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Abstract
Purpose of Review Artificial intelligence (AI), and in particular its subcategory machine learning, is finding an increasing
number of applications in medicine, driven in large part by an abundance of data and powerful, accessible tools that have made
AI accessible to a larger circle of investigators.
Recent Findings AI has been employed in the analysis of hematopathological, radiographic, laboratory, genomic, pharmacolog-
ical, and chemical data to better inform diagnosis, prognosis, treatment planning, and foundational knowledge related to benign
and malignant hematology. As more widespread implementation of clinical AI nears, attention has also turned to the effects this
will have on other areas in medicine.
Summary AI offers many promising tools to clinicians broadly, and specifically in the practice of hematology. Ongoing research
into its various applications will likely result in an increasing utilization of AI by a broader swath of clinicians.
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Introduction

Artificial intelligence (AI)—the use of computer algorithms to
perform tasks or solve problems that were traditionally asso-
ciated with the human capacity for flexible thinking and
adaptivity—has undergone explosive progress in the last de-
cade thanks to improvements in computing power and access
to ever-increasing repositories of data [1–3]. AI now plays a
role in several commonplace technologies, including voice
recognition or targeted advertising, and is poised to soon

become involved in others, such as autonomously driving
vehicles [1].

Given the portion of the gross domestic product that
healthcare represents in developed countries, and given
the enormous quantities of data generated both from
clinical medicine and biomedical research, it is unsur-
prising that healthcare has been a hotbed for recent AI
research. Indeed, as of 2019 in radiology, the medical
field where AI has arguably made the most progress to
date, 90% of practicing radiologists anticipate that AI
will be incorporated into their future practice.

Simultaneously, as the volume of medical data available
grows at an exponential pace, investigators and clinicians
are faced with the “data rich, information poor” problem,
wherein the quantity—and complexity—of the data generated
exceed our ability to make use of it; other commentators have
noted that merely possessing increasing amounts of data is no
guarantee that more knowledge, or better patient care, will
follow [3]. While still nascent, AI holds similar promise for
medicine broadly, and for the practice of hematology. This
review provides a description of relevant concepts in AI for
those unfamiliar with it, applications where AI shows utility in
hematology, and future challenges pertaining to AI’s integra-
tion into clinical practice.
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Machine Learning: Basic Concepts

The vast majority of healthcare-oriented AI falls under the
subheading of machine learning (ML) (Fig. 1). Broadly, ML
refers to any algorithm that, rather than being programmed
directly to complete some objective, is instead designed to
take source data and find the most effective way to use those
data to complete that objective [4]. Among ML tasks, most
applications are considered “supervised learning,” meaning
that a specific outcome of interest (called a “label”) is known
and the algorithm in question is designed to find the best way
to predict that outcome [5]. This typically consists of either
classification or regression problems. “Unsupervised” appli-
cations, where a prespecified outcome is not known, also exist
and are used to identify previously unknown structures within
data, for example by clustering different samples according
similar genomic data [4, 5].

Myriad algorithms exist under the umbrella of machine
learning. Of these, neural network methods are some of the
most commonly used in recent years. As suggested by their
name, neural networks draw inspiration from the structure of
the nervous system; the basic units of communication in a
neural network, called nodes or neurons, are arrayed in se-
quential layers, with connections of varying strength between
each layer [1, 6]. The initial layer of a neural network receives
input data such as an array of pixels, a series of words, or an
array of categorical data. These data are relayed through inter-
mediate, “hidden” layers, which can create representations of
relationships or higher-level concepts within data, for example
progressing from a set of individual genes to gene networks,
or from an array of pixels to a collection of objects like faces
and bodies [1, 6]. Hidden layers ultimately feed into an output
layer, which can perform standard classification/regression
tasks or create more sophisticated outputs, such as novel im-
ages, sound, or text. “Deep neural networks” or “deep learn-
ing” refers to any neural network with more than one hidden

layer; most neural networks employed in healthcare are deep
networks [2, 6].

Neural networks can be built in a variety of configurations
that allow them to excel at various functions. Convolutional
neural networks (CNNs) are highly successful models de-
signed primarily for handling visual data. CNNs work by fil-
tering small pieces of an image (typically three to seven
pixels) in order to detect simple elements of an image such
as edges, curves, or changes in color; the output of these filters
is passed through subsequent layers of the network, which in
turn encode increasingly high-level features such as shapes,
textures, and eventually entire objects [1, 7].

CNNs’ architecture gives them remarkable flexibility, and
since their inception, they have significantly outperformed
previous approaches [8]. CNNs carry the additional benefit
of requiring less domain-specific knowledge to construct than
other methods, and because their initial layers encode basic
shapes rather than specific objects, highly accurate existing
networks can be repurposed for other uses in a process called
“transfer learning,”which is a crucial ability when, as in many
healthcare settings, datasets number in the hundreds of sam-
ples rather than the millions used to develop the original net-
work [6]. Some CNN-based models have even achieved
human-level accuracy in diverse image processing tasks such
as screening for diabetic retinopathy, correctly classifying his-
topathologic data, and interpreting screening mammograms,
highlighting both the effectiveness of CNNs and their appli-
cability in diverse applications [9–12].

