show that the glycome
(the repertoire of glycan structures of an organism) is not just a
biomarker of biological functions but actually plays critical
roles in modulating immune responses [21] and in cell-cell
[22] and cell-pathogen interactions [23]. Since glycans affect
protein structure and function, it is not surprising that they
play an important role in regulating both physiological and
pathophysiological processes. The recent consensus report of
the National Research Council concluded that “glycans are
directly involved in the pathophysiology of every major dis-
ease” … “additional knowledge from glycoscience will be
needed to realize the goals of personalized medicine and to
take advantage of the substantial investments in human ge-
nome and proteome research and its impact on human health”
[24].

At the intersection of immunology and glycobiology is
“glycoimmunology,” an emerging field focused on

understanding how immune responses are mediated by gly-
cans and glycan-lectin interactions. How glycans influence
immunological functions is increasingly well understood. In
a parallel way, in the HIV field, it is increasingly understood
how the host immune system controls HIV infectivity, persis-
tence, and immunopathogenesis. However, how the host gly-
cosylation machinery may modulate the persistence and
immunopathogenesis of HIV has been mostly overlooked.
An association between glycomic alterations and HIV infec-
tion was suggested over two decades ago [25–27], but the
precise role of the host glycome in HIV infection was never
characterized due to the lack of glycobiological technologies
that can analyze clinical samples at a large scale. Now, a wide
range of advanced glycomic technologies are emerging, and
we are becoming able to tackle the complexity of the host
glycome. Using these new tools to understand the role of
glycoimmunology in the maintenance of HIV latency, and
the development of the aging- and inflammation-associated
co-morbidities, may allow us to develop novel therapies that
can lead to eradication, functional cure, or improved tolerance
of lifelong infection.

Although the glycosylation of the HIV envelope (Env)
protein and the potential for exploiting this glycan shield to
elicit antibodies with broad neutralizing activity have been
a key area of interest in the HIV vaccine field, here, we will
not discuss this area as excellent reviews have already been
published [28, 29]. We rather will focus on the potential
role of the host glycosylation machinery, including the
binding of virus glycans to host lectins, in regulating HIV
persistence and immunopathogenesis, as this area remains
completely understudied, despite its potential for therapeu-
tic applications. We will survey four areas in which the
links between glycan-lectin interactions and immunology
and between immunology and HIV are well described. For
each area, we will describe these links and then delineate
the opportunities for the HIV field in investigating poten-
tial links between glycoimmunology and HIV persistence/
immunopathogenesis.

The Potential Role of the Circulating Human
Glycome in Modulating Immunological
Responses During HIV Infection

Glycomic analyses of circulating biofluids such as serum/plas-
ma, cerebrospinal fluid (CSF), and urine have provided many
biomarkers of human diseases and biological states, such as
cancer progression [30–38]. These studies have suggested that
the circulating glycome plays an important role in regulating
the immunological responses to disease. Within the human
circulating glycome, glycans on circulating immunoglobulins
(Igs) are known to play an important role in regulating several
immunological functions [39]. Igs are glycoproteins produced
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by plasma cells that contain two domains separated by a hinge
region. The Fab (Fragment, antigen binding) domain deter-
mines specificity towards antigens and the Fc (Fragment, crys-
tallizable) domain is involved in binding to Fc receptors on the
surface of immune cells. The most abundant Ig in humans is
immunoglobulin G (IgG), with many non-neutralizing effec-
tor functions, such as antibody-dependent cellular phagocyto-
sis (ADCP), complement-dependent cytotoxicity (CDC),
antibody-dependent cell-mediated cytotoxicity (ADCC), and
several pro- and anti-inflammatory activities [40–42]. The
ability of IgG to function in these capacities is conferred and
modulated by its glycosylation at an evolutionarily conserved
N-glycosylation site at Asn-297 of the Fc domain and by var-
iable glycosylation sites resulting from somatic hypermutation
[43] in the Fab domain (15–20 % of IgG molecules) [44].
Glycans of the Fc domain are positioned in a hydrophobic
pocket and quite rigid; these enable binding to the Fcγ recep-
tors, likely by keeping the Fc domain in an open conformation
[45]. On the other hand, glycans on the Fab domain are more
flexible, contain more sialylated glycans and more glycans
with a bisecting N-acetylglucosamine (GlcNAc) [44] and
can modulate antigen binding [45]. The next two sections will
discuss the potential role of the IgG glycome in regulating
both inflammatory responses and plasma-mediated innate im-
mune effector activities during HIV infection. Note that al-
though the glycosylation of other circulating glycoproteins
in biofluids likely also plays an important role in regulating
immune functions, these influences are much less well under-
stood and will not be reviewed here.

