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Abstract Despite over 30 years of research, the contribution
of type I interferons (IFN-Is) to both the control of HIV
replication and initiation of immunologic damage remains
debated. In acute infection, IFN-Is, likely from plasmacytoid
dendritic cells (pDCs), activate NK cells and upregulate re-
striction factors targeting virtually the entire HIV life cycle. In
chronic infection, IFN-Is may also contribute to CD4 T cell
loss and immune exhaustion. pDCs subsequently infiltrate
lymphoid and mucosal tissues, and their circulating popula-
tions wane in chronic infection; IFN-I may be produced by
other cells. Data from nonhuman primates indicate prompt
IFN-I signaling is critical in acute infection. Whereas some
studies showed IFN-I administration without combination
antiretroviral therapy (cART) is beneficial, others suggest that
stimulating or blocking IFN-I signaling in chronic ART-
suppressed HIV infection has had positive results. Here, we
describe the history of HIVand IFN-I, IFN-I’s sources, IFN-I’s
effects on HIV control and host defense, and recent interven-
tional studies in SIV and HIV infection.
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Introduction

The association of type I interferon (IFN-I) with AIDS predates
the discovery of HIV itself. Serum IFN-I activity was first
described as being enriched in “homosexual men with
Kaposi’s sarcoma and lymphadenopathy” in 1982 [1].
Shortly thereafter, Buimovici-Klein and colleagues published
a letter in The Lancet entitled “Is presence of interferon pre-
dictive for AIDS?” [2]. Although these studies proposed using
IFN-I activity as a prognostic indicator of an eventual AIDS
diagnosis in lieu of a known etiologic agent, they were the first
to suggest that IFN-I may be part of the disease process. In the
subsequent 30 years, the link between HIVand IFN-I has been
intensely studied. Elevated plasma levels of IFN-I and
interferon-stimulated genes (ISGs) in HIV-infected patients
and SIV-infected monkeys have been reported many times
over. These associative studies have demonstrated unequivo-
cally that untreated infection induces widespread induction of
the IFN-I system without any measurable effect on viral load.
Administration of IFN-α as monotherapy or as an adjunct to
antiretroviral therapy has been intensely studied (reviewed in
detail below)—and the results have varied widely. Conversely,
the administration of a vaccine against endogenous IFN-α to
end-stage AIDS patients stabilized CD4 counts [3, 4].

More recently, evidence for a link between IFN-I and HIV
pathogenesis was provided by several groups studying SIV
infection in natural host monkey species that do not develop
AIDS [5, 6]. After acute SIV infection, these species rapidly
mute their IFN-I responses whereas disease-susceptible
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macaque species maintain IFN-I signaling indefinitely. These
species have several other notable differences from pathogen-
ic species, including lack of microbial translocation, limited
infection of memory cells, and absence of emergent gastroin-
testinal viruses [7, 8]. It is unclear whether the ability of
natural hosts to shut off the IFN-I system is directly related
to pathogenesis or a secondary effect. Nevertheless, the con-
sistent observations across multiple natural host species
helped invigorate interest in IFN-I as a mediator of HIV
immunopathogenesis.

Cumulatively, the HIV/IFN-I field has definitively demon-
strated that (i) at the host level, IFN-I production and re-
sponses are not evaded or suppressed by HIV but are insuffi-
cient to clear or control HIV and (ii) IFN-I as monotherapy is
ineffective to control HIV. In the sections below, we will focus
on novel data that addresses (i) IFN-I induction of antiviral
responses, (ii) IFN-I driving HIV-related disease progression,
and (iii) lessons from IFN-I modulation studies about how the
innate system could be manipulated for treatment and
prevention.

What Are the Sources of IFN-I in HIV Infection?

Antagonism of the IFN-I system remains of significant clini-
cal interest for the treatment of HIV-related immune activa-
tion. However, sustained in vivo inhibition of the IFN-I sys-
tem can be difficult to achieve. An alternative strategy to
modulate the IFN-I system may be the depletion of IFN-I-
producing cells. However, which immune subsets are most
important to IFN-I production in HIV infection is debated.

Plasmacytoid DCs in HIV/SIV Infection

Classical Studies of Plasmacytoid DCs

Among cell types capable of making IFN-I in response to
HIV, plasmacytoid dendritic cells (pDCs) are most intensely
studied. Shortly after the discovery that pDCs and the elusive
“natural interferon-producing cell” were, in fact, the same
cellular subset, several studies documented their kinetics and
activity in HIV infection (Fig. 1a) (reviewed in [9]). pDCs are
found at reduced levels in chronic HIV infection compared to
uninfected controls; similarly, nonhuman primate (NHP) stud-
ies have shown that the depletion of circulating pDCs occurs
as early as 3 days post-infection and never completely nor-
malizes. Numerous studies from the early 2000s reported
that pDCs from HIV-infected patients have an attenuated
capacity to produce IFN-α. However, recent data show
that in response to some stimuli, pDCs from HIV-
infected persons are hyperresponsive [10, 11].

pDCs Are Depleted from the Blood but Accumulate in Lymph
Nodes and Mucosa in HIV/SIV Infection