Image Analysis

Pathology

As with other medical applications, AI-based image process-
ing in hematology has leapt forward with the advent of CNNs.

Fig. 1 Overview of machine
learning implementation. Source
data of varying types are collected
for a given dataset, then fed into a
machine learning model (decision
tree in this diagram, on the upper
part) or deep neural network
(lower part) which is trained to
make prediction of two types of
problems. Classification problem
(defining a class or multi-class
prediction) and a regression
problem (continuous number
prediction). For example, a model
can be fed in images of dogs and
cats and trained on a deep neural
network to predict each class
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CNN-based models can now discriminate between different
leukocytes on peripheral smears with area under the receiver
operating characteristic (AUROC) scores exceeding 95%,
demonstrating promising proof of principle for greater auto-
mation in routine pathology practice [13–15]. Similar work is
under way in the automated interpretation of bone marrow
specimens [16]. CNNs have also demonstrated utility in de-
scribing qualitative and quantitative differences within indi-
vidual lineages of cells, such as erythrocyte morphology and
textural changes in sickle cell disease [17]. These successes
extend to the differential diagnosis of disease, where models
have demonstrated the ability to diagnose acute myeloid leu-
kemia, differentiate between causes of bone marrow failure,
and, in resource-constrained settings, serve as a point of care
screening tool for lymphoma [14, 18, 19].

The above developments suggest several possible practical
uses for AI. Pathology results often play a major role in
informing the treatment of malignancy, but significant varia-
tion may exist among observers, a fact that can be especially
true in the case of uncommon diseases, and one which carries
significant clinical ramifications [20–22]. In such settings, AI
models could serve as a consistent reference standard that
could serve either to support diagnoses or to prompt review
by another individual. In the case of uncommon conditions or
resource-limited environments, AI systems could serve as a
means of effectively triaging patients for referral to specialist
care.

Radiology

Radiology has enjoyed similar benefits from advancements in
computer vision. Detection of marrow involvement and bony
lesions in patients based on PET or CT data [23, 24]. Similar
methods have been used to define regions of marrow involve-
ment in recurrent acute myeloid leukemia (AML) [25]. CNN-
based methods have also been employed in image segmenta-
tion, a process that involves highlighting the boundaries of
different structures in an image and is laborious for human
operators to perform [26]. Beyond diagnosis and anatomic
measurement, AI can extract additional information from ra-
diographic data, such as more effective risk stratification of
patients with Hodgkin lymphoma, which could in turn affect
treatment decisions [27, 28]. As with pathology, AI has sev-
eral potential roles to play in radiology, including use as a
screening tool, decision aid, or prognostic model.

Laboratory and EHR Data

Beyond image processing, several other data sources, either
individually or in concert with one another, provide valuable
substrate for AI models and can augment clinical care in the
setting of diagnosis, prognosis, and diagnosis.

Diagnosis

AI has been used in several avenues to improve the reliability,
convenience, or efficiency of diagnoses. CNN-based ap-
proaches have been demonstrated to effectively diagnose mul-
tiple myeloma based exclusively on mass spectrometry data
from peripheral blood [29]. In the case of difficult-to-
differentiate conditions, such as various causes of bone mar-
row failure, personalized models have demonstrated high di-
agnostic ability by integrating patient demographics, labora-
tory data, and basic genetic information [30]. Similar ap-
proaches have also been employed for differential diagnosis
of peripheral leukemia versus lymphoma [31]. As with image
analysis, these advances open the door to AI’s use as a means
to reduce the amount of resources required for diagnostic
studies and to standardize their interpretation.

Prognosis and Risk Stratification

Prognosis is a notoriously difficult task, and even in widely
used clinical prognostication tools significant variability exists
within risk strata [32]. AI, which is well equipped to handle
nonlinear, complex data, has the potential to provide more
refined, personalized prognoses. Such approaches have been
used in the benign hematology setting to refine risk scores for
central catheter thrombosis, identifying low-risk individuals
with a 95% negative predictive value [33]. For patients receiv-
ing hematopoietic stem cell transplants, AI has been used to
stratify individuals at low versus high risk for acute graft-
versus-host disease, with implications for decision-making
about immunosuppression of such individuals [34]. Similar
efforts have been undertaken in autologous transplant for mul-
tiple myeloma [35]. In malignant hematology, AI has been
used to improve upfront risk stratification for AML/MDS
[36, 37]. In the post-treatment setting, where the presence of
minimal residual disease (MRD) is an adverse prognostic fac-
tor, AI has demonstrated the ability to achieve human-level
performance at MRD detection via flow cytometry and mass
cytometry, something which could streamline and standardize
the processing of such data [38–40].