Chronic Inflammation Has Been Associated
with Aberrant IgG Glycosylation Patterns and Is
Prevalent in HIV+ Individuals, Despite ART

Even after long-term suppressive ART, HIV+ individuals suf-
fer from a high incidence of diseases that are commonly asso-
ciated with aging and that are caused, at least in part, by low-
grade, systemic, chronic inflammation, observed typically in
elderly individuals, and termed inflammaging [46–49].
Examples include cardiovascular disease, cancers,
neurocognitive disorders, and osteoporosis. It is hypothesized
that inflammaging occurs in HIV+ individuals at younger ages
than in HIV counterparts [50]. Although considerable gaps
remain in our understanding of the pathophysiological mech-
anisms driving the development of aging-associated co-mor-
bidities in HIV+ individuals, the chronic inflammatory state
caused by HIV infection is likely a key. Indeed, in HIV+
individuals, systemic inflammation, as measured by serum
markers, can predict the incidence of mortality, cardiovascular
disease, lymphoma, type 2 diabetes, cognitive dysfunction,
and frailty [51–56]. Chronic inflammation likely involves
multifactorial mechanisms, not all of which are well charac-
terized. Sources of chronic inflammation in HIV+ individuals

include on-going HIV production, cytomegalovirus infection,
loss of regulatory Tcells, and microbial translocation [57–64].
Comprehensively understanding the causes of HIV-associated
chronic inflammation can lead to the development of tools to
prevent it, and thereby prevent or delay the development of
aging-associated co-morbidities in HIV+ individuals.

Since immunological functions are shaped by the host
glycome, it is not surprising that inflammation is associated
with aberrant glycosylation. A number of studies have linked
altered IgG glycosylation, in particular, lowered levels of si-
alic acid, to systemic inflammatory responses [65–67]. A re-
duction in IgG sialylation, termed hypo-sialylation, increases
the pro-inflammatory function of IgGs [65–68]. The exact
mechanism of this action is not clear. One suggestion is that
sialylation switches the antibody’s binding from classical to
non-classical Fc receptors [69]; however, other studies suggest
that this switching is minimal [70, 71]. Another suggestion is
that binding of sialic acid–containing glycans to the sialic
acid–binding immunoglobulin-like lectins (siglecs) on the sur-
face of monocytes/macrophages initiates an inhibitory signal
that leads to an anti-inflammatory response, through inhibition
of TLR4 signal transduction. Such TLR4 inhibition reduces
the production of pro-inflammatory cytokines such as TNFα
and induces the production of anti-inflammatory cytokines
[72, 73, 74•]. This anti-inflammatory effect of sialic acid is
supported by studies showing that the anti-inflammatory ef-
fect of intravenous immunoglobulin (IVIg), used to treat rheu-
matoid arthritis and other inflammatory conditions, is driven
by sialic acid–containing N-linked glycans [66, 75, 76].

IgG glycosylation also has been closely linked to both
chronological and biological age, in several large glycomic
studies in the general population. Intriguingly, certain
glycomic traits were found to predict chronological and bio-
logical age better than typical markers such as telomere length
[77, 78]. Altered glycosylation also has been shown to asso-
ciate with age-related illness: large patient cohorts showed that
IgG glycosylation is significantly altered in patients with in-
flammatory bowel disease, systemic lupus erythematosus, car-
diovascular disease (CVD), cancer, and diabetes [17, 79–85].
Whether IgG glycosylation is a driver or simply a biomarker
of aging and aging-associated co-morbidities is still a matter
of debate. However, evidence that altered glycosylation actu-
ally drives disease comes from recent studies indicating that
IgG glycosylation changes years before the onset of disease
[86, 87].

