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Abstract
Purpose of Review The purpose of this review is to summarize recent developments in PET imaging of neuropathologies
underlying HIV-associated neurocognitive dysfunction (HAND). We concentrate on the recent post antiretroviral era (ART),
highlighting clinical and preclinical brain PET imaging studies.
Recent Findings In the post ART era, PET imaging has been used to better understand perturbations of glucose metabolism,
neuroinflammation, the function of neurotransmitter systems, and amyloid/tau protein deposition in the brains of HIV-infected
patients and HIV animal models. Preclinical and translational findings from those studies shed a new light on the complex
pathophysiology underlying HAND.
Summary The molecular imaging capabilities of PET in neuro-HIV are great complements for structural imaging modalities.
Recent and future PET imaging studies can improve our understanding of neuro-HIVand provide biomarkers of disease progress
that could be used as surrogate endpoints in the evaluation of the effectiveness of potential neuroprotective therapies.
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Introduction

The advent of antiretroviral therapy (ART) has decreased
mortality and morbidity rates in HIV-positive (HIV+) pa-
tients and to a great extent diminished the incidence of
HIV-associated dementia (HAD), the most severe form
of neuro-HIV. Although the incidence of moderate or se-
vere HAD fell from about 7% in 1989 to only 1% in 2000
[1], the frequency of milder forms of HIV-associated
neurocognitive dysfunction (HAND), including mild
neurocognitive disorder (MND) and asymptomatic
neurocognitive impairment (ANI), remains high [2]. With
the non-acute onset and relatively mild initial clinical pre-
sentation, HAND can often complicate the management of
those patients and affect their quality of life. Considering

the chronic nature of the disease associated with ART
treatment, a change in research focus towards mild
neurocognitive dysfunction is warranted [3] with a more
detailed exploration of MND and ANI [4]. Understanding
the pathophysiology of depression in HIV is another topic
of interest considering recent reports of the role of depres-
sion in defining mortality and morbidity of HIV+ subjects
[5]. Towards those goals, a better understanding of the
molecular and functional neuropathologies underlying
HAND becomes necessary.

Potential contributing factors to the occurrence of
HAND and associated mood disorders include persistent
latent HIV-1 reservoirs in the brain, irreversible CNS insult
prior to ART initiation, toxicities related to antiretroviral
drugs, amyloid and tau protein deposition, neuroinflamma-
tion [6, 7] as well as molecular damage of various neuro-
transmitter systems [8–12] (Fig. 1). Positron emission to-
mography (PET) is a molecular imaging modality that can
non-invasively probe many of those pathologies in vivo.
As such, PET can provide complementary information to
conventional structural as well as novel magnetic reso-
nance imaging (MRI) techniques such as diffusion tensor
imaging (DTI) [13, 14], volumetric MRI [15–17], and
magnetic resonance spectroscopy (MRS) [18, 19].
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Since preclinical studies provide a practical platform for
investigation of new imaging biomarkers that can eventually
be translated into clinical applications, we structured this re-
view to briefly describe neuroimaging research in various pre-
clinical HIV models along with relevant/related clinical stud-
ies (Table 1).

Animal Models of HIV Infection

One way of controlling for heterogeneity in patient popula-
tions and to obtain longitudinal information is to perform im-
aging studies in animal models [33–36]. One major challenge
in developing animal models for HIV is the availability of
cellular proteins in those species such as CD4 and
CCR5/CXCR4 that would support viral replication. This has

limited the success of original attempts to infect small animals
such as mice and rats with HIV-1 [37]. A naturally occurring
virus, feline immunodeficiency virus, infects domestic cats
and can result in a similar disease process to HIV infection
in humans. Major differences however exist, including a dif-
ferent primary receptor (CD134 instead of CD4) with second-
ary additional infection of lymphocytes, and a slow protracted
course of disease, rendering this model less practical and less
widely used [37]. Among rodent models, transgenic (Tg) mice
and rats have been developed. The HIV-1 Tg rat model ex-
pressing seven of the nine viral proteins including gp120, nef,
and tat in lymphocytes, monocytes, and in the brain was de-
veloped in 2001 [38] and was found to develop neuropathol-
ogies reminiscent of HIV infection. As such, it has been used
in multiple studies evaluating the effects of HIV viral proteins
on the brain and in various imaging studies [39–44]. The

Fig. 1 PET imaging targets in the brain of HIVanimal models and seropositive patients
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“humanized mouse” model, on the other hand, is generated
with immunocompromised mice with transplanted human-
ized immune system and is also a frequently used small
animal model in HIV-1 studies [45, 46]. Among the vari-
ous types of humanized mice, OD/scid-IL-2Rgcnull mice
have been used for imaging using MRI techniques, but not
PET imaging [47–49].