Beyond providing valuable information to patients,
advances in prognostic ability may better inform clini-
cians’ treatment decisions by better assessing risk in
heterogeneous risk strata. Sasaki et al. (2019) describe
the use of a decision tree–based approach to CML treat-
ment, and in retrospective data demonstrate that ML-
informed treatment resulted in longer survival for pa-
tients compared with usual care [41]. While prospective
validation is needed, the ability to apply risk-
stratification to treatment planning is appealing, and in
CML, it could provide guidance for clinicians as they
seek to balance drug tolerability and efficaciousness.
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Genomics and Response Prediction

In the case of hematologic malignancy, patients’ disease biol-
ogy is, with a few notable exceptions, driven by heteroge-
neous and complex genetic factors that are difficult to eluci-
date. The advent of accurate, relatively inexpensive next-
generation sequencing (NGS) technologies makes it more fea-
sible to enumerate the genetic alterations present in individual
patients’malignancies. In lymphoma, NGS in tandemwith AI
has been used, with or without other data such as in vitro drug
sensitivities, to predict response to chemotherapy [42, 43]. In
MDS, this has been used to predict response to lenalidomide
or hypomethylating agents using a recommender system in-
spired by targeted advertising algorithms [44, 45]. Similar
approaches have been employed when considering the treat-
ment of AML, where the generation of the BeatAML data
repository has additionally provided an example of the utility
of creating large, well-curated datasets available to the re-
search community at large [46].

As seen in larger pan-cancer cohorts, adequately sized
datasets also provide the ability to apply ML to the pursuit
of basic science insights; recent work by Rheinbay et al. dem-
onstrates the use of unsupervised methods to augment the
discovery of novel non-coding driver mutations in a pan-
cancer cohort [47]. Developing both the techniques and the
data collections to better elucidate disease biology will, hope-
fully, in turn better inform novel, biologically sound therapies
that are better suited to patients’ unique disease biology.

Novel Therapeutics and Trial Design

Devising, refining, and testing new therapies is an expensive,
time-consuming task with a low success rate. AI-based strat-
egies may aid in developing more rational and efficient pipe-
lines for drug development. This includes models designed to
integrate in vitro sensitivity data from drug screens with ge-
nomic information about the cell lines used in order to more
accurately predict the response to new agents and to investi-
gate alternative uses of existing compounds [42]. From the
perspective of medicinal chemistry, neural networks have
demonstrated the ability to closely approximate the perfor-
mance of more computationally expensive computational
techniques for modeling protein-drug interactions, which
may potentially allow researchers to take on more computa-
tionally demanding tasks [48].

Beyond basic and translational science, personalized care
informed by AI has the potential to affect how clinical trials
are conducted. Low response rates confer the need for in-
creased size and expense in clinical trials, and strategies to
effectively select the patients most likely to benefit from an
intervention can lower costs and increase the likelihood of
finding use for new therapies [49, 50]. Conversely, methods

that effectively identify patients unlikely to benefit from a
treatment spare them futile treatment and needless toxicities,
and open up the possibility for accessing other avenues of
treatment. In the setting of malignancy, this could mean that
patients unlikely to benefit from the current standard of care
could receive investigational agents without being subjected
to agents unlikely to benefit from them.

Future Challenges

AI has several hurdles to clear before realizing its potential in
medicine. It is likely, however, to increase in prominence and,
ultimately, to foster changes and evolution in clinical practice.
Considering this, an understanding of AI’s basics will need to
become part of physicians’ statistical literacy, and they should
be aware of some of the challenges that accompany AI’s emer-
gence. These include logistical questions related to its imple-
mentation, the adequacy of data used to develop AI models,
and the adoption of clinically meaningful standards for AI
development. While there has been some speculation that AI
will displace human pathologists or radiologists, these views
are more commonly held by those less familiar with those
fields and those less familiar with AI; domain experts instead
envision complementary roles for AI and physicians [51–53].

Implementation

Bringing AI into the clinic represents a distinct challenge from
the initial development of AI systems. Given its need for ac-
cess to large amounts of patient data, AI systems will likely
have to be implemented into EHR, posing potential challenges
regarding security and data ownership. The prospect of an
EHR-based system also raises questions about the effect on
clinicians. EHR is frequently cited as a contributing factor in
physician burnout, and potential unintended consequences
such as perceived autonomy or an increased documentation
burden need to be considered.