HIV infection causes certain IgG glycomic alterations in-
cluding hypo-sialylation and agalactosylation (lack of galac-
tose) [88•]. Lower levels of galactosylation in HIV+ individ-
uals compared with healthy controls are most pronounced in
the IgG1 subclass [89]. Interestingly, agalactosylation has also
been associatedwith pro-inflammatory functions of IgGs [90].
The pro-inflammatory action of IgG agalactosylation is
thought to be conferred both indirectly, because galactose is
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a prerequisite for terminal sialylation, and directly, by activat-
ing the complement system through either the alternative path-
way [91] or the mannose-binding lectin-dependent pathway
[92]. Intriguingly, HIV-associated agalactosylation is revers-
ible by ART, whereas hypo-sialylation is not [88•]. These
glycomic alterations may reflect a chronic inflammatory state
as they are also observed in other inflammatory conditions
[89] such as inflammatory bowel disease [79], rheumatoid
arthritis [93], systemic lupus erythematosus [94], and with
aging [39, 77].

Although it is becoming increasingly established that
there is a link between the circulating glycome and the
development of several pro- and anti-inflammatory re-
sponses (Fig. 1), whether the HIV-induced changes in the
circulating glycome are linked to inflammaging and HIV-
associated co-morbidities (during both viremic and ART-
suppressed HIV infection) is less clear. Recently, plasma
glycomic biomarkers were identified (using lectins) to pre-
dict HIV-associated cardiovascular events [95]. However,
more work is needed in this direction. Understanding the
link between circulating glycomic alterations and inflam-
mation, during HIV infection, may provide clues about the
mechanistic underpinnings of age- and inflammation-
associated diseases in HIV+ individuals. This line of re-
search might allow for discovering novel glycomic-based
biomarkers of inflammaging during HIV infection or novel
glycan-based interventions to prevent inflammation- and
aging-associated diseases in HIV+ individuals.

Antibody-Mediated Effector Functions Are
Significantly Affected by Changes in IgG
Glycosylation and Are Important for Preventing
and Controlling HIV Infection

The importance of the non-neutralizing Fc-mediated effector
functions of antibodies (including ADCC) in preventing and
controlling HIV infection has been highlighted by several
studies [96–103]. In addition, the recently discovered broadly
neutralizing antibodies (bNAbs) are being investigated within
HIV curative strategies, especially in combination with laten-
cy reversal agents that may provoke antigen presentation [103,
104]. ADCC is one of the potential mechanisms by which
bNAbs may target the latent HIV reservoirs [103, 104].
However, the molecular determinants of ADCC and other
Fc-mediated effector functions (such as ADCP and CDC),
especially during ART-suppressed HIV infection, are not fully
characterized.

Effector- and antigen-binding functions of IgG are signifi-
cantly affected by changes in glycosylation. The absence of
core fucose results in a stronger binding to Fcγ receptor IIIA
and leads to enhanced ADCC activity, while the presence of
core fucose reduces ADCC [105]. Although core fucose has
the greatest impact on ADCC activity, terminal galactose also
has been shown to increase ADCC [106], as well as CDC
[107] and ADCP [108] (Fig. 2). Despite these results, the role
of galactosylation in ADCC activity is somewhat controver-
sial, likely because the effects of terminal galactosylation are

Fig. 1 Circulating IgG glycans
mediate pro- or anti-inflammatory
responses. Sialylated and
galactosylated glycans have been
associated with anti-inflammatory
responses while bisected N-
acetylglucosamine (GlcNAc) has
been associated with pro-
inflammatory responses. HIV
infection causes pro-
inflammatory changes, e.g., ART-
irreversible loss of sialic acid and
ART-reversible loss of galactose.
Whether the HIV-induced
changes in the circulating
glycome are linked to
inflammaging and HIV-
associated co-morbidities (such as
cardiovascular diseases and
neurological impairments) is not
clear. Asn, asparagine
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not singular [106, 109]. For example, recent research shows
that the effect on ADCC activity differs between galactose
bound to antenna of the α1-3-mannose of IgG Fc-glycan (in-
versely correlated with ADCC activity) and galactose bound
to antenna of the α1-6-mannose (directly correlated with
ADCC activity) [108].

The HIV field has started to investigate whether IgG gly-
cosylation is important for HIV infection. Changes in global
and antigen-specific antibody glycosylation have been associ-
ated with a differential ability of anti-HIVantibodies to control
HIV infection [110]. Lower abundance of Fc glycans with
core fucose (afucosylation) has been observed in antigen-
specific anti-HIV antibodies, suggesting that there is active
tuning of glycosylation by B cells to increase antiviral control
during HIV infection [110]. This afucosylation, in addition to
agalactosylation, was also linked to enhanced natural killer
(NK) cell activity in spontaneous controllers of HIV [110].
During suppressive ART, certain plasma and antibody
glycomic traits, in particular levels of non-fucosylated
galactosylated glycans, are negatively associated with levels
of nucleic acid–based measures of HIV reservoir (CD4+ T
cell–associated HIV DNA and RNA) [88•]. These findings,
during suppressive ART, are intriguing as these particular
glycomic features imply higher antibody-mediated effector
functions, as described above. However, it is not clear if the
documented roles of non-fucosylated galactosylated glycans
in promoting ADCC and ADCP activities translate into an
impact on viral control during ART, because ADCC and
ADCP require antigen presentation (viral production) on the

