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Abstract
Purpose of Review In this review, we present new developments in antiretroviral adherence, focusing on pharmacological
measures and real-time adherence monitoring. In addition, new strategies on how to incorporate these newmeasures into research
and clinical care are proposed.
Recent Findings Antiretroviral drug concentrations in hair and dried blood spots are two novel pharmacological measures of
cumulative drug adherence and exposure that have been recently evaluated in HIV treatment and pre-exposure prophylaxis. Real-
time adherence monitoring using electronic devices has also proven highly informative, feasible, and well accepted, offering the
possibility for an immediate intervention when non-adherence is detected. Both approaches offer considerable advantages over
traditional adherence measures in predicting efficacy.
Summary New methods to objectively monitor adherence in real-time and over long time periods have been developed. Further
research is required to better understand how these measures can optimize adherence and, ultimately, improve clinical outcomes
in HIV treatment and prevention.
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Introduction

Over the last several decades, the advancements in the effica-
cy of antiretroviral therapy (ART) have prolonged survival in
people living with HIV (PLWH) [1]. Newer medications have
become safer and easier to take, most of them are now co-
formulated in a single tablet that is taken once-a-day, and long-
acting medications with long half-lives, which could facilitate
infrequent dosing, are currently in development [2]. However,
ART adherence is still challenged by multiple individual (i.e.,
education, health literacy, poverty, substance use) and

community or structural (i.e., stigma, disclosure, access to
care) barriers that limit its durability. While adherence to an-
tiretroviral medications continues to be a major predictor of
treatment success (and source of variability in outcomes in
clinical practice and research studies), we currently do not
have a gold standard method to accurately measure ART ad-
herence [3], and the development of new strategies to achieve
this goal continues to be a focus in the field. In this review, we
discuss some of the most recent methods to objectively mea-
sure ART adherence, both in HIV-infection and in pre-
exposure prophylaxis (PrEP), their advantages and limita-
tions, and propose new ideas for their possible application in
clinical and research settings.

Traditional Measures of Art Adherence:
Advantages and Disadvantages

Historically, clinicians and researchers have relied on self-
reported measures of ART adherence, which are subject to
multiple limitations including recall and social desirability bi-
as, often leading to overestimation of adherence (Table 1)
[4–7]. These methods have been coupled with other measures
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including pill counts (announced or unannounced) and phar-
macy refills. Although more objective than self-report, these
measures are still subject to several limitations, including ma-
nipulation and the need for a readily available pharmacy staff
(Table 1) [8, 9].

Perhaps the most commonly used method for addressing
adherence in HIV treatment has been achieving an undetect-
able HIV viral load (VL), which has been associated with
favorable clinical outcomes [10] and prevention of HIV trans-
mission [11]. Because high levels of ART adherence (usually
≥ 95%) were initially required to achieve and sustain and un-
detectable HIVVL in the early era of ART [12, 13], it has been
frequently assumed that a virologically suppressed patient is
equivalent to an adherent patient. However, as modern ART
has become more potent and pharmacologically forgiving to
missed doses, virologic suppression can be achieved with ad-
herence levels around 80–85% [14–19], thus making an un-
detectable HIV VL an imperfect surrogate for high adherence
in HIV infection. In addition, HIV VL is not informative of
adherence patterns and the development of viremia usually
results long after an adherence gap has occurred (Table 1).
Lastly, HIV VL as a surrogate marker of adherence is not
applicable for PrEP.

Standard electronic adherence monitors (EAMs), such as
the medication event monitoring systems (MEMS), and
plasma/urine drug concentrations offer a more objective meth-
od to quantify adherence and could provide a more compre-
hensive picture of adherence over a period of time [7, 20].
However, MEMS data can only be made available during a
face-to-face encounter and reflects adherence behaviors that
have occurred weeks or even months before these data can be
evaluated, thus limiting its utility [21] (Table 1). Plasma and
urine drug and metabolite concentrations provide proof of
drug ingestion and can be predictive of virologic failure in
diverse settings [22, 23]. However, their utility is limited by
the short half-lives (~ 10–20 h) that most antiretrovirals have
in these matrices (Table 1) and by the fact that single-dose
concentrations usually match steady-state concentrations
[24]. Due to this limitation, plasma and urine drug concentra-
tions are usually only able to detect drug intake within a short
period of time (days to 1 week). In addition, they are subject to
“white coat” adherence (i.e., improved drug adherence imme-
diately preceding a research or clinical encounter) [25], and
threshold concentrations associated with adherence and viro-
logic suppression are only available for few antiretrovirals
[26], thus further restricting their broad use in clinical practice.

