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Abstract Increased life expectancy due to improved efficacy
of cART has uncovered an increased risk of age-related mor-
bidities in HIV+ individuals and catalyzed significant research
into mechanisms driving these diseases. HIV infection in-
creases the risk of non-communicable diseases common in
the aged, including cardiovascular disease, neurocognitive
decline, non-AIDS malignancies, osteoporosis, and frailty.
These observations suggest that HIV accelerates immunolog-
ical ageing, and there are many immunological similarities
with the aged, including shortened telomeres, accumulation of
senescent T cells and altered monocyte phenotype/function.
However, the most critical similarity between HIV+ individ-
uals and the elderly, which most likely underpins the

heightened risk of non-communicable diseases, is chronic
inflammation and associated immune activation. Here, we
review the similarities between HIV+ individuals and the
aged regarding the pathogenesis of inflammatory diseases,
the current evidence for mechanisms driving these pro-
cesses and discuss current and potential therapeutic strat-
egies for addressing inflammatory co-morbidity in HIV+
infection.
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Introduction

Chronic inflammation is a hallmark of ageing and is recog-
nized as a central mechanism driving many age-related dis-
eases. Indeed, levels of inflammatory markers including IL-6,
TNF, and high sensitivity C-reactive protein (hsCRP) are
independently associated with non-communicable diseases
including cardiovascular disease (CVD), frailty and
neurocognitive decline (see Table 1 for summary). HIV infec-
tion induces significant inflammation and this is incompletely
restored by combination antiretroviral therapy (cART) [1];
elevated levels of inflammatory markers TNF, IL-6 and
hsCRP as well as markers of innate immune activation includ-
ing soluble (s) CD14, sCD163, and CXCL10 persist in com-
bination antiretroviral therapy (cART)-treated individuals de-
spite sustained viral suppression [2-5].

When comparing HIV infection and ageing, the question
arises as to whether HIV is accelerating normal immunolog-
ical ageing processes or whether both conditions result in
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Table 1 Associations between
inflammatory markers and mor-
bidities in HIV+ individuals and
the general population

HIV+ General population

Cardiovascular disease and risk factors

LPS Measures of CVD

Progression of cIMT [69],
Endothelial dysfunction [71]

CVD risk factors

Hypercholesterolaemia [72], Insulin
resistance [72], Hypertension
[73]

CVD risk factors

Metabolic syndrome [160]

LBP CVD risk factors

Metabolic syndrome [161]

IL-6 Measures of CVD

Cardiovascular events [25••, 162]

CVD risk factors

Obesity [163]

Measures of CVD

Sudden cardiac death [164, 165]

Cardiovascular events [22, 165-167]

hsCRP Measures of CVD

Cardiovascular events [162] [25••],
Progression of cIMT [168]

CVD risk factors

Metabolic syndrome [169],
Diabetes [170]

Measures of CVD

Cardiovascular events [165, 171]

CVD risk factors

Insulin resistance [172]

D-Dimer Measures of CVD

Endothelial dysfunction [25••,
110, 173]

HLADR+CD38+ Tcells Measures of CVD

Carotid artery plaques [107] [174]

Carotid artery stiffness [108]
sTNFRI/II CVD risk factors

Obesity [163], Diabetes[170]

Measures of CVD

Cardiovascular events [171]

sCD14 Measures of CVD

Increased cIMT [175], cIMT
progression [69]

CVD risk factors

Hypertension [73]

CVD risk factors

Diabetes [64•], Hypertension [64•]

TNF Measures of CVD

Coronary artery calcium [176]
sCD163 Measures of CVD

Arterial inflammation [26•],
Non-calcified coronary artery
plaques [40]

Measures of CVD

Atherosclerosis [177]

CVD risk factors

Insulin resistance [172, 178, 179],
Diabetes [180]

MCP-1 Measures of CVD

Coronary artery calcium [176]
P-selectin

(CD62P)

Measures of CVD

Cardiovascular events [162]
sVCAM-1 Measures of CVD

Carotid artery plaques [174]
Neurocognitive impairment (including HAND)

LPS [68, 181]

IL-6 [68] [22] Future cognitive decline [182]

hsCRP [22, 183]

sTNFR-I/II [184]

sCD14 [68, 185, 186] [184]

TNF Alzheimer’s disease [187, 188]
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chronic inflammation and increased co-morbidities due to
parallel but mechanistically different pathogeneses. This ques-
tion is critical to inform how best to prevent these conditions
both in the setting of HIV infection and in HIV seronegative
individuals with underlying low level chronic inflammation.
Here we review the similarities in inflammatory disease
pathogenesis between HIV+ individuals and the aged, and
explore causative mechanisms to identify whether lessons
we have learned from healthy ageing can guide prevention
of non-communicable co-morbidities in the HIV+ popula-
tion. We start by defining inflammation and immune acti-
vation, as these are commonly confused, then focus on two
major age-related morbidities, cardiovascular, and bone
disease.