cell surface, which is debatable during ART [111, 112].
Continuing this work to understand the role of antibody gly-
cosylation in regulating HIV persistence may reveal new
mechanistic underpinnings of HIV persistence, which can
serve as a foundation of novel, glycomic-based HIV curative
strategies. In addition, this understanding may lay the ground-
work to engineer bNAbs and improve their ADCC/ADCP
activities for HIV curative purposes.

Complex Interactions Between HIV Glycans
and Host Lectins Modulate Viral Attachment,
Entry, and Spreading

The glycosylation of HIV virions has been well described
[113]. HIV gp120 is heavily N-glycosylated, with a majority
of high-mannose N-glycan structures and a lower proportion
of complex N-glycans carrying lactosamine residues and ter-
minal sialic acid. HIV particles themselves contain cell-
derived glycolipids, including the sialic acid–containing
GM3 ganglioside [114].

These various glycan structures on HIV gp120 and HIV
particles interact with a wide range of host lectins during HIV
infection, promoting viral spreading or immunological re-
sponses. The dendritic cell-specific intercellular adhesion
molecule-3-grabbing non-integrin (DC-SIGN) is a member
of the C-type lectin family and an HIV receptor [115]. DC-
SIGN recognition of HIV high mannose glycans mediates
HIV capture by dendritic cells (DC), which can subsequently

Fig. 2 Antibody-mediated
effector functions ADCC, ADCP,
and CDC are significantly
affected by changes in IgG
glycosylation. The presence of
core fucose reduces ADCC, and
the presence of galactose induces
ADCC, ADCP, and CDC. The
size of the HIV reservoir,
measured using nucleic acid–
based methods (CD4+ T cell–
associated HIV DNA and RNA),
negatively associates with the
levels of non-fucosylated
galactosylated glycans, during
suppressive ART. However, it is
not clear if the documented roles
of non-fucosylated galactosylated
glycans in promoting ADCC and
ADCP impact viral control during
ART. C1q, complement
component 1q
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lead to CD4+ T cell trans-infection. B cells also express DC-
SIGN, and a similar role of HIV capture and presentation to
CD4+ Tcells has been described [116]. Langerin is another C-
type lectin, which is expressed on Langerans cells (LCs) and
binds to high-mannose HIV glycans [117]. In contrast, to cap-
ture by DC-SIGN, HIV capture by langerin was associated
with viral clearance, as LCs are mostly resistant to HIV infec-
tion and rapidly degrade the virus [118]. However, the role of
langerin in HIV clearance or spreading remains controversial
[119, 120]. A third C-type lectin that can bind gp120 HIV
high-mannose structures is the mannose-binding lectin
(MBL) [121]. This soluble lectin has been shown to compete
in vitro with DC-SIGN for HIV binding, thereby inhibiting
DC-mediated CD4+ trans-infection [122]. However, in vivo,
the association between HIV progression and MBL level/
genotype remains elusive [123–125]. Recently, the C-type
lectin L-selectin has also been described as an HIV adhesion
receptor that facilitates infection of CD4+ T cells [126]. Three
additional C-type lectins can bind to HIV gp120 high man-
nose structures: the DC immunoreceptor (DCIR) [127], the
DC-SIGN-related protein (DC-SIGNR) [128], and the surfac-
tant protein D (SFTPD) [129]. DCIR has been shown to play a
role similar to DC-SIGN. In addition, DCIR is expressed on
the surface of CD4+ T cells of HIV-infected patients, enhanc-
ing HIV attachment, entry, and transfer [130]. The DC-SIGN
homolog DC-SIGNR is expressed mostly on endothelial cells,
including in lymph nodes, and can promote viral trans-
infection [128]. SFTPD is a soluble protein present in mucosal
secretions [131]. The role of SFTPD-HIV binding remains
unclear [129, 131].