Table 1 Traditional adherence measures used in HIV research and clinical care

Measure Advantages Disadvantages

Self-report Inexpensive
Easy to implement
Widely available

Recall bias
Infrequent measurement
Social desirability bias

Pill counts Inexpensive
Easy to implement

Limited availability
Subject to “pill dumping”

Pharmacy refills Relatively inexpensive Need a closed pharmacy system
Dependent on reliable and

accurate records

HIV RNA Objective (surrogate)
Wealth of experience

Not universally available
Infrequent monitoring
Not predictive
Does not determine adherence

patterns
Not applicable to pre-exposure

prophylaxis

Electronic adherence
monitoring (standard
devices, such as MEMS)

Objective
Provides patterns of adherence
Widely used in research

Expensive
Staff Intensive
Subject to misclassification

(i.e., pocket dosing, curiosity
openings).

No proof of drug ingestion
Not compatible with pill boxes

Drug levels (plasma, urine, saliva) Objective
Predictive of adverse outcomes
Yes/No answer (adherent vs.

non-adherent)

Expensive
Short half-lives
Requires a specialized laboratory
Subject to “white coat” adherence
Variable threshold by specific

medications

MEMS medication event monitoring system
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In response to the limitations of the traditional measures of
adherence, new methods that can objectively quantify ART
adherence have been developed. These include pharmacolog-
ical measures of drug exposure and newer EAMs that can
measure adherence in real time, both of which are described
below.

New Pharmacologic Measures that Quantify
Cumulative Drug Exposure

Given the short “look back” period of plasma and urine drug
concentrations, new pharmacological methods that can quan-
tify drug adherence and exposure over longer periods of time
have been developed, resembling the utility that glycosylated
hemoglobin (Hgb A1c) has had in patients with diabetes
mellitus [27]. Because they reflect drug intake andmetabolism
over a period of weeks to months, these newmeasures provide
a picture of cumulative drug exposure as a result of behavior
(i.e., drug adherence) and pharmacokinetics (i.e., absorption,
distribution, metabolism and excretion) in the same evalua-
tion. To date, the two available matrices in which cumulative
ART adherence exposure can be quantified are dried blood
spots (DBS) and hair.

Antiretroviral Concentrations in Dried Blood Spots

For over 50 years, DBS have been the method of choice for
screening neonates for inborn errors of metabolism and con-
genital infections (e.g., phenylketonuria, hypothyroidism, and
toxoplasmosis) using blood obtained through a needlestick
from the heel at the time of birth [28]. This preference for
DBS reflects various advantages over traditional plasma blood
sampling; it can be collected in small quantities from veni-
puncture or needlestick, does not require special sample pro-
cessing, and is associated with a substantial cost benefit [29].
Likewise, DBS samples can be stored for relatively long pe-
riods of time after collection and can be shipped without spe-
cial biohazard precautions [24, 30]. These advantages have
led to the use of DBS sampling for analysis beyond the neo-
natal period, including rapid diagnostics of vector-borne dis-
eases [31], identification of disease-associated genetic muta-
tions [32], diagnosis of HIV infection, and quantification of
HIV VL [33–36], among others.

Recently, the use of DBS for the pharmacokinetic analysis
of antiretroviral drugs has become a novel and attractive ap-
proach in the research and clinical settings. Early on, multiple
DBS methods to measure drug concentrations of various an-
tiretroviral drugs were developed using liquid chromatogra-
phy, with a primary focus on the quantification of parent drug
as an alternative to plasma drug concentrations [37–46]. A
recent example of this approach is the ENCORE1 study, a
multicenter, randomized clinical trial that evaluated the safety