The Relationship between Inflammation, Immune
Activation and Immunosenescence

Whilst inflammation and immune activation are intimately
related, these two parameters are discrete and are indicated
by a distinct set of biomarkers. Inflammation is typically
indicated by elevated plasma levels of pro-inflammatory cy-
tokines (e.g., TNF, IL-6) and inflammatory markers such as
the acute phase protein hsCRP. Soluble forms of the TNF
receptors (TNFRI and TNFRII) are shed following TNF

stimulation and are thus used as a biomarker of TNF-
activation as levels are higher and more stable than TNF itself.
Monocyte/macrophage activation biomarkers include the sol-
uble lipopolysaccharide (LPS) receptor component CD14
(sCD14) which is shed following LPS stimulation [6], and
neopterin and CXCL10, which are indicative of IFNγ-
mediated activation [7, 8]. The function of the biomarker is
not always consistent with how it is interpreted, such as with
sCD163 which is used as a biomarker of inflammation-
induced monocyte/macrophage activation, although CD163
itself exerts an anti-inflammatory effect [9]. Immune activa-
tion is typically measured by cellular markers such as HLA-
DR and CD38 on T cells, CD40, CD80, and CD86 on den-
dritic cells [10] and CD11b on monocytes [11]. Markers of
inflammation are often assumed to correlate with cellular
activation, although this cannot always be assumed. Final-
ly, chronic immune activation drives immunosenescence,
which is indicated by differentiation/senescence markers
such as CD57 and loss of CD28, and immune senescence
can itself trigger further inflammation (discussed below)
and immune dysfunction. The mechanistic links between
inflammation, immune activation, and immune senescence
(depicted in Fig. 1) likely vary under various pathological
states and careful correlative analysis is required to define
the most informative biomarkers for HIV-related non-
communicable diseases.

Table 1 (continued)
HIV+ General population

sCD163 [189]

neopterin Alzheimer’s disease [190]

Malignancies

LPS Non-Hodgkins lymphoma [191]

IL-6 All cancers [192] All cancers [193]

hsCRP All cancers [192] All cancers [193]

D-Dimer All cancers [192]

TNF All cancers [193]

sCD14 Non-Hodgkins lymphoma [191]

Bone disease/osteoporosis

T cell activation Bone mineral density [58]

hsCRP Bonemineral density [48••], Fracture risk
[50], Future bone mineral density loss
[194]

IL-6 Future bone mineral density loss
[194, 195]

TNF Future bone mineral density loss [196]

Frailty/disability

IL-6 [134, 196] [22, 197]

TNF [196]

CRP [196] [22, 198]

neopterin [199]
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Cardiovascular Disease

HIV+ individuals have an increased risk of CVD, with a
recent meta-analysis estimating the relative risk at 1.61 (95%
CI 1.43–1.81) for untreated individuals and 2.00 (1.70–2.37)
for those on antiretroviral therapy [12]. This risk is of similar
magnitude to that attributed to the traditional CVD risk factors
of male sex (HR 1.70; 1.32-2.18) and smoking (HR 2.35;
1.92-2.87) amongst HIV+ individuals in the DAD study [13].
Accurate determination of CVD risk in HIV+ individuals has
been confounded by differences in treatment status, virologic
suppression and differing adjustment for lifestyle and tradi-
tional risk factors. Whilst increased CVD risk persists after
adjusting for traditional risk factors [14], the field still requires
large-scale studies that adequately control for these and other
risk factors known to influence CVD. Part of the increased
CVD risk during HIV infection may be attributable to the
effects of cART, as the relative risk in cART-treated individ-
uals is 1.52 (95% CI 1.35-1.70) compared to untreated indi-
viduals [14]. Certain antiretroviral drugs including protease
inhibitors (PIs) and abacavir have been implicated in in-
creased CVD risk [15], however the link between abacavir
and CVD remains controversial as associations seen in large
cohort studies [16, 17] have not been confirmed in random-
ized control trials [18], and a recent meta-analyses found no
association between abacavir and CVD [19]. Beyond this,
there is an increased risk of CVD in HIV+ individuals which
cannot be explained by treatment and traditional risk factors.

