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Abstract
Purpose of Review This narrative review summarizes recent data on factors associated with insulin resistance (IR) in adults with
HIV, including contemporary antiretroviral therapy (ART).
Recent Findings IR remains common in persons with HIV, even those receiving contemporary ART. Generalized and abdominal
obesity and ectopic fat are correlates of IR, and emerging data have identified associations with biomarkers of inflammation and
immune activation. Small studies suggest associations between mitochondria and IR. In ART-naïve individuals, IR increased
within 4 weeks of starting ART in persons receiving contemporary boosted protease inhibitors or an integrase inhibitor.
Summary The importance of IR in non-diabetic persons with HIV will continue to grow as the population ages and obesity
increases. Non-invasive estimates of IR appear to perform well in persons with HIV, but clinically relevant cutoffs are uncertain.
Unexpected metabolic effects of newer HIV integrase inhibitors have been reported; thus, careful observation for and studies of
IR are still warranted.
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Introduction

Since the earliest days of antiretroviral therapy (ART), meta-
bolic complications have been common and vexing effects of
HIV treatment. Mitochondrial toxicities of early nucleoside
reverse transcriptase inhibitors (NRTI) were often expressed
in metabolically active adipose, muscle, and hepatic tissue
[1–4]. After their introduction in the mid-1990s, protease in-
hibitors (PI) were quickly recognized as causing additional,
overlapping metabolic complications [5], including insulin
resistance (IR) and diabetes [6–8]. Contemporary ART is
more effective and better tolerated than older ART.
Nonetheless, metabolic complications and downstream car-
diovascular disease (CVD) risk persist in persons with HIV

[9]. Insulin resistance predicts future CVD in adults without
HIV [10]. Recent studies have identified associations between
IR and coronary stenosis by computed tomography angiogra-
phy in men with and without HIV in the Multicenter AIDS
Cohort Study (MACS) [11••], and between IR and cognitive
performance in the Women’s Interagency Health Study
(WIHS) that differed by HIV status [12].

This brief narrative review will focus on risk factors for IR
in non-diabetic adults with HIV treated with contemporary
ART regimens, emphasizing data from the last 5 years. A
comprehensive discussion of the pathophysiology of IR is
beyond the scope of this review, but readers are referred to
other recent HIV- and non-HIV-focused reviews [13•, 14•, 15,
16] for additional information. For a detailed review of IR and
diabetes related to older ART, the reader is directed to an
earlier review [17]. The present review focuses on adults with
HIV, but there are also recent data characterizing IR in chil-
dren and adolescents with HIV [18–23], a particularly meta-
bolically vulnerable population often exposed to ARTearly in
life. Finally, since pharmacologic treatment of IR is addressed
in recent reviews noted above, and there are no current treat-
ment recommendations other than use of the insulin sensitizer
metformin for some persons at exceptionally high risk for
diabetes [24], this area is not addressed here.

This article is part of the Topical Collection on Complications of
Antiretroviral Therapy

* Todd Hulgan
todd.hulgan@vanderbilt.edu

1 Department of Medicine, Division of Infectious Diseases, Vanderbilt
University Medical Center, Tennessee Valley Veterans Health
System/Nashville Veterans Affairs Hospital, A2200MCN, 1161 21st
Ave S, Nashville, TN 37232, USA

Current HIV/AIDS Reports (2018) 15:223–232
https://doi.org/10.1007/s11904-018-0399-7

http://crossmark.crossref.org/dialog/?doi=10.1007/s11904-018-0399-7&domain=pdf
mailto:todd.hulgan@vanderbilt.edu