Practically speaking, AI also needs to be engineered in a
manner that makes its use convenient in the setting of a busy
practice. Systems that require extra work to manually enter
patient data or access models are less likely to see uptake
regardless of how well they perform. In cases such as pathol-
ogy where physical specimens are used, the logistics of spec-
imen preparation and analysis bear consideration. For
implementation-focused research, e.g., recently published
work in AI-augmented microscopy, the outcomes of interest
include not only the discriminative ability of the system but
also its ability to perform in real time and without substantially
affecting existing workflows [54] (Table 1). Such factors di-
rectly influence a technology’s ability to be incorporated into
the practice of medicine, and as such should be considered
endpoints in similar work.
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Appropriate Training Data

As with any other statistical model, AI models’ performance
hinges on the data used to develop them. Watson for
Oncology (WFO), an IBM initiative designed to process, in-
tegrate, and implement large volumes of both patient data and
medical literature to help oncologists choose appropriate op-
tions for patients, is an illustrative case. Enthusiasm for WFO
has waned substantially, in large part because WFO’s treat-
ment recommendations often varied from those of clinicians,
sometimes to an alarming degree [55, 56]. Studies of WFO’s
recommendations found such discrepancies more often in
intermediate-stage malignancy or in patients unfit for standard
therapies [57, 58]. WFO’s example highlights both the inher-
ent challenge of delivering truly personalized care and the
significance of adequate source data. As with other clinical
research, source data need to be considered when applying
AI models in new settings, whether that is in a new health
system or in a population different from the one used to de-
velop the model.

The data used to generate models can also precipitate eth-
ical challenges. Language models derived from repositories of
free text from the internet display a clear tendency to associate
male individuals more closely with leadership roles and pro-
fessional accomplishment than their female counterparts [59,
60]. Similarly, programs designed to predict crime or approve
loans have been observed to exhibit bias against racial minor-
ities [61, 62]. These cases highlight the downside of AI’s
ability to learn from large datasets; if the data themselves
reflect problematic outcomes or practices, then models run
the risk of internalizing them.

Making AI Clinically Meaningful

Algorithms can only be as clinically meaningful as the out-
comes that they are designed to predict. This requires, as with

other clinical research, the use of appropriately patient-
oriented endpoints. On a more technical level, it also requires
the use of appropriate metrics to evaluate model performance.
For instance, the use of accuracy as a metric is of dubious use
in medical settings because it assigns equal value to true pos-
itive and true negative results; in healthcare settings, where the
outcome of interest is often only present in a minority of the
population, accuracy will overstate the utility of a model due
to a high proportion of true negative results, despite poor
performance in identifying the true outcome of interest. In
order to best align algorithms’ performance with patients’ in-
terests, metrics should be selected and reported with an eye to
the outcomes that clinicians and patients care about (e.g., ex-
plicitly describing the burden of false positive and negative
results alongside model accuracy).

Beyond reliable performance, AImodels’ decisions need to
be interpretable. Knowing not only what an algorithm pre-
dicts, but why it does so is critical when faced with clinical
ambiguity, when discussing decision-making with patients, or
in instances where there is disagreement between human and
machine predictions. One of the ways to accomplish this is
through the use of separate algorithms designed to identify
how individual variables contribute to a model’s output, an
approach that has been developed for ML more broadly but
has also studied specifically in the context of healthcare [63,
64]. Such approaches have been used in hematologic malig-
nancy to highlight the most salient features of individual pa-
tients’ diseases, something that can prove useful both in the
context of explaining diagnoses and in making predictions
about responsiveness to treatment [30, 37, 65].

In settings outside of hematology, there has also been suc-
cess in designing neural networks whose architecture contains
intrinsic mechanisms for explainability, such as highlighting
regions of interest on pathology slides or identifying the
phrases in a patient’s medical record that most strongly sug-
gest a particular diagnosis or prognosis [66]. Such measures

Table 1 Representative AI publications in hematology. AA, aplastic
anemia; MDS, myelodysplastic syndrome; CNN, convolutional neural
network; sens., sensitivity; spec., specificity; AML, acute myeloid

leukemia; AUROC, area under the receiver operating characteristic
curve; SUV, standardized uptake volume; MRD, minimal residual
disease; SVM, support vector machine; NGS, next-generation sequencing

First author Application Method Results

Kimura, 2019 Leukocyte classification and differential diagnosis
of AA and MDS

CNN 94%/96% sens./spec. for leukocyte classification, 96%/100%
sens./spec. for differentiating AA/MDS

Li, 2019 PET-CT to detect AML bonemarrow involvement PyRadiomics (manual feature engineering) Outperformance of human radiologists; 88%/90% sens./spec.
for bone marrow involvement

Milgrom, 2019 PET-CT prediction of refractory Hodgkin
lymphoma via flow cytometry

CNN AUROC 0.95 for refractory disease compared to 0.78 and 0.65
for feature-based predictions (volume, SUV)

Moraes L, 2019 Flow cytometry for differential diagnosis Decision tree 66% top DDx; 95% inclusion in DDx
Ni W, 2016 AML MRD detection by flow cytometry SVM Equivalent performance to human data analysis (c = 0.986)
Arai Y, 2019 Acute leukemia relapse prediction after HSCT Decision tree 0.75 AUROC
Goswami C 2019 Risk stratification for multiple myeloma

autologous stem cell transplant
Decision tree Statistically significant differentiation into risk strata;

identification of high-risk patients
Nazha A, 2019 Use of NGS panels to predict hypomethylating

agent resistance in MDS
Recommender algorithm Statistically significant risk stratification by hypomethylating

agent resistance likelihood
Gal O, 2019 Pediatric AML response likelihood based on NGS KNN 0.85 AUROC for induction response
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lend accountability and credibility to predictions, and facilitate
AI models’ integration into the larger picture of clinical delib-
eration rather than serving as stand-alone decision points.