A second layer of complexity in the interaction between
HIV glycans and host lectins is conferred by sialic acid—
siglec binding. Sialic acid present on gp120 complex N-gly-
cans or HIV gangliosides is recognized by different members
of the family of sialic acid–binding immunoglobulin-type
lectins called siglecs. On macrophages and dendritic cells, it
is siglec-1 that binds to sialic acid on HIV and mediates
particle-capture and trans-infection of CD4+ T cells [132,
133]. Interestingly, the macrophage siglec-1 is described to
recognize HIV ganglioside, mostly GM3, whereas the DC
siglec-1 is thought to interact with gp120. Despite these inter-
actions, a loss-of-function mutation in siglec-1 in vivo did not
significantly impact HIV prevalence and progression [134].
On monocyte/macrophage and NK cells, it is siglec-7 that
interacts with HIV to facilitate CD4+ T cell infection [135].
Finally, soluble galectin-1 has been described to directly bind
to HIV particles and increase HIV infectivity, apparently by
interacting with CD4 glycans and gp120 lactosamine contain-
ing complex N-glycans [136].

It is unclear to what degree these complex interactions
between HIV glycans and host lectins influence viral at-
tachment, entry, and spreading in vivo, and whether they
play any role during suppressive therapy, especially in

tissues, where ART penetration might be suboptimal and
ongoing HIV replication is debatable [111, 112].
Understanding the forces that lead to HIVacquisition, path-
ogenesis, and persistence, especially in tissues, will be
needed to develop effective therapeutic strategies to clear
the infection. These glycomic interactions could be a key
for this understanding and may also play a role in improv-
ing antigen presentation, which can be critical for develop-
ing effective vaccination strategies.

Cell-Surface Glycan-Lectin Interactions
Mediate Signals that Define Cellular
Processes and Immunological Functions;
Many of Which Are Central to HIV Infection

During HIV infection, the host immune system experiences
several dysfunctions that are not fully recovered by ART.
Several of these dysfunctions can be linked to glycan-lectin
interactions. The specific structure of a glycan allows it to bind
to specific lectins, leading to the activation of downstream
signaling pathways. These pathways are critical for a variety
of cellular processes and, importantly here, immunological
functions. For example, galectins (lectins that bind β-
galactoside) promote immune evasion by inducing T cell ex-
haustion and apoptosis, expanding regulatory T cells, and
inhibiting NK cells [137–140, 141••]. Siglecs (lectins that
bind sialic acid) play an essential role in inflammation, cell
death, and immune suppression [66, 75, 138, 142–147].
Selectins (lectins that bind fucosylated and sialylated glycans)
regulate leukocyte recruitment and migration to the sites of
inflammation [148–150]. Figure 3 summarizes some of the
glycan-lectin interactions that regulate important cellular and
immunological functions and that can be critical for HIV per-
sistence and immunopathogenesis. After first summarizing
the roles of various immune cell types in HIV infection, we
will describe some of the glycan-lectin interactions that mod-
ulate function in these different cell populations.

T Cells T cell activation, CD8+ T cell dysfunction, T cell pro-
liferation, and bystander CD4+ cell death are all critical com-
ponents of HIV infection, persistence, and disease progression
[151–157]. Glycan-lectin interactions are known to regulate
several of these functions. One class of glycan-binding pro-
teins that have been described to play critical roles in T cell
function activation and apoptosis are the galectins, a family of
β-galactoside-binding soluble lectins. Galectin-1, galectin-3,
and galectin-9 induce T cell apoptosis, and increased expres-
sion, a classical galectin receptor, lactosamine chains, has
been associated with HIV infection [25]. This upregulation
of galectin ligands has been proposed as a possible mecha-
nism for the bystander T cell death during HIV infection. A
rapid secretion of galectin-9 has been described after HIV
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infection, and the increased serum concentration of galectin-9
does not return to normal after ART suppression [158].
Galectin-9 has several effects on Tcells in addition to inducing
apoptosis; it activates cells through T cell receptor (TCR) sig-
naling [159], reactivates latent HIV [6•], renders CD4+ Tcells
less susceptible to HIV infection via induction of host restric-
tion factors [160], and increases the cell-surface concentration
of protein disulfide isomerase (PDI) that alters redox state and
increases HIV entry [161]. Galectin-9 also has the ability to
increase the function of regulatory T cells (T-regs) through
interaction with CD44 [162]. Conversely, galectin-3 reduces
T cell activation through direct interaction with the TCR and
alters TCR functional state through interaction with LAG3
and other immune negative checkpoints [163]. Intriguingly,
the glycosylation of T cell immune negative checkpoints
(including PD-1) significantly impacts their functions and re-
sponse to cancer immunotherapy [164•, 165, 166•]. How
glycan-lectin interactions impact these important T cell func-
tions during HIV infection is yet not clear. Clarifying the role

these interactions play during HIV infection can provide in-
sights that may lead to the development of novel therapies.