Measurement and Definitions of Insulin
Resistance

Discussion of IR in any context or population must begin with
a definition. In its simplest form, it is a decreased ability of
insulin to stimulate glucose uptake in a target tissue—resis-
tance to insulin. With respect to pathophysiology, IR is under-
stood to be a precursor to development of type 2 diabetes
when an individual is no longer able to produce sufficient
insulin to overcome this resistance. The more pragmatic ques-
tion is how to identify IR based on available measurement
tools? The hyperinsulinemic-euglycemic clamp procedure
(originally described in 1979 [25]) is considered the “gold
standard” for determining whole-body insulin sensitivity
[26]. It has been used tomeasure IR in small studies of persons
with HIV [27–30], including clinical intervention trials
[31–33], but is impractical for larger studies due to cost and
need for time-intensive and invasive procedures. Indirect es-
timates of IR have been used much more widely in clinical
studies of persons with and without HIV. These include oral
glucose tolerance testing (OGTT) and mathematical modeling
estimates from simultaneous fasting blood glucose and insulin
concentrations: the homeostasis model assessment (HOMA)
[34] and the quantitative insulin sensitivity check index
(QUICKI) [35]. These latter methods have been shown to
correlate well with euglycemic clamp [26], including in stud-
ies using both HOMA and clamp measures in persons with
HIV where results were comparable [36, 37]. They reliably
and relatively easily estimate insulin sensitivity in non-
diabetic individuals and populations, but cutoffs defining clin-
ically relevant IR (and associating it with adverse clinical out-
comes) are less clear. The Matsuda index uses mean plasma
glucose and insulin concentrations during a 2-h OGTT to
obtain a more dynamic estimate of IR [38], but has been used
infrequently in studies of persons with HIV.

Functional imaging modalities that have been available for
many years continue to generate interest due to their potential
to directly or indirectly image in vivo tissue glucose disposi-
tion. These include 1H-magnetic resonance spectroscopy
(MRS) to quantitate intramyocellular lipid (IMCL) content
in skeletal muscle, and 18F-fluorodeoxyglucose positron emis-
sion tomography (FDG-PET). IMCL quantitation by MRS
correlates with muscle biopsy and with whole-body insulin
sensitivity in some populations [39]. FDG-PET imaging is
based on tissue glucose metabolism, and has been utilized to
assess skeletal muscle and whole-body glucose uptake [39].
Enhanced dynamic PET techniques can image glucose trans-
port defects that correlate with IR by euglycemic clamp in
non-diabetic persons [40], and a recent report demonstrated
feasibility of integrated PET-MR for quantifying tissue specif-
ic and whole-body IR [41]. These modalities have also been
utilized and correlated with measures of IR in small studies of
persons with HIV [42–46]. While tantalizing, limited

availability, high cost, and radiation exposure make these mo-
dalities impractical outside of research settings.

For all of the reasons above, prevalence and incidence of IR
are difficult to ascertain. The prevalence of IR (HOMA- IR >
2.35) in normoglycemic adults was estimated to be 32% in the
general US population from 1999 to 2002 [47]. In populations
with HIV, recent estimates of IR prevalence range from ap-
proximately 20% (defined as HOMA-IR ≥ 3.8) in persons on
contemporary ART [48] to as high as 50% in an Austrian
cohort where IR was more liberally defined as HOMA-IR >
2.0 (or > 2.6 in women > 35 years old) [49]. Two very recent
studies provide additional information on the incidence of pre-
diabetes among persons with HIV, defined as either abnormal
fasting glucose or impaired glucose tolerance by OGTT. One
is a meta-analysis of 44 studies with > 1500 person-years of
follow-up. The pooled incidence rate and cumulative inci-
dence of pre-diabetes were 125/1000 person years and 15%,
respectively [50••]. A small longitudinal study followed 104
non-diabetic menwith HIV for a mean of almost 12 years. The
incidence rate and cumulative incidence of pre-diabetes in this
study were lower (24/1000 person-years) and higher (32%),
respectively [51•], highlighting potential differences in study
eras, populations, body composition, ART exposure, or other
contributing factors. Obviously, lack of a standard definition
of IR precludes rigorous epidemiologic assessment, but also
limits clinical and translational studies of risk factors and
interventions.

Risk Factors for Insulin Resistance Common
to Persons With and Without HIV

Insulin resistance is closely related to obesity. As adipose de-
rangement develops in any population, adverse effects on glu-
cose disposal and IR would be expected. Indeed, as noted pre-
viously, the earliest descriptions of PI-associated lipodystrophy
often included IR [6]. With increasing recognition of obesity
and abnormal adiposity persisting and contributing to adverse
outcomes in persons with HIV [52•, 53, 54], even those on
contemporary ART, one would expect IR to follow. In both of
the recent studies cited above [50••, 51•], increasing age and
obesity (either BMI or abdominal fat gain) were among the
most consistent risk factors for incident pre-diabetes.