The NHP model has been highly instructive in understanding
pDC biology. pDCs accumulate in draining lymph nodes
(LNs) rapidly after SIV infection, where most undergo apopto-
sis, contributing to the loss of circulating pDCs [12]. Similarly,
subsequent groups reported a massive accumulation of pDCs
in the rectal and vaginal mucosae after acute SIV infection and
in chronic HIV infection (Fig. 1b) [9, 13–15], although it is
unknownwhether mucosal pDCs undergo apoptosis as they do
in LNs. Mucosal retention of pDCs has not been observed in
SIV-infected natural host species, which also avoid the persis-
tent IFN-I signaling seen in pathogenic hosts, suggesting that
altered localization of pDCs may account for continued IFN-I
production in pathogenic infection [5, 6, 16•]. Overall, data
from several groups have formed a consolidated model in
which pDC depletion from the blood occurs due to relocation
and seemingly permanent retention in lymphoid tissues.

Do pDCs Make IFN-I in Chronic HIV/SIV Infection?

pDCs have been assumed to be the primary producer of IFN-
Is in HIV infection, as they secrete massive amounts of IFN-α
after in vitro HIV stimulation compared to other cell types
(Fig. 1c) (reviewed in [17]). Their ultimate contribution to
host IFN-I production has been harder to establish in vivo.
While there is a general consensus that pDCs are likely
responsible for the bulk of IFN-I production in the acute phase
(1–2 weeks) of infection, the role of pDCs in chronic infection
is less clear. ISGs are easily detected in chronic HIV/SIV
infection, but plasma IFN-α and IFNA messenger RNA
(mRNA) are found at extremely low levels after acute infec-
tion, if at all [6]. This finding may be attributed to the low
numbers of circulating pDCs with local IFN-α production
inducing ISG expression in target cells within LNs and mu-
cosae [16•]. A second potential explanation is that pDCs are
required only in the early phase of infection to “jump-start”
systemic IFN-I responses with their constitutive expression of
interferon regulatory factor 7 (IRF7). Non-pDCs then upreg-
ulate IRF7 levels, which drive ISG induction via IFN-β [18,
19]. Several studies have addressed this issue in vitro recently,
and the data are conflicting:

Evidence Against a Role for pDCs in Chronic IFN-I
Production

Inhibition of pDC activation using TLR7/9 antagonists in
SIV-infected cynomolgus macaques has minimal impact on
ISG production [19]. Indeed, based on flow cytometric anal-
ysis of unstimulated pDCs taken directly ex vivo, IFN-α is
detectable during acute SIV infection of cynomolgus ma-
caques but wanes quickly. This is consistent with the finding
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that pDC-depleted mice have intact antiviral responses to local
herpes simplex virus-1 infections, but they are impeded in
their IFN-I responses to systemic herpesvirus infections [20].

Evidence Supporting pDCs Making Chronic IFN-I

In vivo imaging studies have shown that virtually all IFNα-
expressing cells in SIV-infected monkeys also express the
pDC-marker CD123 [21], and depletion of pDCs in human-
ized mice abolishes IFN-I and ISG responses to HIV infection
[22]. We have observed in rhesus macaques that virtually all
detectable IFNα made in response to in vitro stimulation with
AT-2-treated SIVoriginated from pDCs [23]. Similar data has
been seen for African green monkeys, where in vitro depletion
of pDCs completely abolishes IFN-I activity [24]; however,
pDC depletion only partially abrogates IFN-I production to
HSV stimulation.

Given the current in vivo evidence available, it is plausible
that pDCs may indeed be the primary cell type producing
IFN-I in chronic infection, but their scarcity and distribution in

tissues render them difficult to assess ex vivo. However,
another possibility is that pDCs may only be responsible for
IFN-I during the peak of viral replication, after which alterna-
tive cells are responsible. This “switch” may occur due to the
emergence of new potential stimuli after acute infection, par-
ticularly microbial products [7] and novel gastrointestinal
viruses [8] that are found after pathogenic infection.
Antagonism of the IFN-I system remains of clinical interest
in treating HIV-related residual inflammation. Thus, identify-
ing the primary sources of IFN production has high potential
for interventional strategies.

Effects of IFN on Antiviral Gene Expression

ISGs with Anti-HIV/SIVActivity

In the past decade, several ISGs that target HIV throughout its
life cycle, i.e., restriction factors, have been identified (Fig. 1f).