Chronic inflammation has an established role in the devel-
opment of CVD in HIV+ and uninfected populations. In the
general population, both IL-6 [20] and hsCRP [21] levels
predict future cardiovascular events and increases in IL-6
levels in the elderly are associated with increased cardiovas-
cular risk [22]. Interest in the role of inflammation in the
development of CVD in HIV infection intensified following
the results of the SMART study, which showed that

interruptions to cART were associated with higher mortality
from non-AIDS events than continuous therapy [23]. These
findings were later linked to increased levels of the inflamma-
tory markers IL-6, hsCRP and D-dimer [24]. Further analyses
demonstrated that these markers were all independent predic-
tors for future cardiovascular events, even when adjusted for
known risk factors [25••].

The mechanism of inflammation-induced CVD involves
endothelial activation. Arterial wall inflammation measured
in vivo is heightened in HIV+ individuals with no known
atherosclerosis compared to matched controls, but similar to
HIV uninfected controls with known atherosclerosis, suggest-
ing this may be an early stage in CVD development [26•].
Inflammatory cytokines act on endothelial cells to induce
expression of adhesion receptors and increase chemokine
production, which in turn promotes attachment and migration
of leukocytes, particularly monocytes. A role for the chemo-
kine receptor CCR5 in the development of atherosclerosis in
HIV+ individuals is suggested by a link between carotid
intima media thickness (cIMT, a clinical marker of atheroscle-
rosis) and CCR5 mRNA levels in circulating leukocytes [27].
The antiretroviral drug maraviroc (a CCR5 antagonist) re-
duces inflammation-mediated recruitment of monocytes into
plaques and inhibits plaque progression in a murine model
[28], suggesting its therapeutic potential. However, pilot stud-
ies of cART intensification with maraviroc in poor immuno-
logical responders have yielded conflicting results regarding
its effect on immune activation [29, 30], with one study
showing maraviroc actually increased the proportion of
HLA-DR+/CD38+ T cells [30]. Some of these discrepancies
may be due to differences in immunophenotyping protocols,
and further work with validated processing protocols is re-
quired to determine the effect of CCR5 antagonists on im-
mune activation.

The migration of monocytes into developing atherosclerot-
ic plaques and their development into inflammatory, lipid–
laden foam cells is a critical early step in atherosclerosis
(reviewed in [31]). Using an in vitro model of transendothelial
migration, we have recently shown that monocytes from
HIV+ individuals show an increased propensity to become
foam cells and be retained in a model of sub-endothelial
plaques (Maisa et al. submitted). This appears to involve both
intrinsic alterations to monocytes and soluble factors, as our
data shows that blocking TNF ligation ameliorates foam cell
formation. These data suggest that in addition to their effects
on endothelial activation, inflammatory factors including TNF
may also act on monocytes to potentiate early atherogenic
processes. Pro-inflammatory CD16+ monocytes, which ex-
pand in the blood of both HIV+ individuals [3, 32-34] and
the elderly [3, 34-37], have been associated with increased risk
of cardiovascular events [38] and peripheral vascular disease
[39] in seronegative populations. Amongst viremic HIV+ in-
dividuals the phenotype of monocytes, including proportions

Fig. 1 Relationship between inflammation, immune activation and im-
mune senescence
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of monocyte subsets, is similar to that of uninfected individuals
with acute coronary syndrome [33] and levels of sCD163 are
associated with non-calcified atherosclerotic plaques in both
HIV+ men [40] and women [32], suggesting monocyte acti-
vation may contribute to CVD during HIV infection. Together,
these data suggest a key role for inflammatory cytokines and
monocytes activation in the pathogenesis of CVD in both HIV
positive and negative individuals.

Reduced Bone Mineral Density and Osteoporosis

HIV+ individuals also have reduced bone mineral density
(BMD) and an increased incidence of osteoporosis (odds
ratios of6.4 and 3.7, respectively) [41]. This manifests clini-
cally as a two-four fold increased prevalence of fracture [42]
and an increased rate of multiple fractures [43]. Like all HIV
co-morbidities, the cause of BMD loss in HIV+ individuals is
multifactorial; an increased prevalence of factors known to
affect BMD including low body mass index (BMI), smoking,
diet and HCV co-infection has confounded quantitation of the
HIV-specific effect. However, HIV seropositivity remains
significantly associated with reduced BMD after adjustment
for factors such as BMI [44]. Vitamin D deficiency is a well
known risk factor for bone disease in the general population
and although the prevalence of vitamin D insufficiency/
deficiency in HIV+ populations is high (50-90%) [45]), it is
similar to that of the general population.