NK Cells NK cells are important innate effector immune cells
during HIV infection [167, 168] whose functions can be in-
fluenced by glycan-lectin interactions. Altered NK function
has been described for two families of lectins, the siglecs
and the galectins. A decreased level of the lectin siglec-7 has
been described to be a marker for a dysfunctional NK subset
(CD56dim) in HIV viremic individuals [169]. Siglec-9, which
is also expressed on the NK cell surface and known to play an
important role in anti-tumor NK activity [170, 171•], is yet to
be studied in the context of HIV infection. Galectins interfere
with NK cell–mediated antitumor immunity by modulating
NK cell recruitment, lytic activity, and cytokine production.
Galectin-9 impairs NK cytotoxicity and cytokine production
through a Tim-3 independent mechanism [172]. Galectin-3
also antagonizes NK cell–mediated antitumor immunity by
diminishing the affinity of MHC I–related chain A (MICA)

Fig. 3 Cell-surface glycan-lectin interactions mediate signals that define
several cellular processes and immunological functions central to HIV
infection. The specific structure of a glycan allows it to bind to specific
lectins, leading to the activation of downstream signaling pathways.
These pathways are critical for a variety of cellular processes and
immunological functions. T cells. Galectin-1 induces T cell apoptosis.
Galectin-9 induces TCR signaling, while galectin-3 reduces it. Galectin-
3 alters T cell function through interaction with LAG3 and other immune
negative checkpoints. Last, the fucosylation of PD-1 impacts its function.
NK cells. Siglec-7 and siglec-9 inhibit NK activity. Galectin-9 impairs
NK function/cytotoxicity and cytokine production through a Tim-3
independent mechanism. Galectin-3 antagonizes NK cell–mediated
antitumor immunity by diminishing the affinity of MHC I–related chain

A (MICA) for the NKG2D receptor or by acting as an inhibitory ligand of
the NKp30 receptor. B cells. Siglec-6 induces B cell exhaustion. Galectin-
1 is a pre–B cell receptor ligand that induces receptor clustering, leading
to efficient B cell differentiation. Galectin-9 suppresses BCR signaling. T-
regs. Galectin-1 and galectin-9 can expand T-regs. Myeloid-derived
suppressive cells (MDSC). The galectin-9/Tim-3 interaction drives the
expansion of CD11b+ly6G+ MDSC. Granulocytic MDSCs induce γδ–
T cells to produce galectin-1, thus transforming them into
immunosuppressive cells. These glycan-lectin interactions represent
potential novel targets to enhance immune functionality during HIV
infection to either cure HIV or prevent HIV-associated immune
dysfunction and the subsequent development of immune dysfunction-
associated diseases
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for the NKG2D receptor [173] or by acting as an inhibitory
ligand of the NKp30 receptor [174]. These glycan-lectin in-
teractions represent potential novel targets to enhance NK
functionality during HIV infection to either cure HIV or pre-
vent immune dysfunction and the subsequent development of
immune dysfunction–associated diseases such as AIDS-
defining and AIDS-non-defining cancers.

B CellsB cells are crucial for the humoral response during HIV
infection. Subsets of B cells have been described to be altered
in HIV chronic infection, including exhausted tissue-like
memory B cells [175]. This exhausted phenotype has been
associated with an increased expression of B cell–inhibitory
glycan receptors, including siglec-2 and siglec-6 [175, 176].
Consistently, knock-down siglec-6 in tissue-like memory B
cells restores normal function [176]. The ligands of siglec-6
in this context are not known, but the ligand is probably a
sialylated glycan. In addition to siglecs, galectins can play
an important role in B cell development and function.
Galectin-1 is a pre–B cell receptor ligand that induces receptor
clustering, leading to efficient B cell differentiation
[177–179]. Recently, it was shown that galectin-9 suppresses
B cell receptor signaling [180, 181]. Understating the impact
of these interactions on B cell development and function, dur-
ing HIV infection, could be crucial for the effective develop-
ment of therapies and vaccines.