and efficacy of a reduced dose of efavirenz (EFV) in resource-
limited settings. In this study, DBS were used to quantify
concentrations of EFV, with an overall good correlation
(R2 = 0.904, p < 0.001), albeit underestimation (53 ± 9.5%
lower) of plasma drug levels [47]. In another study, drug con-
centrations of parent tenofovir (TFV) from tenofovir
disoproxil fumarate (TDF), lamivudine (3TC) and EFV were
evaluated in a pregnant women cohort in rural South Africa,
demonstrating an overestimation of adherence in self-report
vs. DBS levels, but feasibility of DBS collection in this pop-
ulation [48]. The main limitation of these studies was the
focus on parent drug concentrations in DBS, which are ex-
pected to also have short half-lives similar to their plasma
counterparts, thus restricting their adherence evaluation to a
qualitative yes/no information over a short period of time.
Additional limitations of DBS sampling, in general, include
the potential influence of a variable hematocrit in the setting of
anemia (which could under or overestimate drug concentra-
tions [49] and is more prevalent in resource-limited settings
and in women), the need of a specialized central laboratory for
analysis, and the lack of currently available real-time methods
to measure drug concentrations [3].

Parallel to the quantification of antiretroviral parent drug
concentrations in DBS, this matrix has also been evaluated for
the measurement of intracellular concentrations of antiretrovi-
ral anabolites in red blood cells (RBCs), given the abundance
of RBCs in DBS [24, 29, 50–52]. This area of research has
focused on TFV and emtricitabine (FTC), because these nu-
cleoside analogues are also phosphorylated inside of RBCs in
a similar fashion to their metabolism in peripheral blood
mononuclear cells (PBMCs), where they are phosphorylated
to their pharmacologically active moieties TFV diphosphate
(TFV-DP) and FTC triphosphate (FTC-TP), respectively [29].
Once phosphorylated, TFV-DP, it is trapped and accumulates
25-fold from first dose to steady state in RBCs, with an intra-
cellular half-life of 17 days [24, 29]. These unique pharmaco-
logic characteristics were used in pharmacokinetic modeling
analyses to develop a TFV-DP gradient that can be used to
estimate TDF-FTC dosing over a preceding period of approx-
imately 8 weeks [29]. These findings were recently confirmed
using directly observed dosing in healthy volunteers, in whom
the TFV-DP concentration benchmarks for daily TDF-FTC
dosing were established [24]. This methodology has also been
extended recently to quantify TFV-DP arising from tenofovir
alafenamide (TAF) [52], with an ongoing study to establish
the drug concentrations associated with different adherence
benchmarks in healthy volunteers (NCT02962739). In con-
trast to TFV-DP, FTC-TP exhibits an intermediate half-life
(~ 35 h) in DBS and can detect a dosing event within the last
7 days, making it a surrogate for plasma drug levels and in-
formative of “white coat” adherence and pre-appointment
dosing [24, 51]. Since FTC-TP and TFV-DP are simulta-
neously quantified in the same DBS sample, the combination
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of both anabolites can provide comprehensive information on
cumulative exposure and recent dosing to TDF-FTC at the
same time.

The clinical utility of TFV-DP in DBS has been well
established in the PrEP field, where no other surrogate
markers of adherence, such as HIV VL, are available. In the
iPrEx Open-Label Extension (iPrEx-OLE), TFV-DP in DBS
was used as a measure of cumulative exposure to TDF-FTC.
In this study, a TFV-DP concentration of ≥ 700 fmol/punch
(consistent with four or more doses per week) was associated
with 100% protection from HIV infection in men and trans-
gender women who have sex with men [53]. Similar results
were observed in PrEP demonstration projects, where high
feasibility and acceptability to DBS collection were also con-
firmed in real-world settings [54, 55]. Currently, DBS are
being collected to quantify adherence in various studies eval-
uating novel PrEP formulations and drug delivery strategies
(NCT02720094, NCT03164564, NCT02842086) in the USA
and around the world. In addition, DBS sampling has been
frequently performed in cases of PrEP breakthrough to deter-
mine the role of drug adherence [56–58].