In addition to whole-body or regional (i.e., visceral or sub-
cutaneous) fat and the well-established association between IR
and hepatic fat [55], a potential emerging risk factor for IR is
ectopic fat [56], including skeletal muscle (i.e., IMCL) and
pericardial fat, the latter having been recently characterized lon-
gitudinally in persons with HIV [57•]. Adipose-derived plas-
minogen activator inhibitor (PAI)-1, a regulator of vascular and
tissue fibrinolysis, is associated with IR and diabetes in persons
without HIV [58]. Circulating PAI-1 was also negatively and
independently associated with whole-body IR measured by the
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Matsuda index and HOMA in recent studies of non-diabetic
adults with HIV [59, 60]. Not surprisingly, but recently quanti-
fied more rigorously, lower physical activity is associated with
IR in persons with and without HIV [61, 62].

Recent observations have identified associations between
HMG-CoA reductase inhibitor (statin) exposure and both new
onset diabetes and altered insulin sensitivity in persons with-
out HIV [63, 64]. Statins are used frequently in persons with
HIV for treatment of dyslipidemia, and any abnormal glucose
homeostasis in persons with HIV might be expected to also
increase any statin-associated risk of IR. This was seen in an
analysis of a 96-week randomized clinical trial of rosuvastatin
in 147 non-diabetic persons with HIV, where HOMA-IR in-
creased significantly in persons randomized to rosuvastatin
versus placebo [65]. There was no increased risk of clinical
diabetes observed in the study.

Risk Factors for Insulin Resistance Potentially
Unique to or Accentuated in PersonsWith HIV

As alluded to above, and reviewed extensively elsewhere [17],
multiple ART components induce IR by various mechanisms
in a class- and even drug-specific manner. HIV infection
causes chronic immune activation and inflammation, even
when plasma viral replication is suppressed by the immune
system [66] or ART [67]. Inflammation and immune activa-
tion are also components of obesity, metabolic syndrome, and
CVD, and have been associated with IR in persons with and
without HIV [53, 68, 69].

While the extent to which and mechanisms by which HIV
infection induces IR independent of ART requires further study,
a recent analysis from the MACS affirmed that HIV infection
was independently associated with having a HOMA-IR in the
highest tertile (OR 2.46) after adjustment for age, race, BMI,
and other metabolic risk factors [11••]. Other recent data from
persons with HIV have identified associations between higher
HOMA-IR and monocyte subsets from peripheral blood that
were also independent of immunologic status and traditional
diabetes risk factors [60]. In a small study of dietary renin-
angiotensin-aldosterone system (RAAS) manipulation in per-
sons with and without HIV, high aldosterone levels were asso-
ciated with IR independent of visceral adipose tissue or
adiponectin levels [70].Mounting evidence over the last several
years has highlighted the potential contribution of an impaired
gut microbial barrier and translocated bacterial products to se-
quelae of chronic inflammation and immune activation in per-
sons with HIV [71, 72]. Acute hyperinsulinemia during OGTT
in persons with and without HIV was associated with increases
in soluble CD14, a marker of monocyte activation related to
lipopolysaccharide (LPS) [73]. Other recent studies have re-
ported correlations between higher IR (by OGTT) and plasma

LPS level in persons on ART [74], and between the presence of
bacterial DNA products and elevations of hemoglobin A1c
over time [75]. Not unexpectedly, the same sequelae of chronic
HIV infection that may drive other end-organ effects, like im-
mune activation driven by impaired gut permeability, likely
contribute to IR.