Bone modeling is mediated by osteoclasts that resorb bone
and osteoblasts that promote bone formation. Osteoclasts are
activated via the receptor activator of NFκB ligand (RANKL)
that binds to RANK expressed on the osteoclast surface,
whilst the decoy receptor osteoprotegerin (OPG) antagonizes
RANKL action and promotes bone formation. Osteoclasts/
blasts and hematopoetic stem cells are derived from the same
bone marrow progenitors and osteoblasts have a significant
regulatory effect on function of immune cells (reviewed in
[46]). Inflammation deregulates the delicate balance between
osteoclast/blast activity; pro-inflammatory cytokines includ-
ing TNF and IL-6 increase RANKL production, which stim-
ulates osteoclast activity and bone resorption (reviewed in
[47]). Further evidence of inflammation in the pathogenesis
of osteoporosis is illustrated by hsCRP levels being indepen-
dently associated with low BMD and fractures [48••, 49].
Immune activation also contributes to altered bone formation,
as activated T and B cells produce significant amounts of
RANKL. Additionally, LPS is known to stimulate osteoclast
production [50]. Both chronic inflammation and immune
activation are thus well-recognized mediators of bone loss
and reduced BMD is a feature of chronic inflammatory con-
ditions including rheumatoid arthritis [51], inflammatory
bowel disease [52], diabetes [53], and chronic hepatitis infec-
tion [54]. In this sense, HIV is not unique in inducing

inflammation-induced BMD loss, although it remains unclear
whether the biochemical processes driving this are identical in
chronic inflammatory diseases and in healthy ageing.

In addition to the effects of inflammation and immune
activation, HIV-specific factors also induce BMD loss in
HIV+ individuals. In vitro and animal studies indicate that
viral proteins including gp120 and Vpr can stimulate osteo-
clast activity and BMD loss [55, 56]. ARV drugs also con-
tribute to BMD loss. cART initiation is associated with a 2-6%
loss in BMD within the first 2 years, irrespective of drug
regimen. Whilst PIs and tenofovir [44, 57] are associated with
increased BMD loss in cART-treated individuals, BMD loss
during cART initiation is thought to be primarily due to
disruption of the osteo-immunological balance associated
with immune-reconstitution. The effect of ARV toxicity and
ART initiation on BMD loss has confounded investigation of
the relationship between inflammation/immune activation and
bone loss during HIV infection and only limited data are
available. However, T cell activation and HLA-DR+CD4+/
CD8+ T cells are independently associated with low BMD in
the setting of HIV infection [58]. Longitudinal analyses, with
careful control for the use of tenofovir and PIs, are needed to
clarify the association between inflammatory factors and
BMD in HIV+ individuals.

Mechanisms Driving Chronic Inflammation
and Inflammatory Diseases: Similarities between HIV+
Individuals and the Elderly

The mechanisms contributing to chronic inflammation in
HIV+ individuals are multi-factorial and have been recently
reviewed elsewhere [1]. Here we focus on three mechanisms
which appear to contribute to inflammation and related dis-
eases in both HIV+ individuals and the elderly.

Microbial Translocation

Damage to the gut epithelium during HIV infection is thought
to result in increased translocation of microbial products from
the gut into the blood stream. The latter contribute to both
immune activation and chronic low level inflammation in
HIV+ individuals ([2] and reviewed in [59]). Microbial prod-
ucts including LPS [2, 60, 61] and 16s rDNA [62] are elevated
in the blood of both untreated and cART-treated HIV+ indi-
viduals. The soluble form of the TLR4 co-receptor CD14
(sCD14), is shed from the surface of monocytes upon activa-
tion by LPS [63] and we and others have reported that circu-
lating sCD14 levels are also elevated in HIV+ individuals [32,
60, 61]. Levels of LPS, sCD14 and 16s rDNA levels correlate
with traditional inflammatory markers including hsCRP [60,
64•, 65], IL-6 [60, 64•, 66], TNF [66], and D-dimer [60, 65],
supporting the hypothesis that microbial translocation and
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resultant immune activation drive inflammation in the setting
of HIV infection.