Fig. 1 Sources and effects of type I interferons in HIV infection. A HIV
or HIV-infected CD4 Tcells activate plasmacytoid dendritic cells (pDCs)
to produce type I interferon (IFN-I). B In chronic HIV infection, pDCs are
depleted from the peripheral circulation and accumulate in the rectal
mucosa, where they may be activated by microbial products such as
lipopolysaccharide (LPS) and other pathogen-associated molecular pat-
terns (PAMPs) and/or create an inflammatory environment that contrib-
utes to ongoing intestinal barrier dysfunction and microbial translocation.
C Activated pDCs produce IFN-I in acute HIV infection, but whether
pDCs or other cells are the predominant IFN-I producers in chronic HIV

infection remains debated. D IFN-I signaling stimulates CD8 T cells to
upregulate MHC molecules that bind NK cell inhibitory receptors, ren-
dering CD8 T cells resistant to NK-cell-mediated cytotoxicity. E IFN-I
signaling facilitates the proliferation and survival of NK cells and acti-
vates NK cell cytotoxicity, which may contribute to the eradication of
HIV-infected CD4 T cells. F IFN-I suppresses CD4 T cell effector
function and inhibits CD4 T cell proliferation but also induces restriction
factors that limit HIV replication at many steps of the replication cycle,
including HIVentry, reverse transcription, nuclear entry/integration, tran-
scription, and budding
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The best characterized restriction factors are TRIM5α, which
interferes with HIV-1 uncoating [25]; apolipoprotein B
mRNA editing enzyme, catalytic polypeptide-like 3
(APOBEC3), which induces cytidine to uridine editing of
HIV cDNA, resulting in hypermutation of the plus-strand
DNA [26]; and Tetherin/BST2, which is expressed on infected
cell surfaces, where it binds virions and prevents their release
[27–29].

Several novel IFN-I-inducible anti-HIV factors have re-
cently been described. SAM domain and HD domain-
containing protein 1 (SAMHD1) was shown to inhibit HIV
reverse transcription in resting T cells [30] by removing the
triphosphate from deoxynucleoside triphosphates (dNTPs),
decreasing deoxynucleotide precursors [31]. MX2 prevents
HIV integration into the host DNA, possibly by blocking gag
capsid-dependent nuclear entry [32••, 33••]. Many highly
exposed seronegative subjects have polymorphisms confer-
ring increased levels of MX2 expression [34]. Similarly, elite
controllers upregulate schlafen 11 (SLFN11) in CD4 T cells,
especially central memory CD4 T cells, compared to viremic
noncontrollers or patients on antiretroviral therapy (ART)
[35•]. SLFN11 binds transfer RNAs (tRNAs) to prevent
HIV’s alteration of tRNA composition, which facilitates its
protein production [36•]. IFN-stimulated gene 15 (ISG15)
subsequently prevents HIV release from budding cells [37].
More recently, an elaborate live-cell imaging system was used
to identify >50 novel factors that impact HIV replication
[38••], although the majority of these remain to be confirmed
by in-depth study. In sum, IFN-stimulated antiviral genes
target virtually every step of the HIV life cycle.

Whether all or only some of these restriction factors are
critical for controlling HIV infection in vivo remains un-
known. In addition, the degree to which these restriction
factors contribute to virus suppression during combination
antiretroviral therapy (cART), or conversely, the extent to
which their absence may contribute to low-level viremia,
remains to be determined. Furthermore, the expression of
restriction factors in the diverse tissues that HIV infects has
not been rigorously studied but may illuminate more details
about the pathogenesis of reservoir establishment.

Several ISGs Act to Amplify the IFN-I Response

More than 300 ISGs have been identified. Whereas some
ISGs restrict virus replication, others enhance pathogen-
associated molecular pattern (PAMP) detection and IFN sig-
nalling and amplify the IFN response. The best characterized
of these ISGs is the IRF7 transcription factor [39••]. IRF7,
“the master regulator” of IFN-I expression [40], is activated
by innate signaling from both the TLR and RLR family of
pathogen recognition receptors. In response to viral PAMPs,
pDCs rapidly produce IFN-α/β that induce IRF7 transcription
in neighboring cells, amplifying systemic IFN-I production.

Indeed, IRF7 polymorphisms have been associated with de-
creased IFN-α production by pDCs in response to inactivated
HIV-1 [41]. In addition to being a restriction factor, TRIM5α
acts as a pattern recognition receptor for the HIV capsid and
induces innate signaling [42]. The ISG cyclic guanosine
monophosphate–adenosine monophosphate (cGAMP) syn-
thase (cGAS) stimulates IFN-I production in response to
cytosolic DNA [38••, 43••]. cGAMP activates the protein
“stimulator of IFN genes” (STING) to activate IκB kinase
and TANK-binding kinase 1, which activate NFκB and IFN
regulatory factor 3 (IRF3), culminating in IFN-I production
[44••, 45••]. cGAS also triggers an IFN-I-independent antivi-
ral gene repertoire [43••]. Another DNA binding protein,
IFN-γ-inducible protein 16 (IFI16) [46], also activates
STING, resulting in IFN-I production [47]. Consistent with
their roles in DNA detection, cGAS and IFI16 mRNA levels
are higher in viremic than suppressed HIV-infected patients
[48]. IFI16 may also contribute to low CD4 T cell counts and
increased T cell activation by inducing inflammasome activa-
tion and pyroptosis in quiescent CD4 Tcells [49••, 50•]. Thus,
numerous ISGs, once induced, act to perpetuate IFN-I pro-
duction. This feed forward cycle of IFN-I induction acceler-
ates innate responses to combat acute viral infections.
However, in chronic, nonclearing infections such as HIV, the
persistence of the innate response may have detrimental cyto-
pathic effects.