Conclusion

Hematology as a field stands to benefit significantly from
contemporary AI, both across a spectrum of different types
of data and across a spectrum of patient care, including diag-
nosis, prognosis, and more effective management of hemato-
logic disorders. As AI continues to gain a foothold in the
management of pathologic, radiologic, genomic, and EHR
data, attention needs to be paid to its effective implementation
into clinical practice and the development of AI systems with
an eye to how they will ultimately impact patient care.

Compliance with Ethical Standards

Conflict of Interest The authors report no conflicts of interest and have
no financial disclosures related to this work.

Ethical Statement All reported studies/experiments with human or an-
imal subjects performed by the authors have been previously published
and complied with all applicable ethical standards (including the Helsinki
declaration and its amendments, institutional/national research committee
standards, and international/national/institutional guidelines).

Human and Animal Rights and Informed Consent This article does not
contain any studies with human or animal subjects performed by any of
the authors.

References

1. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015
May;521(7553):436–44.

2. Miotto R, Wang F, Wang S, Jiang X, Dudley JT. Deep learning for
healthcare: review, opportunities and challenges. Brief Bioinform.
2018 Nov 27;19(6):1236–46.

3. Alsuliman T, Humaidan D, Sliman L. Machine learning and artifi-
cial intelligence in the service of medicine: necessity or potentiali-
ty? Curr Res Transl Med 2020;S2452318620300192.

4. Deo RC. Machine learning in medicine. Circulation. 2015;132(20):
1920–30.

5. Buch VH, Ahmed I, Maruthappu M. Artificial intelligence in med-
icine: current trends and future possibilities. Br J Gen Pract. 2018
Mar;68(668):143–4.

6. Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M,
Chou K, et al. A guide to deep learning in healthcare. Nat Med.
2019 Jan;25(1):24–9.

7. Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts HJWL.
Artificial intelligence in radiology. Nat Rev Cancer. 2018
Aug;18(8):500–10.

8. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification
with deep convolutional neural networks. Commun ACM. 2017
May 24;60(6):84–90.

9. Keel S, Lee PY, Scheetz J, Li Z, Kotowicz MA, MacIsaac RJ, et al.
Feasibility and patient acceptability of a novel artificial intelligence-

based screening model for diabetic retinopathy at endocrinology
outpatient services: a pilot study. Sci Rep. 2018 Dec;8(1):4330.

10. AbràmoffMD, Lavin PT, BirchM, Shah N, Folk JC. Pivotal trial of an
autonomous AI-based diagnostic system for detection of diabetic reti-
nopathy in primary care offices. Npj Digit Med. 2018 Dec;1(1):39.

11. Coudray N, Ocampo PS, Sakellaropoulos T, Narula N, Snuderl M,
Fenyö D, et al. Classification and mutation prediction from non-
small cell lung cancer histopathology images using deep learning.
Nat Med. 2018;24(10):1559–67.

12. Shen L,Margolies LR, Rothstein JH, Fluder E,McBride R, SiehW.
Deep learning to improve breast cancer detection on screening
mammography. Sci Rep. 2019 Dec;9(1):12495.

13. Hegde RB, Prasad K, Hebbar H, Singh BMK. Comparison of tra-
ditional image processing and deep learning approaches for classi-
fication of white blood cells in peripheral blood smear images.
Biocybern Biomed Eng. 2019 Apr;39(2):382–92.

14. Kimura K, Tabe Y, Ai T, Takehara I, Fukuda H, Takahashi H, et al.
A novel automated image analysis system using deep convolutional
neural networks can assist to differentiate MDS and AA. Sci Rep.
2019 Dec;9(1):13385.

15. Wang Q, Bi S, Sun M, Wang Y, Wang D, Yang S. Deep learning
approach to peripheral leukocyte recognition. Zhang J, editor.
PLOS ONE. 2019 Jun 25;14(6):e0218808.

16. Chandradevan R, Aljudi AA, Drumheller BR, Kunananthaseelan
N, Amgad M, Gutman DA, et al. Machine-based detection and
classification for bone marrow aspirate differential counts: initial
development focusing on nonneoplastic cells. Lab Investig. 2020
Jan;100(1):98–109.