Following cART initiation, elevated LPS and sCD14 levels
decrease [61] but do not normalize [67]. sCD14 and LPS
levels reportedly correlate in many [61, 66, 68] but not all
[3, 69] studies and recent work suggests that sCD14 and LPS
levels may correlate only in patients with low CD4+ T cell
counts and high HIV viral loads [65], suggesting these two
markers should not be used indistinctly as measures of the
same process.

Markers of microbial translocation are predictive of disease
progression and mortality in HIV+ individuals [60, 70].
Amongst cART-treated individuals, elevated LPS levels are
associated with reduced brachial artery flow mediated dilata-
tion, indicating endothelial dysfunction [71], elevated choles-
terol and decreased insulin sensitivity [72]. Prospectively,
elevated LPS and sCD14 are independent predictors of future
hypertension in cART naïve individuals [73] and of progres-
sion of subclinical atherosclerotic plaques amongst treated
individuals, but not healthy controls [69]. Collectively, the
available data suggest a role for microbial translocation in
the development of CVD in HIV+ individuals.

There has been substantially less focus on microbial trans-
location during healthy ageing although recent evidence sug-
gests its relevance. We and others have reported elevated
plasma LPS [35] and sCD14 [67] levels amongst healthy,
older individuals. A cross-sectional analysis of over 5000
individuals found an increase in sCD14 with age and demon-
strated that baseline sCD14 predicted future cardiovascular
events andmortality, independent of traditional cardiovascular
risk factors [64•], suggesting a significant role of microbial
translocation in the development of CVD in the elderly.

Interpretation of these findings is limited by the difficulty
in measuring microbial translocation, particularly the unreli-
ability of LPS assays. The Limulus Amebocyte Lysate (LAL)
assay used to measure LPS and PCR amplification of16s
rDNA are both highly susceptible to contamination by bacte-
rial products, whilst LPS detection in serum and plasma is
limited by the presence of inhibitors. There is substantial
variation between individuals [74] and between serum versus
plasma [75] regarding the extent to which inhibitors affect
LPS detection. Heat inactivation and sample dilution can
partially overcome these effects [74, 75]. However, a recent
study using HIV+ samples suggested that dilutions of plasma
as low as 1:500 (greater than the commonly used dilutions of
1:5–10) may be required to overcome LPS inhibition [74].
The detection of sCD14 is technically more reproducible than
that of LPS, however, it is a marker of monocyte activation
and thus an indirect measure of microbial translocation. There
is also a substantial genetic contribution to sCD14 levels that
accounts for 33% of variation [64•]. Thus, methodological
differences and variations in assay performance could account
for some of the discrepancies observed in the literature.

Telomeres

Telomeres are short, repetitive nucleotide sequences located at
the ends of chromosomes, protecting them from degradation.
Telomere shortening is a biological marker of ageing; short-
ened telomeres have been associated with age-related diseases
including CVD diabetes and cancers (reviewed in [76] and
[77]). A large prospective study of 19,838 subjects in Den-
mark foundmodest but significant associations between short-
ened telomeres and myocardial infarction, ischemic heart
disease and early death [78]. Telomere length is an indepen-
dent risk factor for CVD outcomes in the general population
[79]. Telomere length correlates inversely with cIMT after
adjustment for age [80] and also withmarkers of diabetes [81].

Ageing is characterized by an accumulation of late-
differentiated T cells with both shortened telomeres and a
senescent phenotype (see section below). This population is
also expanded in HIV infection [82]. These senescent T cells
have a heightened production of TNF, IL-6 and RANKL [83],
potentially contributing to chronic inflammation and in-
creased bone resorption in both HIV+ individuals and the
aged. It is unclear whether telomere shortening and inflam-
mation are mechanistically connected or whether both are
indicative of an associated process, however the two phenom-
ena occur concurrently. Telomere shorting in HIV+ individ-
uals has been reported in T cells [84], and monocytes [35].
Given monocytes are not thought to undergo significant cell
division in the periphery, shortened telomeres in peripheral
blood monocytes is an unexpected finding and suggests short-
ening occurs within bone marrow precursor cells, a finding
which may have implications for other cell types arising from
these precursors including osteoclasts.