Effect of IFN on Antiviral Cellular Immunity

Type I IFNs support the proliferation and survival of NK cells
[51], stimulate their activation, and enhance their cytotoxic
activity (Fig. 1e) [52]. Although IFN-Is may activate NK cells
directly through the IFN-α receptor (IFNAR), recent data
suggest IFN-I also induces NK cells and DCs to upregulate
IL-15Rα, which binds and cis- or trans-presents IL-15 to NK
cells, respectively [53, 54]. NK cells mediate antiviral re-
sponses primarily through the release of cytotoxic granules.
However, activated NK cells modulate T cell responses by
regulating antigen presentation—NK cell depletion prior to
LCMV infection can actually enhance antigen-specific CD4
and CD8 T cell function [55, 56]. Intriguingly, IFN-I also
renders CD8 Tcells resistant to NK-cell-mediated cytotoxicity
by stimulating their upregulation of MHCmolecules that bind
NK cell inhibitory receptors (Fig. 1d) [57•]. In the absence of
IFN-I signaling, activated CD8 T cells upregulate NK cell
activating ligands that render them susceptible to NK-cell-
mediated cytotoxicity [58•]. Thus, in acute infections, type I
IFN signaling may simultaneously activate NK cell cytotox-
icity and render activated CD8 T cells resistant to NK cell
attack.
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Recent data from the LCMV mouse model indicate that
chronic type I IFN signaling may be detrimental to antiviral
CD4 T cell responses (Fig. 1). Infection with the clone 13
strain of LCMV results in a chronic infection with persistent,
uncontrolled viremia, resembling HIV infection, that can
model the deleterious effects of persistent TLR signaling on
the immune system. Indeed, this model was used to charac-
terize the exhaustion marker PD1 on dysfunctional CD8 T
cells in unresolved LCMV infection [59]. ISGs are transiently
upregulated in infection with the self-limited LCMV
Armstrong (Arm) strain but persistently upregulated with the
chronic LCMV clone 13 (Cl13) infection [60•], and these
ISGs were upregulated in PD1+ CD4 and CD8 T cells [61].
Blocking IFN-I signaling during acute LCMV-Arm infection
decreased the number and function of CD8 Tcells and delayed
virus clearance [60•, 62••]. In contrast, IFN receptor blockade
before and after establishment of chronic LCMV infection
with the LCMV-Cl13 strain resulted in increased early viremia
but improved virus control during chronic infection. CD4 T
cell function was restored in conjunction with decreased PD-
L1 and IL-10 expression on DCs [60•, 62••]. Accordingly,
PD1 signaling blockade has also been shown to reduce vire-
mia in LCMV [59], SIV [63], and HIV infection in humanized
mice [64]. Collectively, these data suggest early IFN-I signal-
ing may enhance viral control during acute infection but
contribute to persistent viremia during chronic infection by
inhibiting cellular immunity.

Manipulation of the IFN-I System In Vivo

In chronic infections such as HIV, it is possible that the effect
of IFN-I on NK cell cytotoxicity or CD4 and CD8 T cell
responses may be more important than induction of ISGs
and restriction factors on host survival. Significant progress
has been made in establishing humanized murine models of
HIV infection so that gene-targeting studies can begin to
systematically unravel the interplay of these factors. Given
the complexity of the IFN-I system, in vivo manipulation is
critical to understanding the relative contributions of its effects
on HIV pathogenesis.

HIV infection can be envisioned as three different biolog-
ical conditions: acute infection—a dynamic state with an
evolving cytokine storm, upregulation of antiviral factors,
establishment of the reservoir, followed by a decrease in
viremia to the virus set point; chronic untreated HIV infec-
tion—with steady cytokine production, constant yet low-level
ISG expression, stable viremia, and gradual CD4 T cell de-
pletion; and chronic HIV infection with virologic suppres-
sion—with even lower cytokine production, undetectable vi-
remia, and CD4 T cell stability or recovery. Manipulation of
IFN signaling in these three stages may have differential
impacts. In the sections below, we will summarize the clinical

information that has been gained from in vivo manipulation of
IFN-I signaling in the setting of lentivirus infection, with
special emphasis on recent interventional studies in NHP/
SIV models.

Early IFN-α Monotherapy Clinical Studies in HIV Infection

The first study of type I IFN administration in HIV-infected
patients was published just 3 years after the initial clinical
description of AIDS [65]. Subcutaneous (SQ) IFN-α admin-
istration to patients with Kaposi’s sarcoma (KS) [65, 66]
resulted in lower HIV burden and higher CD4:CD8 T cell
ratios in some treated subjects compared to placebo (see
Table 1). Subsequently, several studies evaluated SQ or intra-
muscular (IM) IFN-α in subjects who were asymptomatic
and/or with minimal immunosuppression [67–70]. Overall,
IFN-α-treated groups had a less severe CD4 decline (and in
some instances an increase), lower HIV burden, fewer oppor-
tunistic infections, and slower disease progression, despite
increased frequency of activated CD8 T cells.