Rodents, however, remain suboptimal models of HIV, es-
pecially when compared to the simian immunodeficiency vi-
rus (SIV) and simian/human immunodeficiency syndrome
(SHIV) infected monkey models, which are considered to be
more appropriate animal models in HIV/AIDS research.
Despite the associated costs and logistical limitations, SIV
and SHIV-infected monkeys continue to provide valuable
in vivo experimental data complementing human studies of
transmission, pathogenesis, prevention, and treatment of HIV
[50–53]. This is mainly because non-human primates (NHPs)
are physiologically and immunologically similar to humans.
This similarity results in the development of simian AIDS in
those animals that is analogous in many aspects to HIV-1
AIDS in humans [37, 54]. SIV encephalitis (SIVE) is one of
the aspects of SIV infection reminiscent of HIV CNS involve-
ment in the early days of the epidemic [55–57], while newer
models of non-accelerated diseases (e.g., SHIV model) seem
to better reflect milder neurologic changes currently seen in
infected treated patients [58]. Models of SIVE have already
been used to investigate the pathophysiology of CNS involve-
ment as well as in the evaluation of novel therapies [50, 55, 59,
60]. PET imaging studies have mostly used rhesus macaques
[61–66] infected with SIVor SHIV, although there have been
suggestions that pigtail macaques progress more rapidly to
SIVE [50].

PET Imaging of Glucose Metabolism Using
18F-FDG

18F-fluorodeoxyglucose (FDG)-PET imaging can non-
invasively quantify glucose metabolism within various tissues
and can help detect brain activation patterns involved in nor-
mal and abnormal brain functioning. FDG brain imaging has
been used in many CNS diseases such as Alzheimer’s demen-
tia (AD) and Parkinson’s disease; however, limited literature is
available on its use in SIV and HIV studies, especially in the
post ART era.

In the setting of SIV and SHIV infection, FDG-PET
imaging has mainly concentrated on peripheral patterns
of immune activation rather than brain involvement [65,
66]. In a recent study, we used brain FDG-PET imaging
in a group of SIV-infected macaques to longitudinally as-
sess the effect of ART initiation and interruption by mon-
itoring alterations in brain glucose metabolism. We ob-
served increased brain glucose metabolism within 1 month

of treatment cessation, which may reflect neuroinflamma-
tion in the setting of viral rebound. This was significantly
associated with decreased CD4+ and CD8+ T cell counts
and increased plasma/CSF viral load (VL). While we can-
not assert neurologic damage in association with cerebral
hypermetabolism, it is a concerning outcome of non-
adherence to ART, even for short periods of time [67].
We did not find significant or consistent changes in FDG
uptake when ART was initiated however, suggesting that
abatement of neuroinflammatory changes associated with
viral replication might take a long time to occur [67].

FDG-PET has been used more extensively in HIV+ pa-
tients, however. Early studies in the pre-ART era suggested
early CNS HIV involvement with high FDG uptake con-
sistent with increased glucose metabolism seen in the basal
ganglia [68–71] and thalamus [71] as well as relative in-
creased metabolism in subcortical regions for patients with
AIDS dementia complex (ADC) [72]. Hypometabolism
was found to eventually occur in infected patients suggest-
ing neuronal damage/loss [70].