In comparison to the extensive data available for PrEP, the
utility of TFV-DP in DBS the HIV treatment arena has not
been well established. A small study in 35 women with HIV
infection in the USA who were taking TFV as part of their
ART regimen found that TFV-DP in DBS was negatively
correlated with increasing number of days between pharmacy
refills, with the lowest TFV-DP concentrations observed in a
patient with viremia [59]. Another study explored the utility
TFV-DP in DBS in 29 PLWH (90% women) in South Africa.
In this study, TFV-DP in DBS showed moderate correlation
with electronic real-time adherence monitoring in HIV-
infected patients (r = 0.510, p < 0.001) [60]. Of note, none of
these studies have evaluated the utility of TFV-DP in DBS to
predict viral suppression or other clinical outcomes, which
remains a critical gap in the field and is currently being eval-
uated (NCT02012621).

Antiretroviral Concentrations in Hair

Human hair grows at an average rate of 1 cm per month [61].
This relatively slow growth offers an advantage as an adher-
ence measure in comparison to other biological matrices (i.e.,
plasma, urine), because the rate of hair growth reflects slow
uptake of drugs (and their metabolites) from the systemic cir-
culation over a period of weeks to months [62]. For decades,
the use of hair sampling to quantify drug concentrations was
limited to the detection of drugs of abuse [63, 64] and was
mostly used as a tool in medical criminology [65]. However, a
strong body of literature has emerged on the use of hair as a
measure of cumulative exposure to a wide variety of therapies
[66, 67] and endogenous hormones [68, 69]. Hair collection
offers the advantage that it can be obtained in various clinical

and non-clinical settings [70, 71], does not require special
training or equipment, and can be shipped without biohazard
concerns and without the need of a cold chain. It can also be
evaluated to determine adherence at different time points in
the preceding weeks/months, as the drug concentrations in the
proximal vs. the distal segments of the hair strand reflect the
effect of time on drug exposure [72]. On the other hand, hair
sampling requires a specialized laboratory for processing and
could have limited acceptability for sampling in certain patient
populations [73, 74].

Antiretroviral hair concentrations have been a matter of
research for over a decade [75]. To date, multiple different
liquid chromatography-based assays to quantify these drugs
have been developed [76–78] and utilized as adherence mea-
sures in HIV treatment and prevention studies. These methods
usually require 50–100 strands of hair that is obtained as close
as possible to the scalp [79], which can also be obtained
through self-collection, with good correlation with traditional
hair collection procedures [80]. In HIV treatment, hair con-
centrations have been demonstrated to be strong predictors of
virologic success in large and diverse prospective clinical co-
horts of PLWH, performing better than other traditional ad-
herence measures as predictors of treatment outcomes [79,
81–85]. In comparison to DBS analysis of intracellular
anabolites (which is limited to TFV and FTC), hair can be
used to quantify drug exposure to multiple antiretrovirals in
all drug classes, thus increasing the reach and generalizability
of this methodology as a measure of adherence. However,
antiretroviral hair concentrations that are associated with
known adherence benchmarks using directly observed thera-
py are only available for TFV (derived from TDF) [86], and
additional research in this area is needed to fully characterize
the pharmacokinetics of many other antiretrovirals in this
matrix.

Drug adherence and exposure in PrEP have also been in-
formed by hair concentrations of antiretrovirals. For example,
TFV hair concentrations were recently evaluated in three dif-
ferent PrEP studies which included women (VOICE) and
men/transgender women who have sex with men (US PrEP
Demonstration Project and iPrEx-OLE). In this analysis, very
low cumulative TFV exposure was demonstrated in partici-
pants enrolled in the VOICE trial (median intake of 0.2 doses
per week) in comparison to participants in iPrEx-OLE (2.9
doses per week) and the PrEP Demo study (6 doses per week)
[87], confirming the low adherence rates to TDF observed in
the VOICE trial (< 40% of participants had detectable TFV
plasma levels) despite high rates of self-reported adherence
[88]. In another study that measured adherence and exposure
in two randomized, placebo-control studies that evaluated dai-
ly and intermittent PrEP in serodiscordant couples and men
who have sex with men, TFVand FTC concentrations in hair
were strongly correlated with MEMS adherence as well as
with plasma and PBMC drug concentrations, but weakly

52 Curr HIV/AIDS Rep (2018) 15:49–59



correlated with self-reported adherence [89], highlighting the
need for objective and reliable methods of drug adherence in
PrEP research. Lastly, in addition to their utility asmeasures of
drug adherence and exposure in PrEP, hair drug concentra-
tions have also been evaluated in the context of drug toxicities
associated with TDF, in particular with changes in renal func-
tion [90, 91]. Further research is needed to determine the util-
ity of combining hair drug concentrations to prospectively
quantify and monitor PrEP adherence and toxicity in future
trials and clinical practice.