Optimism arose from several studies of oral IFN-α report-
ed administration in the early 1990s. In one influential study
of 32 critically ill AIDS patients, 16/16 control patients died
whereas 14/16 IFN-α-treated patients survived to hospital
discharge [71]. A larger study from the same group reported
increased Karnofsky scores and fewer symptoms in the treated
subjects [72].Whereas some studies reported an attenuation of
CD4 depletion (or even an increase) with oral IFN-α [73, 74],
several large, randomized, placebo-controlled, double-blind
studies failed to show a statistically significant benefit
[75–77]. With the unarguable efficacy of cART evident by
the late 1990s, particularly in patients with lower CD4 T cell
counts, and the preponderance of negative data from these
rigorous studies, oral IFN-α monotherapy as an HIV treat-
ment was abandoned.

IFN-α as an Adjunct to Antiretroviral Therapy

The approval of zidovudine and, eventually, many other
antiretrovirals, renewed interest in parenteral IFN-α as an
adjunct therapy. The combination of zidovudine with IM or
SQ IFN-α in KS patients conferred decreased HIV burden in
most studies, although the IFN-α and zidovudine doses and
study duration varied widely (see Table 2) [78–80].
Subsequently, over a dozen studies have been performed in
subjects on one, two, or three (or more) antiretrovirals with
diverse CD4 T cell counts and HIV burdens. The majority of
studies were performed in participants with detectable p24
antigen or HIV RNA and showed a decline in virus burden
when IFN-α+ART was compared to ART alone [81–85].
More recently, a study of patients with hepatitis C and sup-
pressed HIV RNA levels who received IFN-α with ribavirin
showed a decrease in CD4 T cell-associated total and
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integrated HIV DNA that persisted after stopping IFN-α and
ribavirin [86]. However, none of these studies showed a
statistically significant, sustained improvement in CD4 T cell
recovery with the addition of IFN-α to ART, and rates of
progression were unaffected by 52 weeks of IFN-α in one
study with 15 years of follow-up [85]. While IFN-α adminis-
tration can decrease virus rebound in the setting of a structured
treatment interruption, lower CD4 T cell counts ensue [87,
88]. The net result from these clinical studies is that, despite a
suppressive effect on HIV burden, adding IFN-α to an effec-
tive ART regimen does not significantly improve CD4 T cell
reconstitution or clinical outcome.

IFN-α Administration in Natural Host Species of SIV

As noted above, SIV infection of disease-susceptible macaque
species (rhesus, cynomolgus, pigtailed) results in an early
surge of ISG expression that persists indefinitely. In contrast,
SIV infection of natural host species (sooty mangabeys,
African green monkeys) results in a nonpathogenic infec-
tion—and despite early expression, ISGs quickly normalize
[5, 6]. To test the possibility that the resolution of ISGs was
responsible for protection from disease, two studies tested the
effect of IFN-α administration in natural host species. The
administration of high doses of recombinant IFN-α during

Table 1 Studies of IFNα Administration in Subjects Not on Antiretroviral Therapy

Population Intervention Effect Citation

SQ or IM IFNα

37 HIV+ patients with
Kaposi's sarcoma (KS)

SQ IFNα dose escalation
to 36–45 MU daily×28 days

KS Responders: 1 of 4 died,
↑CD4:CD8 ratio

KS Non-responders: 15 of 19 died

Krown et al., 1984 [65]

27 HIV+ patients with
Kaposi's sarcoma

SQ IFNα2b 35 MU daily
× 12 weeks or placebo

>75 % ↑ in antigenemia in 2/21
of the IFN group and all 6
placebo subjects

Lane et al., 1988 [66]

34 HIV+ patients,
CD4≥400 cells/mm3

SQ IFNα 35 MU daily or
placebo, × ≥12 weeks

IFN: No decrease in %CD4,
7/17 HIV culture (−), no OIs

Placebo: Decreased %CD4,
2/17 HIV culture (−), 5 OIs

Lane et al., 1990 [67]

162 HIV+ patients,
asymptomatic

IM IFNα2b 3 MIU TIW or
no treatment, indefinitely

IFN group had longer mean
survival, higher survival
rates, slower disease
progression versus no treatment

Rivero et al., 1997 [68]

13 HIV+ patients, no ART,
CD4>300 cells/mm3, HIV
RNA>5000 copies/ml

IM pegylated IFNα2a 180 ug
weekly × 12 weeks

IFN: Transient ↑ in %CD4,
↓ HIV RNA levels, ↑ %
HLA-DR+ CD38+ CD8 T cells

Asmuth et al., 2010 [69]
Manion et al., 2012 [70]

Oral IFN

32 critically ill HIV+ patients Oral IFNα or supportive
management

IFN: 14 of 16 discharged in
2–4 weeks, 2 died

No treatment: All died within 4 weeks

Obel et al., 1990 [71]

199 symptomatic and 5
asymptomatic HIV+ patients

Oral IFNα 2.0 IU/kg × ≥10 weeks Mean Karnofsky score ↑ from
60.5 to 100

Fewer HIV symptoms

Koech and Obel, 1990
[71, 72]

40 HIV+ patients Oral IFNα 75–600 IU daily or no
drug × 19–700 days

IFN: 5 died (4 due to HIV, 1 suicide);
13 had smaller CD4 count ↓ than
unmatched, untreated patients