Among the few studies in the recent ART era, Andersen
et al. studied the prevalence of cerebral metabolic abnormali-
ties in an HIV+ patient group on ART, with at least 3 years of
fully suppressed VLs. The authors observed a substantial frac-
tion (55%) of the optimally treated patients displaying abnor-
mally low mesial frontal FDG uptake [22]. The observed
hypometabolism correlated with shorter history of known
HIV infection, fewer years on ART and higher circulating
levels of TNF-α and IL-6 [22]. In another study by
Towgood and colleagues, the authors reported reduced meta-
bolic activity in frontal brain regions with no significant inter-
action between HIV and aging [21]. However, in both study
populations [21, 22], subjects had none of the co-morbidities
commonly seen in HIV+ patients. Being able to assess the
contribution of those co-morbidities to neuronal dysfunction
in HIV has the potential of changing the clinical approach to
HAND subjects. We have recently evaluated a large group of
subjects (47 treated HIV+ patients with a long history of in-
fection, 10 HIV− with co-morbidities similar to the HIV+
group, and 19 healthy volunteers). Interestingly, we observed
abnormal global glucose metabolism in HIV+ and HIV−
patients with co-morbidities that was best predicted by
cardiovascular disease rather than HIV status [20]. This
suggests a very important role for cardiovascular disease
in neuronal loss/dysfunction, as measured by FDG-PET
in this vulnerable patient population. In addition, how-
ever, we did see significant focal hypometabolism in the
thalamus of HIV+ patients that was best predicted by
HIV serostatus suggesting an HIV-related effect [20].
The exact pathophysiology underlying thalamic
hypometabolism in HIV+ patients and its association
with potential executive function dysfunction is unclear
and warrants further evaluation.

Curr HIV/AIDS Rep (2019) 16:66–75 69



Neuroinflammation PET Ligands in SIV/HIV

Despite successful control of HIV replication in the periphery
and in the brain, low levels of persistent inflammation have
been implicated in the pathophysiology of HAND [73].
Following HIV infection, the virus enters the brain and per-
sists in perivascular macrophages and microglia, with the
resulting cascade of viral neuropathogenesis assumed to be
related to proinflammatory and cytotoxic products secreted
by those cells [74–76]. PET imaging enables the in vivo quan-
tification of microglial activation/neuroinflammation through
radiolabeled ligands that target the translocator protein
(TSPO), a naturally expressed receptor on the outer mitochon-
drial membrane of microglia, macrophages, and astrocytes.
During microglial activation, TSPO is significantly upregulat-
ed [64] and as such can reflect the degree of neuroinflamma-
tion. The earliest TSPO radioligand to be used to assess neu-
roinflammation in various neurodegenerative diseases was
11C-PK11195, an isoquinoline carboxamide [77–79]. More
recently however, multiple second-generation TSPO ligands
have been developed with higher TSPO affinity and generally
higher specific to non-specific binding compared to 11C-
PK11195 [80–82].

In animal models, one of the second-generation ligands,
18F-DPA714, showed higher but not statistically significant
uptake in Tg rats compared to wild-type rats. This raised the
concern that microglial activation might not necessarily be the
key mechanism for neuropathology in the Tg rat model [42]
but rather chronic exposure to HIV viral proteins [40]. Earlier
work in SIV-infected monkeys using 11C-PK11195, on the
other hand, showed evidence of microglial activation in ani-
mals with SIVE compared to those without SIVE [64].

In humans, early studies using 11C-PK11195 in HIV+ pa-
tients had conflicting results [26, 27] which could be due to
the heterogeneity of HIV patient populations assessed and the
inherent high non-specific binding of the ligand. In a more
recent study, also using 11C-PK11195, clusters of significantly
increased 11C-PK11195 binding suggestive of the presence of
focal cortical regions of activated microglia were observed by
Garvey et al. in a group of asymptomatic subjects with chronic
HIV infection on suppressive ART [25]. Using second-
generation TSPO ligands by two different groups also showed
microglial activation in treated HIV+ patients [23, 24]. In the
paper by Coughlin et al., the authors uncovered suboptimal
test-retest reproducibility of TSPO distribution volume values
(Vt) in healthy controls using a second-generation ligand, 11C-
DPA713. As a result, they resorted to a different approach in
which the ratios of Vt relative to overall gray matter (VtGM)
were calculated relative to overall gray matter (VtGM). Higher
VtGM values were then observed in treated HIV+ patients
compared to HIV-negative subjects in the white matter, cin-
gulate cortex, and supramarginal gyrus. Increased binding in
the frontal cortex was specifically seen in patients with

dementia [24]. Similar positive results were found by Vera
et al. using a different second-generation TSPO ligand, 11C-
PBR28, in a cohort of cognitively healthy treated HIV+ indi-
viduals: increased uptake was found globally as well as re-
gionally, in the parietal and occipital lobes and in the globus
pallidus [23]. The findings of both papers seem to support
glial cell activation that is persistent in the course of HIV
infection, despite treatment and virological suppression.