Myeloid-Derived Suppressive Cells Regulatory myeloid cells,
including myeloid-derived suppressive cells (MDSC), expand
during chronic infections and have several immunosuppres-
sive activities [182]. Increased levels of MDSC have been
associated with HIV disease progression [183]. This MDSC
expansion during HIV infection has been shown to promote
the differentiation of regulatory T cells and to impair T cell
function [183]. One driver of CD11b+ly6G+ MDSC expan-
sion is the galectin-9/Tim-3 interaction [184]. A second
glycomic change that may augment immune suppression oc-
curs as granulocytic MDSCs induce γδ–T cells to produce
galectin-1, thus transforming them into immunosuppressive
cells that abrogate protective antitumor immunity. These im-
portant roles of galectins in regulating immune responses
could have a direct impact on immune functionality during
HIV infection; however, they are yet to be studied.

The Potential Role of the Gut Glycome
in Regulating the Homeostatic Relationship
Between the Host and Its Gut Microbiota,
During HIV Infection

The gastrointestinal (GI) tract plays key roles in HIV patho-
genesis and persistence during suppressive ART [185]. HIV
infection is associated with changes in the gut structure [186]

and in a breakdown of the epithelial barrier [187, 188], which
may increase permeability to the gut microbial products [189].
This microbial translocation is thought to be a major cause of
local and systemic immune activation and inflammation,
which may further increase HIV replication (resulting in a
positive feedback cycle [189–194]) and contribute to the de-
velopment of non-AIDS co-morbidities [51, 52, 195–197]. In
addition, the loss of cellular immune subpopulations such as
Th17 and Th22 reduces mucosal immunity [198, 199]. These
cells are crucial in responding to bacterial antigens and play an
important role in maintaining gut epithelium integrity.
Unfortunately, even with ART, the damage to the epithelial
barrier caused by HIV infection is never fully repaired,
allowing microbial translocation and inflammation to contin-
ue [200–202].

The gut cells are heavily glycosylated, and the intestinal
epithelium is covered by a layer of mucus, which differs along
the GI tract in composition, organization, and thickness. In
addition, glycans expressed on the gut epithelial cells have
physiological, immunological, and functional characteristics
as they are in contact with multiple types of environmental
antigens. Interestingly, the glycosylation on these cells can
adapt in response to environmental stimuli including microbi-
al stimulation [203–205]. The degree of glycosylation in the
gut directly impacts the ability to maintain functional and
healthy intestines. Furthermore, the availability of host- and
diet-provided carbohydrates in the GI tract shapes the nature
and function of the gut microbiome [206, 207]. Aberrant gly-
cosylation patterns in the gut are strongly associated with
chronic inflammation. For example, a unique, inflammation-
associated glycome has been described on memory CD4+ T
cells in the inflamed colon [208, 209]. In addition, impaired
expression of intestinal O-glycans has been observed in pa-
tients with ulcerative colitis, and the deletion of intestinal core
1 O-glycans caused spontaneous colitis in mice [210].

The role of the gut glycome in regulating the homeostatic
relationship between the host and its gut microbiota is com-
plex and involves multiple glycan structures. Here, we will
give one example by illustrating the role of gut fucosylation
in the host-microbe interplay [211, 212]. Gut α1,2-
fucosylation is induced by the presence of commensal and
some pathogenic bacteria and acts as a food source for bene-
ficial gut symbionts [213]. Fucosylated sugar chains are syn-
thesized by fucosyltransferases (FUT) [214, 215]. Bacterial
components, such as lipopolysaccharide (LPS), stimulate gut
DCs via the TLR–Myd88 pathway [216]. IL-23 produced by
gut DCs induces IL-22 production by type 3 innate lymphoid
cells (ILC3s) [203, 217]. IL-22 produced by ILC3s provides
activation signals to ECs via the IL-22R–STAT3 pathway,
leading to the subsequent induction of FUT2 and α1,2-
fucosylation [203]. Fucose is then liberated by microbial
fucosidases and becomes available for consumption by the
downstream microbiota. Recent reports showed that fucose
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could enhance the beneficial activity of symbionts and im-
prove colonization resistance against pathogens and
pathobionts. In the absence of gut fucosylation, beneficial
symbionts are weakened and decreased in abundance, and
pathogenic bacteria increase, which leads to microbial trans-
location, inflammation, and breakdown of the epithelial barri-
er [211, 212] (Fig. 4). Some pathogenic microorganism can
hijack epithelial fucosylation to colonize the host gastric and
intestinal epithelial cells; these include Helicobacter pylori,
norovirus, and rotavirus [211, 212]. Interestingly, ∼ 20% of
humans harbor homozygous loss-of-function mutations for
FUT2 [218, 219]. FUT2 mutant humans are more susceptible
to several inflammation-related diseases such as Crohn’s dis-
ease, type I diabetes, and psoriasis [219–225]. They also are
more susceptible to several infections, including Candida
albicans, Streptococcus pneumoniae, and urinary tract infec-
tions [226–229]. On the other hand, these individuals are more
resistant to Helicobacter pylori, norovirus, and rotavirus in-
fections [230–235].