Babiuch et al., 1993 [73]

a) 252 HIV+ patients
b) 40 HIV+ patients, CD4
counts 350–500 cells/mm3

c) 38 HIV+ patients, CD4
counts >700 cells/mm3

a) Oral IFNα 150 IU daily
+/− zidovudine

b) Oral IFNα 150 IU daily,
zidovudine, both, or neither

c) Oral IFNa 150 IU daily or
nothing

a) CD4 counts ↑ in both groups
b) CD4 counts were higher in IFNa group
compared to zidovudine or neither groups

c) IFNα group had 16 % ↑ in CD4 counts and
untreated group had 11 % ↓ at 6 months

Jordan, 1994 [74]

177 HIV+ patients Oral IFNα 0.1 or 1 or 10 IU/pound
or placebo

Non-significant ↑ in CD4 count
in low-dose group at 6 months
and enhanced survival

Wright et al., 1998 [75]

559 HIV+ patients, WHO
stage 2–4, Karnofsky score >50

Oral IFNα 150 IU daily or placebo
× 28 or 60 weeks

No difference in mortality rate, disease
progression, CD4 count decline,
Karnofsky score, or symptom prevalence

Katabira et al., 1998 [76]

247 HIV+ patients, CD4 counts
50–350 cells/mm3 and HIV
symptoms, with or without
maintenance ART

Oral IFNα 500 IU liquid or
150 IU lozenge or 200 IU tablet
or placebo × 24 weeks

No significant differences in symptom
burden index, weight change, CD4
counts, or Karnofsky score

Alston et al., 1999 [77]
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Table 2 Selected studies of IFNα Modulation in Subjects on Antiretroviral Therapy

Population Intervention Effect Citation

IFNα Administration

39 HIV+ patients with KS SQ IFNα 5–20 MU daily ×
12 weeks, after 6 weeks of
zidovudine 50/100/250 mg q4h

8 of 22 patients that received
a stable dose of both IFNα
and zidovudine had ↓ p24 antigenemia

Kovacs et al., 1989 [79]

21 HIV+ patients with KS IM IFNα 18 MU and zidovudine
600 mg daily × 4 weeks

No decrease in HIVantigen levels de Wit et al., 1991 [78]

17 HIV+ patients with KS SQ IFNα 10 MU daily and
zidovudine 250 mg bid ×
12 weeks

No change in CD4 counts but ≥70 %
↓ of HIV p24 antigen in 7 of 10
antigenemic patients

Baumann et al., 1991 [80]

16 asymptomatic HIV+ patients Zidovudine 250 mg bid +
a) SQ IFNα 1.5 MIU TIWor
b) acyclovir 800 mg bid × 12 weeks

p24 antigen ↓ in all patients with
both regimens

No difference between regimens

Weber et al., 1991 [102]

13 HIV+ patients on >6
weeks zidovudine

SQ IFNα 1.25-7.5 MU/m2

TIW+zidovudine 200 mg q4h
p24 antigen ↓ by >50 % in 11/13 at

11 weeks then ↑
CD4 counts ↓ by 7.1 cells/mm3 per week

Edlin et al., 1992 [81]

45 HIV+ symptomatic patients
with CD4 counts≥150 cells/mm3

Zidovudine 250 mg QID +
SQ IFNα 3 MIU TIW or no

treatment × 48 weeks

Nonsignificantly lower ↓CD4 counts
and greater p24 antigen ↓ in combination
group

No differences in disease progression

Frissen et al., 1994 [103]

34 HIV+ symptomatic patients
with CD4 counts>200 cells/mm3

SQ IFNα 2–6 MIU and/or
zidovudine 200-600 mg daily ×
12 weeks then

IFNα+zidovudine for 96 weeks

↓antigenemia in combination therapy
at 12 weeks more than either IFNα
or zidovudine alone

High-dose was most effective after
96 weeks

Mildvan et al., 1996 [82]

256 HIV+ patients, CD4 counts
300–500 cells/mm3

SQ IFNα 3 MU daily+zidovudine
200 mg TID+didanosine 0.75 mg
TID or zidovudine+didanosine

Greater HIV RNA ↓ in IFNα arm
↑CD4 T cell counts in control arm
High discontinuation rate, especially

in IFNα arm

Haas et al., 2000 [83]

259 HIV+ patients failing
current cART regimen

SQ PEG-IFNα 0.5-3 μg/kg or
placebo weekly+current cART
× 4 weeks then optimized cART
× 24 weeks

Greater HIV RNA ↓ in IFNα arm
No significant differences in CD4

T cell counts

Angel et al., 2009 [84]

180 HIV+ patients with CD4
counts≥500 cells/mm3

SQ IFNα2b 1 MIU daily and/or
zidovudine 200 mg q4h with
dose escalation as tolerated
× 52 weeks

Greater HIV RNA ↓ in IFNα arms
Transient ↑CD4 T cell frequency in

IFNα groups
Similar rates in progression to AIDS

after 15 years

Tavel et al., 2010 [85]

168 HIV+ patients with
undetectable HIV RNA levels
on cART

SQ pegylated IFNα 1.5 μg/kg
from day 15 of cART interruption
to day 8 after resumption or no
treatment