17. Xu M, Papageorgiou DP, Abidi SZ, Dao M, Zhao H, Karniadakis
GE. A deep convolutional neural network for classification of red
blood cells in sickle cell anemia. Nie Q, editor. PLOS Comput Biol.
2017 Oct 19;13(10):e1005746.

18. Alsalem MA, Zaidan AA, Zaidan BB, Hashim M, Madhloom HT,
AzeezND, et al. A review of the automated detection and classification
of acute leukaemia: coherent taxonomy, datasets, validation and perfor-
mance measurements, motivation, open challenges and recommenda-
tions. Comput Methods Prog Biomed. 2018 May;158:93–112.

19. Im H, Pathania D, McFarland PJ, Sohani AR, Degani I, Allen M,
et al. Design and clinical validation of a point-of-care device for the
diagnosis of lymphoma via contrast-enhanced microholography
and machine learning. Nat Biomed Eng. 2018 Sep;2(9):666–74.

20. Elmore JG, Longton GM, Carney PA, Geller BM, Onega T,
Tosteson ANA, et al. Diagnostic concordance among pathologists
interpreting breast biopsy specimens. JAMA. 2015 Mar
17;313(11):1122–32.

21. Fadi B, Luciana S, Epstein Jonathan I. The value of mandatory
second opinion pathology review of prostate needle biopsy inter-
pretation before radical prostatectomy. J Urol. 2010 Jul 1;184(1):
126–30.

22. Naqvi K, Jabbour E, Bueso-Ramos C, Pierce S, Borthakur G,
Estrov Z, et al. Implications of discrepancy in morphologic diagno-
sis of myelodysplastic syndrome between referral and tertiary care
centers. Blood. 2011 Oct 27;118(17):4690–3.

23. Xu L, Tetteh G, Lipkova J, Zhao Y, Li H, Christ P, et al. Automated
whole-body bone lesion detection for multiple myeloma on 68 Ga-
Pentixafor PET/CT imaging using deep learning methods. Contrast
Media Mol Imaging. 2018;2018:1–11.

24. Martínez-Martínez F, Kybic J, Lambert L, Mecková Z. Fully auto-
mated classification of bone marrow infiltration in low-dose CT of
patients with multiplemyeloma based on probabilistic density mod-
el and supervised learning. Comput Biol Med. 2016 Apr;71:57–66.

25. Li H, Xu C, Xin B, Zheng C, Zhao Y, Hao K, et al. 18 F-FDG PET/
CT radiomic analysis with machine learning for identifying bone
marrow involvement in the patients with suspected relapsed acute
leukemia. Theranostics. 2019;9(16):4730–9.

208 Curr Hematol Malig Rep (2020) 15:203–210



26. Moon H, Huo Y, Abramson RG, Peters RA, Assad A, Moyo TK,
et al. Acceleration of spleen segmentation with end-to-end deep
learning method and automated pipeline. Comput Biol Med. 2019
Apr;107:109–17.

27. Milgrom SA, Elhalawani H, Lee J, Wang Q, Mohamed ASR,
Dabaja BS, et al. A PET radiomics model to predict refractory
mediastinal Hodgkin lymphoma. Sci Rep. 2019 Dec;9(1):1322.

28. Guo B, Tan X, KeQ, Cen H. Prognostic value of baselinemetabolic
tumor volume and total lesion glycolysis in patients with lympho-
ma: a meta-analysis. PLoS One. 2019;14(1):e0210224.

29. Deulofeu M, Kolářová L, Salvadó V, María Peña-Méndez E,
Almáši M, Štork M, et al. Rapid discrimination of multiple myelo-
ma patients by artificial neural networks coupled with mass spec-
trometry of peripheral blood plasma. Sci Rep. 2019 Dec;9(1):7975.

30. Hilton C. Geno-Clinical Model for the diagnosis of bone marrow my-
eloid neoplasms. In ASH; 2019 [cited 2019 Nov 14].Available from:
https://ash.confex.com/ash/2019/webprogram/Paper126967.html

31. Moraes LO, Pedreira CE, Barrena S, Lopez A,Orfao A. A decision-
tree approach for the differential diagnosis of chronic lymphoid
leukemias and peripheral B-cell lymphomas. Comput Methods
Prog Biomed. 2019 Sep;178:85–90.

32. Patel SS, Sekeres MA, Nazha A. Prognostic models in predicting
outcomes in myelodysplastic syndromes after hypomethylating
agent failure. Leuk Lymphoma. 2017 Nov 2;58(11):2532–9.

33. Liu S, Zhang F, Xie L, Wang Y, Xiang Q, Yue Z, et al. Machine
learning approaches for risk assessment of peripherally inserted
central catheter-related vein thrombosis in hospitalized patients
with cancer. Int J Med Inf. 2019 Sep;129:175–83.