Measures of Adherence That Can Lead
to Actionable Interventions

As new technologies to quantify drug intake and exposure
have been developed, better non-pharmacological methods
to reliably measure adherence have also emerged. As noted
above, EAMs that record medication bottle openings (i.e.,
MEMS) can provide objective evidence of medication-
taking behavior, and have been available for over two
decades[3]. However, they are subject tomisclassification bias
(i.e., “pocket doses” in which multiple doses are removed at
one opening of the device for future dosing, as well as “curi-
osity openings” in which no doses are removed during an
opening), which can limit their accuracy [60, 92] and they
can only be evaluated at the time of a study or clinic visit,
usually long after the adherence gap has occurred [7, 93]. In
this regard, EAMs that provide immediate information on
dosing events could prove more useful to actively monitor
adherence in “real time” between clinical or study visits [94].

Wireless real-time adherence monitoring (RTAM) has been
studied in HIV for about a decade, with marked improvements
to increase feasibility and reliability in recent years. RTAM
devices are electronic pill containers with long battery half-
lives, which can usually hold medication supplies for up to
30 days and transmit a time-stamped cellular signal to a cen-
tral web-based server every time the device is opened (which
is recorded as a dosing event) [3]. These adherence data can be
monitored in real-time through standard cellular and internet
connections, where the data is secure through an encrypted
system and available for future use. Other forms of RTAM
devices include blister pack holders and larger devices where
vaginal microbicides and/or larger quantities of drug supply
can be stored [95]. The main advantage that RTAM has over
traditional EAMs is that it provides dose-to-dose adherence
data that can lead to an intervention at the precise time when it
is most likely to be effective (i.e., when non-adherence has
been identified), which usually precedes (and could prevent)
viral rebound [94, 96]. In addition, RTAM by itself (like stan-
dard EAMs) can also improve adherence through Hawthorne
effect (a change in behavior in response to the awareness of
being observed) [97] and can be perceived as a show of

support and extension of care from healthcare providers
[98]. A main weakness of RTAM is that it does not confirm
medication ingestion [4]. However, RTAM devices have been
shown to predict outcomes that are dependent on drug intake,
such as viral suppression [99, 100]. In terms of acceptability,
RTAMhas been well accepted in research studies overall [101,
102], although some concerns about the privacy, autonomy,
confidentiality, and/or stigma associated to RTAMs have
emerged, in particular in mobile populations who may have
difficulty traveling with the device, as well as those who feel
marginalized [103, 104]. In addition, because these devices
usually depend on a reliable network, the risk for technological
failure remains tangible, in particular in areas with intermittent
cellular coverage [99, 102, 105]. Modern RTAM devices (and
other EAMs) are able to store the dosing events for future
network download when a cellular connection becomes avail-
able, thus increasing the reliability of these methods [106].

The capability of RTAM to trigger an intervention is an
attractive advantage of this adherence monitoring modality.
This feature was recently studied in a Ugandan cohort, in
which RTAM + 3 different randomized short messaging ser-
vices (SMS) strategies (scheduled vs. triggered vs. none) re-
sulted in an increase in ARTadherence of 11.1% in the sched-
uled SMS arm, in comparison to the RTAM only arm, with a
reduction in > 48 and > 96 h adherence lapses [107]. Notably,
participants perceived the SMS as a source of support and
motivation in forming good adherence habits [98]. Similar
results were found in two studies performed in China and
South Africa where RTAM was combined with SMS, even
among individuals with high adherence who were virological-
ly suppressed on chronic ART [108, 109]. Various other stud-
ies evaluating these and other RTAM-based strategies are cur-
rently underway (NCT03086655, NCT02915367, and
NCT03292432). In addition, RTAM is planned for a large
multinational study of latent tuberculosis treatment in high-
risk household contacts of adults with multidrug-resistant pul-
monary infection [110].