Greater CD4 T cell ↓ in the IFNα arm
↓ HIV RNA rebound in the IFNα arm
Does not prolong time to treatment

resumption

Boué et al., 2011 [87]

89 primary HIV+ patients SQ pegylated IFNα2b 1 μg/kg
weekly × 14 weeks +

a) cART × 36 weeks then 4 week
cART interruption at weeks 36, 48, 60
with IFNα or

b) cART with interruptions at
weeks 36, 48, and 60 or

c) continuous cART through week 72

↓ HIV RNA rebound in IFNα group but
no difference in HIV RNA levels 6
months after stopping cART

↓ CD4 T cell recovery in IFNα group,
but no difference by 6 months after
stopping cART

Goujard et al., 2012 [88]

12 HIV+ patients with HCV
co-infection and suppressed
HIV RNA

SQ IFNa2a 180ug weekly and
ribavirin 500–600 mg BID

2-fold decrease in CD4 T cell-associated
total and integrated HIV-1 DNA during
therapy that persisted after cessation

Sun et al., 2014 [86]

Vaccination against IFN

12 HIV+ patients on ART ≥1y,
CD4 counts 100–300 cells/mm3

Adjuvanted inactivated IFNα2a
+ART versus adjuvant+ART

Viral load did not increase in vaccinees;
↑/unchanged in placebo group

No vaccinees but 2 placebo subjects
developed AIDS

Gringeri et al., 1995 [99]

89 HIV+ with early (no ART)
or advanced (ART) disease

Adjuvanted inactivated IFNα2a
(N=27) or no treatment (N=62)

No clinical deterioration or ↓CD4 count
in vaccinees compared to progression
in untreated subjects

Gringeri et al., 1996 [4]

242 HIV+ asymptomatic
patients, CD4 counts≥100
cells/mm3

Adjuvanted inactivated IFNα2a or
placebo, double-blind randomized
placebo-controlled trial

Vaccine responders had ↓ HIV-related
events compared to placebo or
non-responders

Gringeri et al., 1999 [3]
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days 9–24 of acute SIVagm infection in African green mon-
keys did not upregulate ISGs, decrease viremia, or affect Tcell
activation or CD4 T cell decline [89]. In contrast, SIV levels
decreased in the one African green monkey treated during
chronic infection, without changes in T cell activation [89].
Similarly, administration of recombinant IFN-α to chronically
infected sooty mangabeys resulted in a modest ISG upregula-
tion and decreased viremia, yet had no effect on cell-
associated virus, CD4 T cell activation, or CD4 T cell counts
[90•]. A modest, but transient, reduction of CD8 immune
activation was observed. Thus, exogenous IFN-α in non-
pathogenic SIV infection decreases viremia during chronic
but not acute infection with minimal impact on immune
activation, viremia, or disease progression.

In Vivo Inhibition of TLR Signaling in HIV/SIV Infection

As noted above, pDCs are key producers of type I IFNs.
Administration of chloroquine, which inhibits TLR7 and
TLR9 signaling by preventing endosomal acidification, dur-
ing acute SIVmac251 infection unexpectedly increased ISG
expression and decreased CD4 Tcell recovery [91]. Similarly,
administration of hydroxychloroquine to ART-naïve patients
resulted in lower CD4 T cell counts, higher HIV RNA levels,
and possibly decreased CD8 T cell activation [92, 93], where-
as administration to immunologic nonresponders (lack of
CD4 T cell reconstitution after ART) reduced T cell activation
and inflammation and improved CD4 T cell frequency [94].
However, in another study of immunologic nonresponders,
the addition of chloroquine to ART for 24 weeks increased
IFN-α2 levels but had no impact on CD4 T cell counts, T cell
activation, or circulating inflammatory markers [95]. Thus,
indirect attempts to block IFN-I signaling thus far have had
mixed success but appear to require ART suppression to exert
any beneficial effect.

In Vivo Blockade of IFNAR in SIV Infection

We recently performed a comprehensive in vivo study in
which we manipulated IFN-I signaling during SIV chal-
lenge and acute infection in rhesus macaques (RMs)
[96••]. In one group of RMs, an antagonist of the
IFNAR (IFN-1ant) was administered during acute
SIVmac251 infection; pegylated IFN-α2a was given to
a second cohort of RMs during acute infection, starting
1 week prior to rectal inoculation; and a third group of
RMs received placebo saline during acute infection
[96••]. Interfering with IFN-I signaling during acute
SIV infection proved to have a profound impact on
disease progression and survival. Administration of
IFN-1ant from day 0 through day 28 of acute SIV
infection delayed the upregulation of ISGs, including
many of the aforementioned antiviral mediators, and