34. Arai Y, Kondo T, Fuse K, Shibasaki Y, Masuko M, Sugita J, et al.
Using a machine learning algorithm to predict acute graft-versus-
host disease following allogeneic transplantation. Blood Adv. 2019
Nov 26;3(22):3626–34.

35. Goswami C, Poonia S, Kumar L, Sengupta D. Staging system to
predict the risk of relapse in multiple myeloma patients undergoing
autologous stem cell transplantation. Front Oncol. 2019 Jul 12;9:
633.

36. Nazha A, Komrokji RS, Meggendorfer M, Mukherjee S, Al Ali N,
Walter W, et al. A personalized prediction model to risk stratify
patients with myelodysplastic syndromes. Blood. 2018
Nov 29;132(Supplement 1):793–793.

37. Shreve J. A personalized prediction model to risk stratify patients
with acute myeloid leukemia (AML) using artificial intelligence. In
ASH; 2019 [cited 2019 Nov 14]. Available from: https://ash.
confex.com/ash/2019/webprogram/Paper128066.html

38. Ni W, Hu B, Zheng C, Tong Y, Wang L, Li Q, et al. Automated
analysis of acute myeloid leukemia minimal residual disease using
a support vector machine. Oncotarget [Internet]. 2016 Nov 1 [cited
2019 Nov 7];7(44). Available from: http://www.oncotarget.com/
fulltext/12430

39. Ko B-S, Wang Y-F, Li J-L, Li C-C, Weng P-F, Hsu S-C, et al.
Clinically validated machine learning algorithm for detecting resid-
ual diseases with multicolor flow cytometry analysis in acute mye-
loid leukemia and myelodysplastic syndrome. EBioMedicine. 2018
Nov;37:91–100.

40. Arvaniti E, Claassen M. Sensitive detection of rare disease-
associated cell subsets via representation learning. Nat Commun.
2017 Apr;8(1):14825.

41. Sasaki K, Kantarjian HM, Jabbour E, Ravandi F, Konopleva MY,
Borthakur GM, et al. The impact of treatment recommendation by
Leukemia Artificial Intelligence Program (LEAP) on survival in
patients with chronic myeloid leukemia in chronic phase (CML-
CP). Blood. 2019 Nov 13;134(Supplement_1):1642–1642.

42. Chang Y, Park H, Yang H-J, Lee S, Lee K-Y, Kim TS, et al. Cancer
drug response profile scan (CDRscan): a deep learning model that
predicts drug effectiveness from cancer genomic signature. Sci Rep.
2018 Dec;8(1):8857.

43. Mani-Varnosfaderani A, Neiband MS, Benvidi A. Identification of
molecular features necessary for selective inhibition of B cell lym-
phoma proteins using machine learning techniques. Mol Divers.
2019 Feb;23(1):55–73.

44. Nazha A, Sekeres MA, Bejar R, RauhMJ, Othus M, Komrokji RS,
et al. Genomic biomarkers to predict resistance to hypomethylating
agents in patients with myelodysplastic syndromes using artificial
intelligence. JCO Precis Oncol. 2019 Sep;3:1–11.

45. Madanat YF, Sekeres MA, Mukherjee S, Hirsch CM, Guan Y,
Nagata Y, et al. Genomic biomarkers predict response/resistance
to lenalidomide in non-Del(5q) myelodysplastic syndromes.
Blood. 2018 Nov 29;132(Supplement 1):1797–1797.

46. Lee S-I, Celik S, Logsdon BA, Lundberg SM, Martins TJ, Oehler
VG, et al. A machine learning approach to integrate big data for
precision medicine in acute myeloid leukemia. Nat Commun. 2018
Dec;9(1):42.

47. Rheinbay E. Analyses of non-coding somatic drivers in 2,658 can-
cer whole genomes. Nature. 2020;578:102–11.

48. Yakovenko O, Jones SJM. Modern drug design: the implication of
using artificial neuronal networks and multiple molecular dynamic
simulations. J Comput Aided Mol Des. 2018 Jan;32(1):299–311.

49. Harrer S, Shah P, Antony B, Hu J. Artificial intelligence for clinical
trial design. Trends Pharmacol Sci. 2019 Aug;40(8):577–91.

50. Woo M. An AI boost for clinical trials. Nature. 2019 Sep 25;573:
S100–2.

51. Recht M, Bryan RN. Artificial intelligence: threat or boon to radi-
ologists? J Am Coll Radiol. 2017 Nov;14(11):1476–80.

52. Sharma G, Carter A. Artificial intelligence and the pathologist:
future frenemies? Arch Pathol Lab Med. 2017 May;141(5):622–3.

53. Pinto dos Santos D, Giese D, Brodehl S, Chon SH, Staab W,
Kleinert R, et al. Medical students’ attitude towards artificial intel-
ligence: a multicentre survey. Eur Radiol. 2019 Apr;29(4):1640–6.