Imaging Neurotransmitter Systems in SIV/HIV

Dopaminergic System

Among the neurotransmitter systems, the vulnerability of the
dopaminergic system to the effects of the virus has been well
documented, with the basal ganglia being most affected,
resulting in a Parkinsonian-like symptomology [83]. These
findings were supported by decreased neuronal number and
neuronal density in the globus pallidus and substantia nigra in
SIV-infected monkeys compared to controls [84].

In animal models, we evaluated the dopaminergic system
in the Tg rat [44, 85], based on reports of dopaminergic dys-
function in this model [86, 87]. Using two different
radioligands, 18F-FPCMT for presynaptic dopaminergic trans-
porter (DAT) and 18F-fallypride for postsynaptic D2/D3 re-
ceptors, we observed significant loss of both DAT and D2/
D3 receptors in older (15–18 months) Tg rats compared to
controls [85]. Dopaminergic dysfunction observed with this
Tg rat model is probably related to viral protein exposure,
considering that rats with higher serum gp120 had lower mean
binding potential values for both ligands [85]. No similar re-
ported work has been published in SIV-infected animals
however.

A few human PET studies targeted the dopaminergic sys-
tem in the setting of HIV infection. In an early study with 11C-
cocaine targeting DAT and 11C-raclopride targeting D2 recep-
tors, a significant decrease in DATwas seen in HIV+ patients
with HAD compared to HIV− controls especially in the puta-
men and ventral striatum. Mild but non-significant decreases
in D2 receptor availability were observed within the same
subject groups [28]. A subsequent study using the same PET
ligands with a larger cohort of HIV+ patients (n = 35) includ-
ing a subcohort of HIV+ patients with continued cocaine
abuse (11 out of 35) again found significantly decreased
DAT in the putamen, compared to HIV seronegative controls
[11]. In the same study, only the HIV + Coc subgroup had
significantly lower DAT in the caudate compared to controls.
The authors concluded that reduced dopaminergic function
may contribute to cognitive dysfunction in HIV+ patients with
or without additional cocaine abuse [11]. There have been no
additional clinical PETstudies targeting the dopaminergic sys-
tem in HIV+ patients published since those two papers.
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Serotonergic System

More recently, there has been a renewed interest in mood
disorders, mainly depression, in HIV+ patients, mainly due
to the associated deleterious effects on treatment adherence
with secondary increased mortality and morbidity [5, 88,
89]. One related neurotransmitter system, the serotonergic
system, is thus of interest, especially considering prior reports
suggesting involvement in the pathophysiology of neuro-HIV
[8, 9, 90]. Similar to the dopaminergic system, multiple li-
gands have been developed targeting various components of
the serotonergic system. However, one of the most common
targets remains the serotonin transporter (SERT) with 11C-
DASB, a specific PET SERT ligand, being used to assess
SERTchanges in the setting of depression inmultiple previous
studies [91–93].

In the only clinical study where 11C-DASB was used to
image serotonin dysfunction in a cohort of HIV+ patients with
depression, HIV+ patients had generally lower 11C-DASB
binding than HIV− controls. Depressed HIV+ patients how-
ever had higher 11C-DASB binding compared to non-
depressed subjects, suggesting a role of the serotonergic sys-
tem in depression associatedwith HIV [10].More recently, we
used 11C-DASB PET to longitudinally image NHPs (rhesus
macaques) infected with the neurotropic SIV strain
(SIVsm804E) [94]. Interestingly, we found higher 11C-
DASB binding in 85% of the infected animals compared to
baseline. Increased 11C-DASB binding reflective of serotoner-
gic upregulation in the midbrain in infected animals correlated
significantly with the duration of infection and DASB
binding in the thalamus correlated significantly with CSF
cytokines [94]. Our findings suggest inherent involvement
of the serotonergic system in SIV pathophysiology.
Whether these results can be reproduced and correlated
to depressive symptomatology in optimally treated HIV+
patients remains to be seen.

Imaging Amyloid and Tau Deposition in HIV

Histopathological similarities between AD and HIV brain in-
volvement were suggested more than two decades ago, with
deposition of amyloid-β plaques and tau proteins shown in
postmortem brain tissues of HIV+ patients [95–99]. This issue
became more relevant after the advent of ART and secondary
prolonged survival of infected patients with increased con-
cerns that the aging HIV population could be more prone to
the risk of developing AD. Similar to what has been described
in AD patients, decreased levels of CSF amyloid beta 42
(Aβ42) have been described in HIV+ patients with
neurocognitive dysfunction by a few groups, potentially
reflecting increased Aβ42 deposition in brain parenchyma

[100–102]. Other studies however did not support the findings
[30, 103, 104].