many pattern recognition receptors by several days, but
ultimately, they had comparable expression levels to
placebo RMs. Nevertheless, this delay of IFN-I signaling
during the first 10 days of infection proved to have a
dramatic effect on the chronic phase of infection, as
higher viremia, increased CD4 T cell depletion, and
accelerated progression to AIDS and death ensued. In
contrast, administration of pegylated IFN-α2a starting
1 week prior to rectal challenge conferred protection
against systemic infection, as all RMs needed repeat
exposures to become systemically infected with the high
inoculum dose. This protective effect was dependent
upon ISG upregulation. An IFN-I-tolerant state was
established, potentially mediated by FOXO3a, ultimately
resulting in delayed ISG expression during acute infec-
tion and a concomitant increase in cell-associated SIV
and CCR5+ CD4 T cell depletion [96••]. Together, these
data indicate that the precise timing of antiviral gene
expression during acute SIV infection in the pathogenic
host can profoundly influence disease outcome. The
finding that IFN-α2a prevented infection, at least tempo-
rarily, contrasts with the results of a previous study
targeting transmission and acute SIV infection.
Administration of IFN-α2b or the IFN-αB/D chimera to
rhesus macaques starting 1 day before intravenous chal-
lenge with SIV DeltaB670 and continued through 90 days
post-infection decreased peak antigenemia but did not
impact disease progression [97]. The differential impact
on acquisition may be attributed to the pathogenicity of
SIV DeltaB670 or to the contribution of the rectal muco-
sal barrier, both structurally and as a consequence of
local ISG upregulation and its consequences. ISGs were
not evaluated in the intravenous challenge study, so
whether they were persistently upregulated or whether
tolerance developed is unknown. In contrast, 14 weeks
of pegylated IFN-α2a administration starting during
chronic SIV infection resulted in transient ISG upregula-
tion but no impact on plasma SIV RNA levels in rhesus
macaques [98]. Taken together, no NHP interventional
study has demonstrated that IFN-I administration can
slow progression.

Vaccination Against IFN-α in HIV-Infected Patients

In the 1990s, several clinical trials of an adjuvanted vaccine
targeting endogenous IFN-α2a were pursued (see Table 1).
Vaccination induced anti-IFN-α antibody production, but
there was no detectable effect on CD4 T cell counts or HIV
burden. However, vaccine responders had fewer HIV-related
events compared to nonresponders or people who received the
placebo [3, 4, 99], but the responders also had higher CD4 T
cell counts, and some subjects were taking ART, rendering the
data difficult to interpret.
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Conclusion

Based on the combined human and animal model data,
administering IFN-I during intravenous challenge, acute
infection, or viremic or ART-suppressed chronic infec-
tion yielded no benefit, whereas it protected against
rectal acquisition as long as IFN-I signaling was upreg-
ulated, suggesting that manipulation of the IFN system
may have some potential for HIV prevention but a
mucosal interface may be necessary. It is worth noting
that a similar experiment has not been tested with the
vaginal challenge model. Although it is an anatomical
barrier, the vaginal mucosa does not contain the large
population of potential target cells for HIV or SIV that
are resident in the rectum. Whether a similar IFN-I-
induced protective effect would be observed with a
vaginal challenge is unknown, as several studies have
shown that increased local inflammation may instead
facilitate infection by recruiting target cells that are
already present in the rectal mucosa. Indeed, increased
vaginal inflammation is associated with increased sus-
ceptibility to HIV infection [100, 101]. Thus, the net
result of simultaneous target cell recruitment to the
vaginal mucosa and antiviral gene induction in response
to IFN-I administration remains unknown, and the mode
of acquisition may be necessary to consider with future
vaccine platforms. In addition, the creation of an IFN-I-
tolerant state with repeated IFN-α administration raises
concern about vaccines that elicit ISGs. A vaccine that
prevented HIV temporarily but ultimately disarmed the
innate immune system and precipitated faster disease
progression would be counterproductive. Elucidating
the triggers of an IFN-I-tolerant state, and ultimately
preventing it, will be critical when considering
adjuvanted vaccines for HIV prevention. Alternatively,
inducing higher but transient ISG expression during
acute infection may be beneficial, but this has not been
clearly demonstrated with interventions used thus far. In
addition, the timing of when ISGs are beneficial, un-
necessary, or detrimental in HIV infection, particularly
with effective cART, remains largely unknown.

Outstanding Questions

1. Can IFN-I signaling be further increased during acute
infection, and if so, would this increase virus control or
increase detrimental immune activation?

2. Would adding IFN-I to cART during acute infection re-
duce the reservoir and slow progression more than cART
alone?

3. Which cells are producing IFN-I in chronic infection?
4. Could supplementation of IFN-I to cART treatment dur-

ing chronic infection reduce the viral reservoir?

5. Would blocking IFN-I signaling while administering
cART during acute infection be detrimental because of
the decreased restriction factor expression or advanta-
geous because of decreased target cell recruitment and
virus spread?

6. Would blocking IFN-I signaling while administering
cART during chronic infection increase the reservoir be-
cause of the decreased restriction factor expression, and
could it be used as a tool to reverse latency?

7. Conversely, could blockade of IFN-I in cART-suppressed
HIV infection decrease end-organ disease and the reser-
voir because of decreased immune activation and inflam-
mation and increased T cell responses?

Despite over 30 years of research, the exact role of IFN-I in
HIV disease progression remains unclear. Numerous ques-
tions remain, and whether augmenting or blocking IFN sig-
naling is the best strategy for prevention, treatment, and cure
remains a pivotal area for HIV research.
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