Genetic Risk Factors for Insulin Resistance

While the strong familial risks of IR and type 2 diabetes sug-
gest a heritable component, like most metabolic conditions
they are considered complex phenotypes with respect to de-
termining genetic risk. This is particularly true for IR given the
nature of its measurement, lack of clarity regarding disease-
defining cutoff values, and limited knowledge of the biologi-
cal “continuum” of IR from normal glucose disposal to overt
diabetes. Nonetheless, recent large genome-wide association
studies (GWAS) of glucose homeostasis (summarized in a
recent review [76]) have identified several candidate loci as-
sociated with HOMA-IR and OGTT in ethnically diverse pop-
ulations of persons without HIV. Few studies to date have
examined genetics of IR in persons with HIV. Recent small
cross-sectional analyses in persons with HIV and hepatitis C
virus (HCV) coinfection have reported associations between
an IL28 receptor alpha gene single-nucleotide polymorphism
(SNP) and IR (defined as HOMA-IR ≥ 3.0), and between a
SNP in the fat mass and obesity-associated protein (FTO)
gene and HOMA-IR ≥ 2.5 [77, 78].

Because of the role of mitochondrial dysfunction in altered
glucose homeostasis and IR generally [79, 80], and specifical-
ly in HIV [81], and the legacy of ART-related mitochondrial
toxicity, our group and others have been interested in relation-
ships between host mitochondrial DNA (mtDNA) variation
and diabetes-related outcomes in persons with HIV, including
IR. Multiple small studies over the last decade have reported
associations between shared patterns of SNPs in mtDNA,
called haplogroups, and metabolic outcomes in persons with
HIV [82]. A small study from Spain among persons
coinfected with HIV and HCV reported that persons having
mtDNA haplogroup U (found in persons of European ances-
try) were significantly more likely to have IR defined as
HOMA-IR ≥ 3.8 [83]. Larger analyses of mtDNA haplogroups
and IR (led by the author and collaborators) in both MACS
and WIHS are underway.

Our group has also examined mtDNA variants and meta-
bolic biomarkers, including HOMA-IR, in analyses using data
from small subgroups of ART-naïve participants in AIDS
Clinical Trials Group (ACTG) studies A5142 and A5202
[84, 85]. Among 39 persons starting ART with one of three
randomized class-sparing regimens in A5142 (described in
detail elsewhere [86]), serum adiponectin (an adipose-
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derived adipokine associated with glucose homeostasis and
IR) was higher at baseline but decreased to a greater extent
after 24 weeks of ART among persons with a non-
synonymous mtDNA mutation in mitochondrial complex I
(m.10398A >G). In a small subgroup (N = 6) of these, we also
observed a greater increase in HOMA-IR at week 24 in per-
sons belonging to mtDNA haplogroup U than those having
other haplogroups [84]. This difference was consistent with
findings from the Spanish HIV/HCV cohort [83].

We have gone on to perform analyses including adipose
measurements of mitochondrial function in participants from
another ACTG metabolic substudy (A5224s) randomized to
receive contemporary ART (NRTI tenofovir DF [TDF]/
emtricitabine [FTC] or abacavir [ABC]/lamivudine [3TC]
plus either atazanavir/ritonavir [ATV/r] or efavirenz [EFV])
[87, 88]. Again, among a small subset of participants of
European ancestry (N = 12), the m.10398G mutation was as-
sociated with lower adiponectin after 96 weeks of ART in this
study. Additionally, decreased mitochondrial complex I and
IV activity in adipose tissue was associated with increased
HOMA-IR [85], to our knowledge, the first time such a rela-
tionship has been observed in persons with HIV.

Contemporary ART and Insulin Resistance,
With a Focus on Integrase Strand Transfer
Inhibitors

While the role of chronic HIV infection and associated inflam-
mation and immune activation in metabolic effects has been
increasingly appreciated [9], ART remains a contributing fac-
tor. An analysis focused on the most common currently used
NRTI combinations (ABC/3TC and TDF/FTC) from ACTG
study A5224s found no significant differences in fasting glu-
cose, insulin, or HOMA-IR between these NRTIs arms over
96weeks of treatment in 269 non-diabetic, ART-naïve persons
[89]. The contemporary ritonavir-boosted PI, DRV/r, has been
associated with an increased risk of CVD in data from the
Data Collection on Adverse events of Anti-HIV Drugs
(D:A:D) Study [90, 91•]. In a small phase 4 study, both of
the contemporary ritonavir-boosted PI DRV/r and ATV/r giv-
en once daily with TDF/FTC demonstrated similar modest
increases in insulin sensitivity by euglycemic clamp over
48 weeks [92]. Over the last 5 years, preferred initial ART
regimens for most people withHIV inUS treatment guidelines
have shifted from primarily non-NRTI (NNRTI) and PI-based
to integrase strand transfer inhibitor (INSTI)-based regimens
[93]. This is due to an excellent profile of potency and toler-
ability for INSTI, including few serious adverse effects ob-
served in clinical trials of treatment-naïve persons [94–98].