The mechanism underlying shortening of telomeres in
HIV+ individuals may relate to diminished effects of telome-
rase (the enzyme responsible for maintaining telomere length)
[84]; the normal up-regulation of telomerase in response to
cell stimulation is also defective in HIV+ individuals [85].
Nucleot(s)idereverse transcriptase inhibitors (NRTIs) impair
telomerase activity both in vitro and in vivo [84, 86]. NRTIs
act as substrates for not only HIVreverse transcriptase but also
telomerase and mitochondrial DNA polymerase γ (polγ). Our
findings from a small cohort study showed that HIV+ patients
receiving NRTIs had significantly shorter telomeres than in-
dividuals receiving non-NRTI-containing regimens or unin-
fected controls [86]. Inhibition of the telomerase reverse tran-
scriptase (TERT) may have additional effects independent of
telomere length, as the RT component of telomerase helps
protect the mitochondria from oxidative stress (reviewed in
[87]). The HIV proteins Tat [88] and Vpr [89] can inhibit
telomerase in vitro although interestingly, Vpr mutants from
long term non-progressors do not degrade TERT [89].

A mechanism of telomerase inhibition that may be com-
mon to HIV+ individuals and the elderly is inflammation, as
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TNF impairs telomerase activity in CD4+ [90] and CD8+ T
cells [91] in vitro. We have also shown that monocytes,
including the pro-inflammatory CD16+ monocyte subset,
from both young HIV+ individuals and aged seronegative
individuals show heightened basal and LPS-stimulated pro-
duction of pro-inflammatory cytokines and both groups show
shortened telomeres [3]. Thus, inflammation-induced telo-
mere shortening and the production of pro-inflammatory cy-
tokines by senescent T cells and activated monocytes may
represent a positive feedback loop driving further immune
senescence and inflammation in both HIV+ and aged
populations.

Cytomegalovirus (CMV)

CMV infection plays a significant role in driving immune
ageing and senescence and causes an expansion of late differ-
entiated T cells in aged individuals. In the aged, up to 27% of
total CD8+ T cells are specific for a small number of CMV
epitopes [92]. Recent findings suggest the expansion of late
differentiated CD28- memory T cells previously attributed to
ageing is predominantly driven by CMV infection [93••, 94].
CMV infection induces pro-inflammatory cytokine release
in vitro and serum CMV IgG levels correlate with inflamma-
tory markers (in [95]). CMV-seropositivity has also been
associated with increased risk of CVD [96] and mortality in
CVD patients [97].

CMV-specific CD8+ T cells are expanded in HIV+ indi-
viduals to almost twice the level as uninfected controls, and
this persists despite cART-treatment [98]. In HIV+ individ-
uals, serum levels of CMV IgG are elevated and are associated
with subclinical CVD [99, 100], whilst CMV-specific T cell
responses are independently associated with cIMT [101]. A
study of chronically infected HIV+ individuals in Thailand
found 26% of treatment-naïve participants had detectable
CMV DNA (a marker of CMV reactivation) [102]. Taken
together, these data suggest HIV infection, either directly or
indirectly, reactivates CMV and increases the immunological
burden resulting from infection with this virus. It is possible
that many of the age-related immunological effects of HIV
may actually be secondary to, or at the very least confounded
by, HIV-induced CMV-reactivation. However whilst direct
causality to these diseases, including CVD, has not been
demonstrated, inhibition of CMV with valganciclovir therapy
in cART-treated HIV+ individuals with low CD4+ T cell
counts mediated a significant reduction in CMV DNA and
CD8+ T cell activation [103].

Delineating the contribution of CMV to inflammation and
immune activation during both HIV infection and ageing is
difficult as CMV seropositivity is ubiquitous in both groups
(70-80% CMV seropositivity in HIV-negative individuals
aged >40 years and >90% in HIV+ individuals) and is rarely
controlled for in cohort studies. Serology for CMV has limited

value in providing evidence of reactivation. However quanti-
fication of CMV reactivation remains challenging as CMV
DNA viremia is rarely detected in healthy individuals, is
expensive to monitor, and CMV-specific T cell responses do
not always correlate with viremia. Whilst CMV-specific T cell
responses are more reflective of viral burden and more likely
to indicate reactivation than seropositivity a more sensitive
and reliable test for CMVreactivation is needed to help clarify
the above-mentioned issues.