Potential Uses of New Measures in Research
and Clinical Scenarios

Given the unique characteristics of the measures of ART ad-
herence and exposure presented in this review, multiple pos-
sible applications of these methods in research studies and
clinical care could be considered. Below we propose some
strategies that could be implemented in this context.

1. Complementary use of RTAM and pharmacologic mea-
sures: Recent studies have demonstrated strong correla-
tion between hair and DBS concentrations of
antiretrovirals) [89, 111], which supports their use in com-
bination to monitor adherence to ART and PrEP. While
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DBS concentrations could be used to estimate average
dose intake over a preceding period of time (i.e., ~
8 weeks), hair drug concentrations could be used to quan-
tify longer drug exposure, including to non TFV/FTC-
based regimens. In addition, measures of cumulative and
short-term exposure (i.e., plasma drug levels) could also
be combined to assess drug intake patterns in ART and
PrEP [112]. Furthermore, coupling pharmacologic mea-
sures with RTAM is an attractive strategy that remains
largely unknown (only available data are with DBS
[60]) and should be a focus of future research in the field.
Ultimately, an integrated adherence monitoring approach
would include RTAM plus a pharmacologic measure,
where the adherence data would be used to establish in-
dividualized benchmark drug concentrations that could be
used to predict virologic failure and/or drug resistance.

2. Assessment of the efficacy of behavioral interventions: As
the rollout of ART continues, innovative behavioral inter-
ventions to promote optimal and durable adherence in
large-scale will be required. Currently, intensive peer sup-
port, SMS reminders, and adherence clubs are among
some of the interventions that have proven successful
[96]. However, not all studies evaluating these (and other)
strategies have offered positive results [113], raising the
possibility that these interventions do not translate into the
expected change in behavior (i.e., adherence). Thus, to
fully understand and assess the effect of a behavioral in-
tervention, future studies could benefit from including
objective measures of adherence and exposure such
as antiretrovirals concentrations in hair and DBS.
This approach has already been implemented in a
few interventional studies which demonstrated an
increase in pre- and postadherence interventions in
various settings [114–116].

3. Early intervention to improve adherence and exposure-
associated clinical outcomes: While virologic suppression
has been the ultimate clinical goal of ART to prevent
progression to AIDS and transmission of HIV, the for-
giveness of new ART combinations has allowed for an
increasing tolerance to missed doses that do not result in
loss of virologic control. However, it remains unclear
whether this forgiveness has any long-term clinical im-
pact. In this context, RTAM and pharmacological mea-
sures of adherence could create an opportunity to identify
a subset of patients with virologic suppression in whom
adherence decreases below a specific threshold (i.e.,
benchmark for daily dosing) that could be predictive of
future or impending treatment failure. This approach
could have significant clinical implications for the
counseling and evaluation of patients who have an unde-
tectable HIV VL at the time of their study visit and could
be used to trigger a targeted intervention in the patients
who need one the most. Similarly, it is conceivable that

antiretroviral concentrations in hair and DBS could be
potentially used to pre-emptively monitor ART and
PrEP toxicity, as slow drug accumulation could precede
the development of clinically evident toxicities. Further
research on the clinical utility of cumulative adherence
measures is required.

4. Quantification of adherence in the setting of virologic
suppression: An emerging body of literature supports
the concept that suboptimal adherence, in the context of
virologic suppression, has significant clinical conse-
quences as it relates to residual viral replication [117,
118] and higher levels of biomarkers of inflammation
and coagulopathy [119–121]. Thus, an objective and reli-
able estimation of adherence in the virologically sup-
pressed population remains of critical importance. Given
the frequent overestimation of adherence based on self-
report and other subjective measures [4, 5], RTAM and
pharmacological measures could be used to objectively
quantify adherence and exposure beyond virologic sup-
pression and identify if variations in adherence result in
adverse clinical outcomes.

Conclusions

Optimal and durable adherence to ART and PrEP is required
to maximize their therapeutic benefit and assure clinical suc-
cess. Modern measures that can objectively quantify antiretro-
viral adherence and exposure have emerged in recent years,
increasing our understanding of the adherence patterns that are
associated with positive and negative clinical outcomes. To
successfully complement the rapidly evolving field of antire-
troviral drug development, future research should focus on the
feasibility and clinical application of strategies that combine
multiple ART adherence methods in clinical practice and re-
search studies.
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