ACTG study A5260s was a large metabolic substudy of a
randomized clinical trial comparing ATV/r, DRV/r, and the
first INSTI, raltegravir (RAL), all with the NRTI combination

TDF/FTC, in treatment-naïve adults with HIV [99]. In an
analysis focused on IR [100••], 324 participants had a median
baseline (pre-ART) HOMA-IR of 0.59, and 10% of these
predominantly young (median age 36 years) male (90%) par-
ticipants had a HOMA-IR > 2.5 before ART. Higher baseline
BMI and older age correlated with higher baseline HOMA-IR
as expected. By week 4 of ART, HOMA-IR increased by a
median of 2-fold, and—somewhat surprisingly—the HOMA-
IR increase did not differ between the PI and RAL arms. By
week 4, 22% of participants had HOMA-IR > 2.5. Given such
a rapid increase, the authors hypothesized that the early
HOMA-IR changes were independent of fat changes. While
not significantly correlated at baseline, at later time points
(weeks 48 and 96), HOMA-IR was consistently associated
with plasma levels of sCD163, a marker of innate immune
(monocyte) activation also associated with IR in the general
population [101]. A single case report has described new onset
diabetes following a switch from the NNRTI EFV to RAL
with ABC/3TC [102].

Studies of metabolic effects of another INSTI, elvitegravir
(EVG), have been confounded somewhat by the addition of
cobicistat (COBI), and cytochrome P450 3A4-inhibitor used
for pharmacologic boosting that has similar effects on metabol-
ic measures as its older prototype, ritonavir. The exception was
less of an increase in serum triglycerides with EVG/COBI ver-
sus ATV/r [95]. Overall, coformulated EVG/COBI had less or
similar effects on metabolic parameters in ART-naïve partici-
pants compared to ritonavir-boosted PI or the NNRTI EFV, but
glucose and insulin levels were not reported in these trials [95,
96]. A small study of healthy volunteers examined IR using
euglycemic clamp before and after 14 days of treatment with
TDF/FTC coformulated with EVG/COBI or in combination
with the boosted PI DRV/r or the older coformulated PI
lopinavir/r. Glucose disposal rate decreased with lopinavir/r,
but was not significantly changed with exposure to DRV/r or
EVG/COBI [103]. The lack of persons with HIVand the short
exposure time are notable limitations of these data.

A common clinical scenario over the last several years has
been switching virologically suppressed patients from
NNRTI- or PI-based ART to INSTI-based ART regimens.
Several clinical trials have confirmed the safety and efficacy
of various INSTI switch strategies [104], and these are ad-
dressed in US treatment guidelines [93]. Dolutegravir (DTG)
is a newer INSTI, is part of several preferred initial ART
regimens for most people with HIV, and is often a component
of regimens to which patients on older ART are switched.
Based on anecdotal reports from local providers and a small
published study [105], our research group recently analyzed
data in our clinic population.We reported an unexpected weight
increase in persons switched from coformulated TDF/FTC/
EFV to any INSTI that was greatest in those switched to
ABC/3TC/DTG, and not seen in persons switching to regimens
including a boosted PI [106]. In addition, a non-significant
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increase in hemoglobin A1c was observed among 26 persons
who switched to an INSTI compared to those who remained on
TDF/FTC/EFV. A recent case report of hyperglycemia in a
patient on DTG [107] describes a clinical scenario also ob-
served by local providers. The authors of this case report pro-
vide an extensive review of data on hyperglycemia from pub-
lished clinical trials of DTG, package inserts, and clinicaltrials.
gov. While hyperglycemia (> 125 mg/dL) was uncommon in
trials where it was reported, the authors note that it was not
reported in the VIKING-3 trial of treatment-experienced per-
sons on twice-daily DTG [108], but is the most common
treatment-emergent laboratory abnormality from VIKING-3
in the DTG package insert, with a reported rate of 14% [109].
In a phase 2 randomized controlled trial of the newest INSTI
bictegravir (FDA approved February 7, 2018) versus DTG
(each combined with tenofovir alafenamide [TAF]/FTC) in
ART-naïve persons with HIV, 4/32 (13%) randomized to
DTG and 5/64 (8%) randomized to bictegravir had grade 2 or
higher elevations in fasting glucose levels (> 125 mg/dL) dur-
ing 24 weeks of follow-up [110]. The phase 3 clinical trial of
coformulated bictegravir/TAF/FTC versus ABC/3TC/DTG re-
ported similarly rare grade 3 or 4 glycosuria events (4/314 and
3/315, respectively), and median increases in fasting glucose of
4 mg/dL in both arms of the study at week 48 [111]. The 48-
week phase 3 trial of coformulated bictegravir/TAF/FTC versus
DTG plus TAF/FTC also reported rare glucosuria (2/320 and
6/325, respectively). Grade 3–4 fasting hyperglycemia (>
250 mg/dL) occurred in 1/320 (< 1%) randomized to
bictegravir versus 7/325 (2%) randomized to DTG, with a me-
dian change in fasting glucose at week 48 of 2 versus 4 mg/dL,
respectively, a small but statistically significant difference (p =
0.0435) [112].