Although imaging of Aβ42 in AD patients has been very
successful using ligands such as 11C-labeled Pittsburg com-
pound B (PIB), 18F-florbetaben, and 18F-florbetapir [105],
clinical Aβ42 imaging studies in HIV+ subjects have not
shown increased amyloid accumulation regardless of the de-
gree of neurocognitive impairment and despite lower levels of
CSF Aβ42 in some HIV+ subjects [29, 30, 106]. The exact
reasons for negative imaging results in view of documented
amyloid deposition in HIV by pathology are unclear. One
possible explanation is a difference in structural
composition/location of amyloid plaques between HIV and
ADpatients: while amyloid plaques are generally extracellular
in AD, they are more likely to be intracellular in HIV [98,
107]. Also, extracellular amyloid plaques sometimes seen in
HAND are more diffuse [107, 108], while in AD, they tend to
be fibrillar [109]. Since amyloid radiotracers have generally
high affinity and selectivity for fibrillar Αβ in plaques [105],
this could account for lower binding in HIV+ subjects.
Another possible difference in amyloid pathology between
AD and HIV could be related to amyloid metabolism with
downregulation of upstream pathways involved in amyloid
precursor protein production [106]. Interestingly, a case report
by Turner et al. recently demonstrated increased 18F-
florbetaben reflecting amyloid deposition in an older (71-
year old) HIV+ individual [31]. It is unclear however, in the
absence of post mortem tissues, whether this patient’s demen-
tia is due to HIV, co-incidental AD, or a combination of both.
Additional studies are thus needed to better evaluate amyloid
deposition in an older HIV population. Another issue that
needs better investigation is the potential interaction between
ART and amyloid clearance from the brain which could pos-
sibly increase the risk of developing AD in the treated aging
HIV patient population [98, 107].

Tau protein deposition is another pathological hallmark of
AD that has been seen in HIV brains [110] with the highest
levels of phosphorylated tau (p-tau) deposition seen in
HAART-treated patients [97]. Multiple groups have attempted
to measure total tau (t-tau) and p-tau protein levels in the CSF;
however, the findings have not always been in agreement:
while some groups showed no changes in p- or t-tau levels,
others found changes in t-tau [111]. Despite the uncertainty,
there is increased interest in utilizing tau-specific PET ligands
to image HIV+ patients. In one case report, a 70-year-old
subject presenting with HIV encephalitis had increased bind-
ing of 18F-THK 5117 (tau ligand) in the periventricular and
deep white matter regions [32]. More recently, however, PET
imaging with another Tau ligand (18F-AV-1451) showed sim-
ilar binding for HIV+ and HIV-negative control individuals
[112]. This raises the possibility that PET with tau ligands
could be used in older HIV+ individuals to differentiate AD
from cognitive impairment due to HIV.

Curr HIV/AIDS Rep (2019) 16:66–75 71



Conclusions and Future Directions

In conclusion, PET imaging remains underutilized in the evalu-
ation of neuro-HIV, especially in the post-ARTera. PET imaging
targeting novel neuroinflammation biomarkers besides TSPO,
such as cannabinoid receptors or cyclooxygenases 1 and 2,might
be helpful in better assessing the exact role of neuroinflammation
in the pathophysiology of HAND in treated subjects. In addition
to the dopaminergic and serotonergic systems, other neurotrans-
mitter systems such as the cholinergic and GABAergic systems
could be assessed in HIV for possible system-specific effects of
the virus. PET imaging of amyloid and tau deposition in older
HIV+ subjects might provide new insights into the exact
connection/interaction between HIV and AD and the role of
ART in amyloid and tau deposition. Finally, in a recent
immunoPET study using a 64Cu-labeled SIV Gp120-specific
antibody, the authors were able to detect viral dynamics and
localization in the lymphoid tissues, gastrointestinal, and respira-
tory tracts in SIV monkeys, before and after treatment [62].
Although such ligands could be potentially useful in the detec-
tion of latent viral reservoirs in the whole body of treated HIV+
subjects, there is still the caveat of the labeled antibodies not
crossing the blood brain barrier (BBB) to reveal potential
sites of HIV persistence in the CNS. Developing
radiolabeled ligands that can target SIV/HIV and cross
the BBB would help us measure CNS reservoirs in HIV
animal models and eventually in HIV+ subjects.
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