T-cell Activation and Comorbidities in cART Treated
Patients

Immune senescence involves changes to many immune cell
types, but is often measured as the accumulation of highly
differentiated T-cells, particularly in the CD8+ T-cell compart-
ment (reviewed in [104]. T-cell senescence is characterized by
the loss of the co-stimulatory molecules CD27 and CD28,
expression of CD57, impaired proliferation, shorter telomeres,
as well as the secretion of pro-inflammatory cytokines IL-1,
IL-6, and TNF (reviewed in [105, 106]. CD8+ T-cell activa-
tion (CD38+HLADR+) and senescence (CD57+CD28-)
have been associated with markers of atherosclerosis and
vascular dysfunction in cART treated patients [107-109] al-
though more recent studies which adjust for other markers
have found markers of innate immune activation to be more
important [110-112]. There is also a reported association in
cART-treated HIV+ patients between CD8+ T-cell senescence
(but not T cell activation) and Kaposi’s sarcoma [113]. Al-
though the role of T-cell activation in the development of
comorbidities in HIV infection is currently unclear, numerous
studies have consistently shown that deficiencies in the number
of circulating CD4+ T-cells post-cART is a strong risk factor
for multiple age-related co-morbidities including CVD, osteo-
porosis, non-AIDS related malignancies, and frailty in cART
treated individuals [114-118]. These data collectively imply
that the adaptive immune systemmay have a more indirect role
in driving clinical end-points in HIV+ individuals.

Ageing with HIV in Resource Limited Settings

The majority of studies investigating age-related comorbidi-
ties in HIV+ population have been from developed countries
[119-121] and there are limited data from resource-limited
settings. However, the prevalence of non-communicable dis-
eases worldwide is high, and is responsible for substantial
mortality in both resource rich and poor countries [122-127].
In China, non-communicable diseases account for 80% of all
deaths and 70% of total disability-adjusted life-years lost
[128]. In North-eastern China, 29% of the urban population
has hypertension with adequate control only in 4% [125].
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A similarly high prevalence of comorbidities has also
been reported among HIV+ individuals living in develop-
ing countries. Approximately 70% of over 5000 women
recruited for a recent HIV prevention trial in Kwazulu
Natal, Africa (median age 27 years) were either overweight
or obese [123], with a similar proportion of HIV+ women
in South Africa also obese [129] and the prevalence of
hypertension among HIV+ individuals in some African
countries ranging from 10-45% [130-132]. In HIV+ indi-
viduals (median age 37 years) receiving cART in Taiwan,
the combined prevalence of osteoporosis/osteopenia was
40% [133]. These data collectively suggest that despite
differences in risk exposures between developed and de-
veloping country settings, non-communicable diseases are
a growing concern and are already presenting a major
disease burden both in the HIV+ and uninfected popula-
tions in resource limited settings.

Many of the HIV-related risk factors known to be associ-
ated with premature aging in HIV including advanced immu-
nodeficiency [116, 117], chronic immune activation and in-
flammation [134] and chronic co-infections [135, 136] are all
prevalent in the resource limited setting [137-141]. Most
HIV+ people residing in these countries are from poor socio-
economic backgrounds, an independent factor associated with
accelerated aging [142]. Whilst there is improved access to
ART, and globally HIV+ patients are living longer, there is
generally poor integration of health services in most HIV
health care facilities in these settings [143, 144]. Thus patients
are likely to present with non-communicable diseases only
after the development of significant morbidity. A greater
understanding of the extent and risk factors for age-related
comorbidities in the HIV+ population in resource limited
settings as well as the magnitude of specific pathogenetic
factors that may contribute to chronic inflammation and im-
mune activation (e.g., chronic parasitemia) is urgently needed
in order to assist public health efforts to integrate non-
communicable diseasemanagement into existingHIV preven-
tion and treatment programs.

Therapeutics

Preventing inflammatory disease by addressing disease
risk factors such as smoking, hypertension, obesity, vita-
min D deficiency, are equally important in both the HIV+
and general populations, but given the significant evidence
of shared disease pathogenesis, the question arises as to
whether different therapeutic approaches are required to
specifically target these non-communicable morbidities in
HIV+ individuals, or whether we can learn lessons from
healthy ageing.

Preventing inflammatory diseases by reducing inflamma-
tion seems an obvious approach, although anti-inflammatory

drugs are used cautiously in the aged due to adverse effects
including gastrointestinal bleeding. Low-dose aspirin is wide-
ly used for CVD prophylaxis in the general population; its
ability to prevent other age-related inflammatory diseases is
unproven. The efficacy of low dose (100 mg daily) aspirin
treatment for 5 years in preventing a range of age-related
conditions is currently being evaluated in a cohort of 19,000
individuals aged >70 years in the Aspirin in reducing events in
the elderly (ASPREE) trial [145]. Results from this study may
have relevance also in the HIV+ population. There are prom-
ising results from a 1 week trial of low-dose aspirin (325 mg
loading dose then 81 mg daily) in 25 cART-treated HIV+
individuals [146•] where a significant reduction in T cell
activation and plasma levels of sCD14 but not hsCRP, D-
dimer and IL-6, were noted. These anti-inflammatory effects
were hypothesized to be secondary to reduced platelet activa-
tion and thus monocyte activation, as the aspirin dose used
was well below that required to mediate anti-inflammatory
effects (3–4 mg daily).