Mechanisms by which INSTI might have metabolic ef-
fects are not known. As noted above, Fong et al. reported a
case of diabetes attributed to RAL, and postulate a possible
effect of INSTI on bioavailable magnesium that alters mus-
cle insulin signaling [102]. Several in vitro studies have
reported neutral effects of RAL in primary adipocytes
[113–115]. However, one of these found that both EVG
and EFV impaired expression of adipogenesis-related genes
compared with RAL, and EVG induced pro-inflammatory
cytokines to a lesser extent than EFV, but more than RAL
[114]. No published data on effects of DTG or bictegravir on
adipocytes are available. Interestingly, DTG also has a
known drug-drug interaction between the anti-diabetic
medication metformin via inhibition of metformin
renal excretion by organic cation transporter 2 [116, 117].
Dose reduction of metformin is recommended when used
concomitantly with DTG. Given inter-individual pharma-
cokinetic variation, addition of DTG in a diabetic person
on metformin might alter glucose control independent of
any direct DTG effects. This would not explain disrupted
glucose homeostasis in non-diabetic persons with HIV.

Conclusions

As the general population and those with HIV grow older and
obesity rates increase, IR will likely grow in frequency and
importance as a marker of diabetes and CVD risk. With new
mechanisms of action and cellular targets, even the newest and
best ART may have unexpected metabolic effects, including
IR. One might speculate that older persons with chronic HIV
and some degree of tissue/organ-specific immune activation,
fat dysregulation/accumulation, and/or toxicity due to prior
ART exposure could be more vulnerable to any metabolic
effects upon switching to new ART. These effects might not
be as prominent in younger persons with a shorter duration of
HIV and no prior ART exposure.

To address knowledge gaps regarding IR in personswithHIV,
several approaches in addition to expanding our understanding of
fundamental pathophysiology are needed. Unified definitions
and validated cutoffs to guide risk stratification and targeted pre-
vention and treatment of IR will be critical. HIV-specific cutoffs
would be ideal, but as with other areas of preventive health,
simply utilizing guidelines from the general population when
they are available will be a good start. Relatively inexpensive
“low-hanging fruit” for refining our understanding of risk factors
for IR would be including fasting glucose and insulin levels as
part of ART clinical trials and prospective cohort studies,
and assessing HOMA and/or QUICKI as part of study protocols
and a priori analysis plans. Focused metabolic substudies that
include IR as part of randomized clinical trials, like A5260s
[100••], can be invaluable. As we care for patients in the mean-
time, best practices should include providing wise counsel
and supportive environments for a healthy diet and
physical activity that are cornerstones of weight control and
normoglycemia, maintaining a high index of suspicion for IR
(and for unexpected metabolic effects of new ART), and being
ready to implement interventions for IR that slow or pre-
vent development of diabetes when they are available.
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