Fucosylated glycans are only one group out of many
glycan structures composing the gut glycome. These col-
lective glycan structures are used as communication tools
to shape the relationship between the gut and its

microbiota. A change in the gut glycome, possibly induced
by HIV infection and associated inflammation, may alter
the distribution of microbial species. Therefore, it is possi-
ble that alterations in glycan metabolism may contribute to
HIV-mediated intestinal damage, microbial translocation,
and chronic inflammation. Given the importance of micro-
bial translocation in shaping HIV disease progression,
even after suppressive ART, understanding the functions
of the large spectrum of glycan structures in the gut could
be essential to understanding the forces that shape the mi-
crobiota during HIV infection and how to design strategies
to manipulate these forces.

Conclusions

The human glycome might hold the key to better understand
immunological functions that are central to HIV persistence
and immunopathogenesis. More studies are needed at the in-
tersection between glycobiology, immunology, and HIV re-
search, to take advantage of the recent advances in the emerg-
ing field of glycoimmunology. Studies to comprehensively
investigate the links between host glycomic alterations and

Fig. 4 The gut-associated glycome is critical for maintaining a
homeostatic relationship between the host and its gut microbiota. The
degree of glycosylation in the gut directly impacts the ability to
maintain functional and healthy intestines. Here, we give one example,
by illustrating the role of gut fucosylation in the host-microbe interplay.
Fucosylated glycans in the gut (left) enhance the beneficial activity of
symbionts and improve resistance against colonization by pathogens and
pathobionts. In the absence of gut fucosylation (right), beneficial

symbionts are weakened and decreased in abundance, and pathogenic
bacteria increase, which leads to microbial translocation, inflammation,
and breakdown of the epithelial barrier. Fucosylated glycans are only one
group out of many glycan structures composing the gut glycome. A
change in the gut glycome may alter the distribution of microbial
species. Therefore, it is possible that alterations in glycan metabolism
may contribute to HIV-mediated intestinal damage, microbial
translocation, and chronic inflammation
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inflammation, during HIV infection, may provide novel
glycomic-based diagnostic or prognostic biomarkers of HIV-
associated inflammaging. These studies may also allow for the
development of novel glycan-based interventions to prevent/
delay the development of inflammation- and aging-associated
diseases during ART-suppressed HIV infection. For example,
the information to be obtained from these studies could be
used to develop novel strategies to manipulate the forces that
shape the gut microbiota during HIV infection and reduce the
degree of microbial translocation and associated inflamma-
tion. Additional studies will be also needed to investigate the
extent to which cell-surface glycans, and their interactions
with host lectins, interfere with the function of the immune
system, during ART-suppressed HIV infection. These studies
could lead to the design of novel immunotherapies to either
cure HIVor prevent HIV-associated immune dysfunction. For
example, targeting siglec interactions, on NK cells, and
galectin interactions, on T cells, may induce the function of
these immune cells, during HIV infection.

Importantly, recent advances in the cancer field focusing on
glycobiology demonstrated that the aberrant glycosylation
pattern of cancer cells alters their interaction with the immune
system and allows them to evade immunosurveillance
[236–238]. Such advances have promoted an increasing inter-
est in developing tools that can target the tumor “glyco-code”
[238]. Recently, a number of glycan-based strategies have
been tested as novel cancer immunotherapy agents, e.g.,
anti-glycan vaccines, glycan-lectin interaction blockers,
glycan-specific monoclonal antibodies, glycan-coated nano-
particles, and metabolic inhibitors for certain glycans [171•,
239–249]. These, and other tools, could be used in the HIV
field to lay the groundwork for discovering novel glycan-
based interactions that can be targeted for novel strategies to
eradicate, functionally cure, or improve tolerance of lifelong
HIV infection.
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