Whilst statins are widely used in the general population
as cholesterol-lowering drugs, they also have immunologic
and cardioprotective effects including improved endothe-
lial function and reduced T cell activation as well as having
anti-inflammatory effects (for review see [147]). Trials
evaluating the anti-inflammatory efficacy of statins in
HIV+ individuals show mixed results. Rosuvastatin, ator-
vastatin, and pravastatin can significantly reduce serum IL-
6, TNF and hsCRP in cART-treated HIV+ individuals
[148], however anti-inflammatory effects of pravastatin
were not supported in a further trial [149]. Other studies
suggest statins can reduce immune activation without al-
tering markers of inflammation [150, 151]. Statin therapy
is associated with reduced all-cause mortality in HIV+
individuals with pre-diagnosed co-morbidity, but the ben-
efit in those without co-morbidity seems less significant
[152]. Larger randomized trials in HIV+ individuals are
required to clarify their beneficial effect in ameliorating
inflammation and inflammatory diseases.

Although chronic endotoxemia is present in both HIV+
individuals and the aged, elevated plasma LPS levels in
young HIV+ individuals [3], suggesting that agents that
inhibit LPS signaling may be of benefit in these patients.
A number of trials have investigated the efficacy of TLR
inhibitors chloroquine (CQ) and hydroxychloroquine
(HCQ) to reduce immune activation and resultant inflam-
mation. These agents block endosomal acidification and
thus activation of the endosomal TLR receptors TLR3, 7,
and 9. In a small study, CQ/HCQ reduced CD4+, CD8+ T
cell, and CD14+ monocyte activation and plasma LPS
and IL-6 levels in cART-treated non-immunologic re-
sponders [153, 154]. In contrast, HCQ use in treatment-
naïve participants with CD4+ T cell counts >400 cells/ml
did not significantly reduce CD8+ T cell activation or
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inflammation; in fact CD4+ T cell decline and plasma
viral load were significantly increased in the HCQ arm
[155]. These results suggest that inhibition of TLR re-
sponses in viremic HIV+ individuals may have adverse
effects on HIV control and suggest these drugs might only be
cautiously used in individuals with virologic suppression.

In addition to increased microbial translocation, HIV+
individuals have an altered gut microbiota, with increased
concentrations of P. aeruginosa and C. Albicans and reduced
concentrations of Bifidobacteria and Lactobacilli (reviewed in
[156]). The gut microbiota has significant influence on muco-
sal immunity, and treatment of SIV-infected macaques with
prebiotics in addition to ART improves gastrointestinal im-
munity [157], although limited data from HIV+ individuals
show inconsistent effects on markers of inflammation and
immune activation [158, 159]. As rifamycins have an anti-
inflammatory effect and can inhibit LPS-induced cytokine
production trials are currently underway to determine the
efficacy of non-absorbed antibiotics such as rifaximin in re-
ducing microbial translocation during HIV infection. Given
the central role that microbial translocation is purported to
play in HIV-related inflammation/immune activation, signifi-
cantly more data on the efficacy of pro/prebiotics and related
therapeutics in both viremic and virologically suppressed
HIV+ individuals are warranted.

Conclusion

The pathogenesis of inflammation-driven, non-communicable
diseases in HIV+ individuals is complex and multi-
factorial, and whilst there are clear HIV-specific mecha-
nisms contributing to certain co-morbidities, it is equally
clear that chronic inflammation drives many of these dis-
eases in HIV+ diseases as well as in healthy ageing. Al-
though the etiologies vary, mechanisms contributing to
inflammation such as microbial translocation, immune ac-
tivation and dysfunction and immune senescence act in
parallel in both HIV+ individuals and the aged. Elucidating
which manifestations of HIV co-morbidities require novel
interventions, and which will benefit from traditional pre-
vention and treatment strategies, is a priority area for
research as the HIV+ population ages in both western
society and in resource limited settings.
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