54. Chen P-HC, Gadepalli K, MacDonald R, Liu Y, Kadowaki S,
Nagpal K, et al. An augmented reality microscope with real-time
artificial intelligence integration for cancer diagnosis. Nat Med.
2019 Sep;25(9):1453–7.

55. Ross C, Swetlitz I. IBM pitch its Watson supercomputer as a
revoltuion in cancer care. It’s nowhere close. Stat news [Internet].
2017 Sep 5; Available from: https://www.statnews.com/2017/09/
05/watson-ibm-cancer/

56. Schmidt C. M. D. Anderson Breaks With IBM Watson, Raising
questions about artificial intelligence in oncology. JNCI J Natl
Cancer Inst [Internet]. 2017 May [cited 2019 Nov 10];109(5).
Available from: https://academic.oup.com/jnci/article-lookup/doi/
10.1093/jnci/djx113

57. Choi YI, Chung J, Kim KO, Kwon KA, Kim YJ, Park DK, et al.
Concordance rate between clinicians and Watson for oncology
among patients with advanced gastric cancer: early, real-world ex-
perience in Korea. Can J Gastroenterol Hepatol. 2019 Feb 3;2019:
1–6.

58. Kim EJ,Woo HS, Cho JH, Sym SJ, Baek J-H, LeeW-S, et al. Early
experience with Watson for oncology in Korean patients with co-
lorectal cancer. Orzechowski P, editor. PLOS ONE. 2019 Mar
25;14(3):e0213640.

59. Machines taught by photos learn a sexist view of women. Wired
[Internet]. [cited 2019 Nov 26]; Available from: https://www.
wired.com/story/machines-taught-by-photos-learn-a-sexist-view-
of-women/

60. Zou J, Schiebinger L. AI can be sexist and racist — it’s time to
make it fair. Nature. 2018 Jul;559(7714):324–6.

61. Courtland R. Bias detectives: the researchers striving to make algo-
rithms fair. Nature. 2018 Jun 20;558:357–60.

62. Hague DC. Benefits, pitfalls, and potential bias in health care AI. N
C Med J. 2019 Jul;80(4):219–23.

63. Lundberg SM, Lee S-I. A unified approach to interpreting model
predictions. In: Guyon I, Luxburg UV, Bengio S,Wallach H, Fergus

209Curr Hematol Malig Rep (2020) 15:203–210

https://ash.confex.com/ash/2019/webprogram/Paper126967.html
https://ash.confex.com/ash/2019/webprogram/Paper128066.html
https://ash.confex.com/ash/2019/webprogram/Paper128066.html
http://www.oncotarget.com/fulltext/12430
http://www.oncotarget.com/fulltext/12430
https://www.statnews.com/2017/09/05/watson-ibm-cancer/
https://www.statnews.com/2017/09/05/watson-ibm-cancer/
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djx113
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djx113
https://www.wired.com/story/machines-taught-by-photos-learn-a-sexist-view-of-women/
https://www.wired.com/story/machines-taught-by-photos-learn-a-sexist-view-of-women/
https://www.wired.com/story/machines-taught-by-photos-learn-a-sexist-view-of-women/


R, Vishwanathan S, et al., editors. Advances in neural information
processing systems 30 [Internet]. Curran Associates, Inc.; 2017
[cited 2019 Nov 17]. p. 4765–4774. Available from: http://
papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-
model-predictions.pdf

64. Lundberg SM, Nair B, Vavilala MS, Horibe M, Eisses MJ, Adams
T, et al. Explainable machine-learning predictions for the preven-
tion of hypoxaemia during surgery. Nat Biomed Eng. 2018
Oct;2(10):749–60.

65. Radakovich N. Predicting Response to hypomethylating agents in pa-
tients with myelodysplastic syndromes (MDS) using artificial

intelligence (AI). In ASH; 2019 [cited 2019 Nov 14].Available from:
https://ash.confex.com/ash/2019/webprogram/Paper126275.html

66. Tomašev N, Glorot X, Rae JW, Zielinski M, Askham H, Saraiva A,
et al. A clinically applicable approach to continuous prediction of
future acute kidney injury. Nature. 2019 Aug;572(7767):116–9.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

210 Curr Hematol Malig Rep (2020) 15:203–210

http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
https://ash.confex.com/ash/2019/webprogram/Paper126275.html

	Artificial Intelligence in Hematology: Current Challenges and Opportunities
	Abstract
	Abstract
	Abstract
	Abstract
	Introduction
	Machine Learning: Basic Concepts
	Image Analysis
	Pathology
	Radiology

	Laboratory and EHR Data
	Diagnosis
	Prognosis and Risk Stratification
	Genomics and Response Prediction

	Novel Therapeutics and Trial Design
	Future Challenges
	Implementation
	Appropriate Training Data
	Making AI Clinically Meaningful

	Conclusion
	References


